Scattering Systems and Characteristic Functions

Jussi Behrndt, Mark M. Malamud and Hagen Neidhardt

Abstract— The well-known relation between the scattering matrix of the Lax-Phillips scattering theory and the characteristic function of Foias and Sz.-Nagy found by Adamyan and Arov is extended to a scattering theory of singular perturbations which includes the usual ones as a special case.

Keywords-Lax-Phillips scattering theory, singular perturbation, scattering matrix, characteristic function, dissipative operator

I. INTRODUCTION

For the needs of acoustic scattering a new type of scattering theory was created by Lax and Phillips in [16] which differed essentially from the classical scattering theory, cf. [5], [6], [19]. Instead of an unperturbed and a perturbed selfadjoint operator a Lax-Phillips scattering system consists only of a "perturbed" operator L acting in a separable Hilbert space \mathfrak{L} . It is assumed that the operator L admits an incoming subspace $\mathcal{D}_+ \subseteq \mathfrak{L}$ and an outgoing subspace $\mathcal{D}_- \subseteq \mathfrak{L}$ satisfying the conditions

(i)
$$e^{-itL}\mathcal{D}_{\pm} \subseteq \mathcal{D}_{\pm}, \ \pm t \ge 0,$$
 (ii) $\bigcap_{t\in\mathbb{R}} e^{-itL}\mathcal{D}_{\pm} = \{0\},$
(iii) $\bigcup_{t\in\mathbb{R}} e^{-itL}\mathcal{D}_{\pm} = \mathfrak{L}$ and (iv) $\mathcal{D}_{+} \perp \mathcal{D}_{-},$

cf. [6], [16]. An "unperturbed" operator is not explicitly given. It was shown in [17] (see also [6, Theorem 12.3]) that under the above assumptions (i)-(iv) the isometric semigroups

$$U_{\pm}(t) := e^{-itL} \upharpoonright \mathcal{D}_{\pm}, \quad \pm t \ge 0,$$

admit a minimal unitary coupling, that is, there exists a unitary group e^{-itT_0} , $t \in \mathbb{R}$, in the Hilbert space

$$\mathfrak{K}:=\mathcal{D}_{-}\oplus\mathcal{D}_{+}\subseteq\mathfrak{L}$$

such that

$$U_{\pm}(t) = e^{-itT_0} \upharpoonright \mathcal{D}_{\pm}, \quad \pm t \ge 0 \qquad \text{and} \qquad \bigcup_{t \in \mathbb{R}} e^{-itT_0} \mathcal{D}_{\pm} = \mathfrak{K}$$

holds. It turns out that the self-adjoint operator T_0 is unitarily equivalent to the differentiation operator $-i\frac{d}{dx}$ in $L^2(\mathbb{R}, \mathfrak{k})$, where \mathfrak{k} is some auxiliary Hilbert space.

The Lax-Phillips wave operators are defined by

$$\Omega_{\pm} := \operatorname{s-lim}_{t \to \pm\infty} e^{itL} J_{\pm} e^{-itT_0} : \mathfrak{K} \longrightarrow \mathfrak{L},$$

where J_{\pm} is the embedding of the subspaces \mathcal{D}_{\pm} into \mathfrak{L} , and the Lax-Phillips scattering operator S_{LP} is given by

$$S_{LP} := \Omega^*_+ \Omega_- : \mathfrak{K} \longrightarrow \mathfrak{K}.$$

Since S_{LP} is unitary and commutes with T_0 one obtains that S_{LP} is unitarily equivalent to a multiplication operator in $L^2(\mathbb{R}, \mathfrak{k})$ induced by a measurable family $\{S_{LP}(\lambda)\}$ of unitary operators which is called the Lax-Phillips scattering matrix.

Denoting by $P_{\mathfrak{H}}^{\mathfrak{L}}$ the orthogonal projection from \mathfrak{L} onto $\mathfrak{H} := \mathfrak{L} \ominus \mathfrak{K}$ one defines a contraction C_0 -semigroup by

$$Z(t) := P_{\mathfrak{H}}^{\mathfrak{L}} e^{-itL} \upharpoonright \mathfrak{H}, \qquad t \ge 0,$$

and it follows that there is a completely non-selfadjoint maximal dissipative operator H in \mathfrak{H} such that the representation

$$Z(t) = e^{-itH}, \quad t \ge 0,$$

J. Behrndt is with Institute of Mathematics MA 6-4, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany behrndt@math.tu-berlin.de

M.M. Malamud is with the Department of Mathematics, Donetsk National University, Universitetskaya 24, 83055 Donetsk, Ukraine mmm@telenet.dn.ua

H. Neidhardt is with the Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstr. 39, D-10117 Berlin, Germany neidhard@wias-berlin.de

holds. We note that L and H are related via

$$P_{\mathfrak{H}}^{\mathfrak{L}}(L-z)^{-1} \upharpoonright \mathfrak{H} = (H-z)^{-1}, \quad z \in \mathbb{C}_+.$$
(I.1)

By [13] the operator H is determined up to unitary equivalence by its characteristic function $W_H(\cdot) : \mathbb{C}_- \to \mathcal{L}(\mathfrak{k})$, where \mathfrak{k} is an auxiliary Hilbert space, see above, and $\mathcal{L}(\mathfrak{k})$ denotes the space of bounded linear operators defined on \mathfrak{k} . Recall that $W_H(\cdot)$ is holomorphic and contraction-valued. In [1], [2], [3], [4] it was shown by Adamyan and Arov that the scattering matrix $\{S_{LP}(\lambda)\}$ of Lax and Phillips and the characteristic function $W_H(\lambda - i0)$ of Foias and Sz.-Nagy are related by

$$S_{LP}(\lambda) = W_H(\lambda - i0)^* \text{ for a.e. } \lambda \in \mathbb{R}.$$
 (I.2)

This unexpected connection offers a nice possibility to calculate the Lax-Phillips scattering matrix via the characteristic function of a maximal dissipative operator.

In this note we consider scattering systems $\{L, L_0\}$, where it is assumed that L_0 coincides with the orthogonal sum of two self-adjoint operators A_0 and T_0 in the Hilbert spaces \mathfrak{H} and \mathfrak{K} , respectively, and that L is special self-adjoint singular perturbation of L_0 in $\mathfrak{L} = \mathfrak{H} \oplus \mathfrak{K}$. Moreover we suppose that L and L_0 are self-adjoint extension of some symmetric operator $A \oplus T$ in \mathfrak{L} , where both A and T are one-dimensional restrictions of A_0 and T_0 in \mathfrak{H} and \mathfrak{K} , respectively. Then we obtain a family $\{H(z)\}_{z \in \mathbb{C}_+}$ of maximal dissipative operators in \mathfrak{H} such that the relation

$$P_{\mathfrak{H}}^{\mathfrak{L}}(L-z)^{-1} \upharpoonright \mathfrak{H} = (H(z)-z)^{-1}, \quad z \in \mathbb{C}_+,$$
(I.3)

holds, cf. Theorem 3.1. Note that (I.3) can be regarded as an extension of the relation (I.1). The family $\{H(z)\}_{z \in \mathbb{C}_+}$ of extensions of A is called *Strauss family*. Naturally, the question arises whether the family of characteristic functions of the Strauss family is related to the usual scattering matrix $\{S(\lambda)\}$ of the complete scattering system $\{L, L_0\}$ (see [6], [15], [19] and Section III) like the characteristic function of H is related to the Lax-Phillips scattering matrix $\{S_{LP}(\lambda)\}$ by (I.2). In fact, under the additional assumption that the spectrum of A_0 is purely singular, here we are able to prove that the scattering matrix $\{S(\lambda)\}$ admits the representation

$$S(\lambda) = W_{H(\lambda+i0)}(\lambda-i0)^*$$
 for a.e. $\lambda \in \mathbb{R}$,

where $H(\lambda + i0)$ is a suitable defined continuation of the Strauss family to \mathbb{R} and $W_{H(\lambda+i0)}(\cdot)$ denotes the characteristic function of $H(\lambda + i0)$.

II. EXTENSION THEORY OF SYMMETRIC OPERATORS

A. Boundary triples and closed extensions

Let A be a densely defined closed symmetric operator in the separable Hilbert space \mathfrak{H} with equal deficiency indices $n_{\pm}(A) = \dim \ker(A^* \mp i) \leq \infty$. Recall that a triple $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is said to be a *boundary triple* for the adjoint operator A^* if $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space and $\Gamma_0, \Gamma_1 : \operatorname{dom}(A^*) \to \mathcal{H}$ are linear mappings such that

$$(A^*f,g) - (f,A^*g) = (\Gamma_1 f,\Gamma_0 g) - (\Gamma_0 f,\Gamma_1 g)$$

for all $f, g \in \text{dom}(A^*)$, and the mapping

$$\Gamma := \begin{pmatrix} \Gamma_0 \\ \Gamma_1 \end{pmatrix} : \operatorname{dom}(A^*) \longrightarrow \mathcal{H} \times \mathcal{H}$$

is surjective, see [14] and e.g. [9], [10], [12].

We refer to [9], [10] and [12] for a detailed study of boundary triples and recall only some important facts. If $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triple for A^* , then the mapping

$$\Theta \mapsto A_{\Theta} := \Gamma^{-1}\Theta = \left\{ f \in \operatorname{dom}\left(A^*\right) : \begin{pmatrix} \Gamma_0 f \\ \Gamma_1 f \end{pmatrix} \in \Theta \right\}$$

establishes a bijective correspondence between the set $\widetilde{\mathcal{C}}(\mathcal{H})$ of closed linear relations in \mathcal{H} and the set of closed extensions $A_{\Theta} \subset A^*$ of A. Moreover the extension A_{Θ} is symmetric (self-adjoint, dissipative, maximal dissipative) if and only if Θ is symmetric (resp. self-adjoint, dissipative, maximal dissipative). Note that in particular the operator $A_0 := A^* \upharpoonright \ker(\Gamma_0)$ is a self-adjoint extension of A. Here a linear relation Θ is called *dissipative* if $\Im(h', h) \leq 0$ for all $(h, h')^\top \in \Theta$ and it is called *maximal dissipative* if it is dissipative and has no dissipative extensions.

Let $\mathcal{N}_{\lambda} = \ker(A^* - \lambda)$ be the defect subspace of A at the point λ . The operator valued functions

$$\gamma(\cdot): \ \rho(A_0) \to \mathcal{L}(\mathcal{H}, \mathfrak{H}) \quad \text{and} \quad M(\cdot): \ \rho(A_0) \to \mathcal{L}(\mathcal{H})$$

defined by

$$\gamma(\lambda) := \left(\Gamma_0 \upharpoonright \mathcal{N}_\lambda \right)^{-1}, \quad \lambda \in \rho(A_0), \qquad \text{and} \qquad M(\lambda) := \Gamma_1 \gamma(\lambda), \quad \lambda \in \rho(A_0),$$

are called the γ -field and the Weyl function, respectively, corresponding to the boundary triple Π , cf. [9], [10], [12]. We note that $M(\cdot)$ is a so-called Nevanlinna function with the additional property $0 \in \rho(\Im(M(\lambda)))$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

The spectrum and the resolvent set of a proper (not necessarily self-adjoint) extension $A_{\Theta} \subseteq A^*$ of A can be described with the help of the Weyl function. Namely a point $\lambda \in \rho(A_0)$ belongs to $\rho(A_{\Theta})$ ($\sigma_i(A_{\Theta})$, i = p, c, r) if and only if $0 \in \rho(\Theta - M(\lambda))$ (resp. $0 \in \sigma_i(\Theta - M(\lambda))$), i = p, c, r). Moreover, for $\lambda \in \rho(A_0) \cap \rho(A_{\Theta})$ the well-known resolvent formula

$$(A_{\Theta} - \lambda)^{-1} = (A_0 - \lambda)^{-1} + \gamma(\lambda) (\Theta - M(\lambda))^{-1} \gamma(\overline{\lambda})^{-1}$$

holds, see [9], [10], [12]. If $\Theta \in \mathcal{L}(\mathcal{H})$ is a dissipative operator, then the closed extension

$$A_{\Theta} = A^* \upharpoonright \ker(\Gamma_1 - \Theta \Gamma_0)$$

of A is maximal dissipative and \mathbb{C}_+ belongs to $\rho(A_{\Theta})$. It follows from [11] that the *characteristic function* of A_{Θ} is given by

$$W_{A_{\Theta}}: \mathbb{C}_{-} \to \mathcal{L}(\mathcal{H}_{\Theta}), \quad \mu \mapsto I_{\mathcal{H}_{\Theta}} - 2i\sqrt{-\Im m \Theta} (\Theta^* - M(\mu))^{-1} \sqrt{-\Im m \Theta},$$
(II.1)

where $\mathcal{H}_{\Theta} = \operatorname{clo}\{\operatorname{ran}(\Im m(\Theta))\}.$

B. The Strauss family and its characteristic function

Let now A be a densely defined closed symmetric operator with deficiency indices $n_{\pm}(A) = 1$ and let $\Pi = \{\mathbb{C}, \Gamma_0, \Gamma_1\}$ be a boundary triple for A^* with corresponding (scalar) Weyl function $M(\cdot)$. Further, let $\tau(\cdot)$ be a scalar Nevanlinna function. The family $\{H(\lambda)\}_{\lambda \in \mathbb{C}_+}$ of maximal dissipative extensions of A defined by

$$H(\lambda) := A^* \upharpoonright \{ f \in \operatorname{dom} (A^*) : \Gamma_1 f = -\tau(\lambda) \Gamma_0 f \},\$$

 $\lambda \in \mathbb{C}_+$, is called the *Strauss family of* A (associated with the function τ), cf. [18]. It follows from (II.1) that for any $\lambda \in \mathbb{C}_+$ with $\Im(\tau(\lambda)) \neq 0$ the characteristic function of $H(\lambda)$ is given by

$$W_{H(\lambda)}(\mu) = \frac{\tau(\lambda) + M(\mu)}{\tau(\lambda) + M(\mu)}, \quad \mu \in \mathbb{C}_{-}.$$
(II.2)

In the following we make the convention that $W_{H(\lambda)}(\mu) \equiv 1$ if $\Im (\tau(\lambda)) = 0$.

Since τ is a Nevanlinna function the limit $\tau(\lambda + i0) = \lim_{\epsilon \to +0} \tau(\lambda + i\epsilon)$ from the upper half-plane exists for a.e. $\lambda \in \mathbb{R}$. We set

$$\Sigma^{\tau} := \big\{ \lambda \in \mathbb{R} : \tau(\lambda) = \lim_{\lambda \to 0} \tau(\lambda + i\epsilon) \text{ exists} \big\}.$$

Then the Strauss family $\{H(\lambda)\}_{\lambda \in \mathbb{C}_+}$ admits a continuation to $\mathbb{C}_+ \cup \Sigma^{\tau}$ which is also denoted by $H(\lambda)$, $\lambda \in \mathbb{C}_+ \cup \Sigma^{\tau}$. If $\Im (\tau(\lambda + i0)) \neq 0$, then the characteristic function $\mu \mapsto W_{H(\lambda)}(\mu)$, $\mu \in \mathbb{C}_-$, will be defined as in (II.2). The next proposition shows that $W_{H(\lambda)}(\lambda - i0)$ exists for a.e. $\lambda \in \Sigma^{\tau}$ with $\Im (\tau(\lambda + i0)) \neq 0$.

Proposition 2.1: Let A be a densely defined closed symmetric operator with deficiency indices $n_{\pm}(A) = 1$, let $\Pi = \{\mathbb{C}, \Gamma_0, \Gamma_1\}$ be a boundary triple for A^* and let $M(\cdot)$ be the corresponding Weyl function. Further, let $\tau(\cdot)$ be a Nevanlinna function and let $\mu \mapsto W_{H(\lambda)}(\mu), \mu \in \mathbb{C}_-$, be the family of characteristic functions (II.2) of the Strauss family $\{H(\lambda)\}$. Then for a.e. $\lambda \in \Sigma^{\tau}$ the limit $\tau(\lambda) + M(\lambda)$ exists, is invertible and

$$\left(\tau(\lambda) + M(\lambda)\right)^{-1} = \lim_{\epsilon \to 0} \left(\tau(\lambda + i\epsilon) + M(\lambda + i\epsilon)\right)^{-1}$$

holds. Moreover, the boundary value

$$W_{H(\lambda)}(\lambda - i0) := \lim_{\epsilon \to +0} W_{H(\lambda)}(\lambda - i\epsilon)$$

of the characteristic function $W_{H(\lambda)}(\mu)$, $\mu \in \mathbb{C}_-$, exists and is given by

$$W_{H(\lambda)}(\lambda - i0) = \frac{\tau(\lambda) + \overline{M(\lambda)}}{\tau(\lambda) + \overline{M(\lambda)}}$$

for a.e. $\lambda \in \Sigma^{\tau}$, where we have used the convention $W_{H(\lambda)}(\lambda - i0) \equiv 1$ if $\Im(\tau(\lambda)) = 0$.

III. SCATTERING SYSTEMS

A. Coupling of symmetric operators

Let A and T be densely defined closed simple symmetric operators in the separable Hilbert spaces \mathfrak{H} and \mathfrak{K} , respectively, assume that their deficiency indices are $n_{\pm}(A) = n_{\pm}(T) = 1$, and let $\Pi_A = \{\mathbb{C}, \Gamma_0, \Gamma_1\}$ and $\Pi_T = \{\mathbb{C}, \Upsilon_0, \Upsilon_1\}$ be boundary triples for A^* and T^* with

$$A_0 := A^* \upharpoonright \ker(\Gamma_0)$$
 and $T_0 := T^* \upharpoonright \ker(\Upsilon_0)$.

The next theorem can be found in a slightly different form in [8].

Theorem 3.1: Let A, T, Π_A and Π_T be as above and denote the corresponding γ -fields and Weyl functions by γ, ν and M and τ , respectively. Then the following assertions (i)-(iv) hold.

(i) $\Pi_A \oplus \Pi_T = \{\mathbb{C}^2, \widetilde{\Gamma}_0, \widetilde{\Gamma}_1\}$, where $\widetilde{\Gamma}_0 := (\Gamma_0, \Upsilon_0)^\top$ and $\widetilde{\Gamma}_1 := (\Gamma_1, \Upsilon_1)^\top$, is a boundary triple for the operator $A^* \oplus T^*$ with corresponding γ -field $\widetilde{\gamma}$ and Weyl function \widetilde{M} given by

$$\lambda \mapsto \widetilde{\gamma}(\lambda) = \begin{pmatrix} \gamma(\lambda) & 0 \\ 0 & \nu(\lambda) \end{pmatrix} \quad \text{and} \quad \lambda \mapsto \widetilde{M}(\lambda) = \begin{pmatrix} M(\lambda) & 0 \\ 0 & \tau(\lambda) \end{pmatrix}.$$

(ii) The closed extension $L := A^* \oplus T^* \upharpoonright \widetilde{\Gamma}^{-1} \widetilde{\Theta}$ corresponding to the relation

$$\widetilde{\Theta} := \left\{ \begin{pmatrix} (v, v)^\top \\ (w, -w)^\top \end{pmatrix} : v, w \in \mathbb{C} \right\} \in \widetilde{\mathcal{C}}(\mathbb{C}^2)$$

is self-adjoint in the Hilbert space $\mathfrak{H} \oplus \mathfrak{K}$ and is given by

$$L = A^* \oplus T^* \upharpoonright \Big\{ f_1 \oplus f_2 \in \operatorname{dom} \left(A^* \oplus T^* \right) : \Gamma_0 f_1 - \Upsilon_0 f_2 = \Gamma_1 f_1 + \Upsilon_1 f_2 = 0 \Big\}.$$

(iii) For $\lambda \in \mathbb{C} \setminus \mathbb{R}$ we have

$$(L-\lambda)^{-1} = (L_0 - \lambda)^{-1} + \widetilde{\gamma}(\lambda) (\widetilde{\Theta} - \widetilde{M}(\lambda))^{-1} \widetilde{\gamma}(\overline{\lambda})^*,$$
(III.1)

where $L_0 := A_0 \oplus T_0 = A^* \oplus T^* \upharpoonright \ker \widetilde{\Gamma}_0$. The compressed resolvent of L onto \mathfrak{H} is given by

$$P_{\mathfrak{H}}(L-\lambda)^{-1} \upharpoonright \mathfrak{H} = (A_0 - \lambda)^{-1} - \gamma(\lambda) \big(M(\lambda) + \tau(\lambda) \big)^{-1} \gamma(\overline{\lambda})^*$$

(iv) The Strauss family $H(\lambda) = A^* \upharpoonright \ker(\Gamma_1 + \tau(\lambda)\Gamma_0)$ satisfies

$$(H(\lambda) - \lambda)^{-1} = P_{\mathfrak{H}} (L - \lambda)^{-1} \upharpoonright \mathfrak{H}$$

for all $\lambda \in \mathbb{C}_+$.

B. Coupling and scattering

In this section we consider the scattering system $\{L, L_0\}$ consisting of the self-adjoint operators L and L_0 in the Hilbert space $\mathfrak{H} \oplus \mathfrak{K}$ defined in Theorem 3.1. Since by (III.1) the resolvents of L and L_0 differ by a rank two operators the wave operators

$$W_{\pm}(L, L_0) = s - \lim_{t \to \pm \infty} e^{itL} e^{-itL_0} P^{ac}(L_0)$$

exist and are complete, where $P^{ac}(L_0)$ denotes the orthogonal projection onto the absolutely continuous subspace $\mathfrak{H}^{ac}(L_0)$ of L_0 . Completeness means that the ranges of $W_{\pm}(L, L_0)$ coincide with the absolutely continuous subspace $\mathfrak{H}^{ac}(L)$ of L, cf. [6], [15], [19]. The scattering operator S of the scattering system $\{L, L_0\}$ is then defined by

$$S := W_{+}(L, L_{0})^{*}W_{-}(L, L_{0}).$$
(III.2)

Since the scattering operator S commutes with L_0 it follows that S is unitarily equivalent to a multiplication operator induced by a family $\{S(\lambda)\}$ of unitary operators in a spectral representation of

$$L_0^{ac} := L_0 \upharpoonright \operatorname{dom}(L_0) \cap \mathfrak{H}^{ac}(L_0)$$

With the help of Theorem 3.1 and [7, Theorem 3.8] we obtain a representation of the scattering matrix $\{S(\lambda)\}$ of the scattering system $\{L, L_0\}$ in the next theorem.

Theorem 3.2: Let A, T, Π_A and Π_T be as in Theorem 3.1 and let γ , ν and M and τ be the corresponding γ -fields and Weyl functions, respectively. Assume that A_0 has no absolutely continuous spectrum, let $L_0 = A_0 \oplus T_0$ and let L be the coupling of the operators A_0 and T_0 defined in Theorem 3.1 (ii). Then there is a direct integral representation $L^2(\mathbb{R}, d\lambda, \mathcal{H}_{\lambda})$ of the absolutely continuous part T_0^{ac} of T_0 ,

$$\mathcal{H}_{\lambda} = \begin{cases} \mathbb{C} & \text{if } \Im m\left(\tau(\lambda)\right) \neq 0\\ \{0\} & \text{if } \Im m\left(\tau(\lambda)\right) = 0 \end{cases}$$

such that the scattering matrix $\{S(\lambda)\}$ of the scattering system $\{L, L_0\}$ admits the representation

$$S(\lambda) = \frac{\overline{\tau(\lambda)} + M(\lambda)}{\tau(\lambda) + M(\lambda)}$$
(III.3)

for a.e. $\lambda \in \mathbb{R}$, where $\tau(\lambda) = \tau(\lambda + i0)$, $M(\lambda) = M(\lambda + i0)$ and we have used the convention $S(\lambda) \equiv 1$ if $\Im(\tau(\lambda)) = 0$.

Proof: Let $\Pi_A \oplus \Pi_T = \{\mathbb{C}^2, \widetilde{\Gamma}_0, \widetilde{\Gamma}_1\}$, where

$$\widetilde{\Gamma}_0 = (\Gamma_0, \Upsilon_0)^\top \text{ and } \widetilde{\Gamma}_1 = (\Gamma_1, \Upsilon_1)^\top,$$

be the boundary triple for $A^* \oplus T^*$ from Theorem 3.1. Then the corresponding Weyl function is a 2×2 -matrix function given by

$$\lambda \mapsto \widetilde{M}(\lambda) = \begin{pmatrix} M(\lambda) & 0\\ 0 & \tau(\lambda) \end{pmatrix}, \qquad \lambda \in \rho(L_0),$$

and a simple calculation shows that

$$\left(\widetilde{\Theta} - \widetilde{M}(\lambda)\right)^{-1} = -\begin{pmatrix} (\tau(\lambda) + M(\lambda))^{-1} & (\tau(\lambda) + M(\lambda))^{-1} \\ (\tau(\lambda) + M(\lambda))^{-1} & (\tau(\lambda) + M(\lambda))^{-1} \end{pmatrix}$$
(III.4)

holds for all $\lambda \in \rho(L_0) \cap \rho(L)$. By [7, Theorem 3.8] there is a direct integral representation $L^2(\mathbb{R}, d\lambda, \widetilde{\mathcal{H}}_{\lambda})$, where

$$\widetilde{\mathcal{H}}_{\lambda} := \operatorname{ran}\left(\Im m\left(\widetilde{M}(\lambda + i0)\right)\right),$$

of the absolutely continuous part L_0^{ac} of L_0 such that the scattering matrix $\{S(\lambda)\}$ admits the representation

$$S(\lambda) = I_{\widetilde{\mathcal{H}}_{\lambda}} + 2i \left(\Im m \left(\widetilde{M}(\lambda + i0) \right) \right)^{1/2} \left(\widetilde{\Theta} - \widetilde{M}(\lambda + i0) \right)^{-1} \left(\Im m \left(\widetilde{M}(\lambda + i0) \right) \right)^{1/2}$$

for a.e. $\lambda \in \mathbb{R}$. Since $\sigma(A_0)$ is purely singular we get $L_0^{ac} = 0 \oplus T_0^{ac}$ and therefore we have

$$\Im m\left(\widetilde{M}(\lambda+i0)\right) = \begin{pmatrix} 0 & 0\\ 0 & \Im m\left(\tau(\lambda+i0)\right) \end{pmatrix}$$
(III.5)

for a.e. $\lambda \in \mathbb{R}$ and hence by inserting (III.4) and (III.5) we conclude that the scattering matrix admits the representation (III.3).

In the following theorem we establish a connection between the scattering matrix $\{S(\lambda)\}$ of the scattering system $\{L, L_0\}$ and the characteristic functions of the Strauss family $\{H(\lambda)\}$. In the framework of Lax-Phillips scattering theory relation (III.6) below can be regarded as a generalization of the Adamyan-Arov result discussed in the introduction. A more detailed exposition with illustrating examples will be published elsewhere.

Theorem 3.3: Let A, T, Π_A and Π_T be as in Theorem 3.1 and Theorem 3.2 and let γ , ν and M and τ be the corresponding γ -fields and Weyl functions, respectively. Assume that $A_0 = A^* \upharpoonright \ker(\Gamma_0)$ has no absolutely continuous spectrum, let $L_0 = A_0 \oplus T_0$ and let L be the coupling of the operators A_0 and T_0 defined in Theorem 3.1 (ii). Then the scattering matrix $\{S(\lambda)\}$ of the scattering system $\{L, L_0\}$ is connected with the characteristic functions $W_{H(\lambda)}(\cdot)$ of the the Strauss family $\{H(\lambda)\}_{\lambda \in \Sigma^{\tau}}$, cf. (II.2), by

$$\overline{S(\lambda)} = W_{H(\lambda)}(\lambda - i0) \tag{III.6}$$

for a.e. $\lambda \in \mathbb{R}$ where we have used the convention $S(\lambda) \equiv W_{H(\lambda)}(\lambda - i0) \equiv 1$ if $\Im(\tau(\lambda)) = 0$.

Proof: By Proposition 2.1 the characteristic functions $W_{H(\lambda)}(\cdot)$ of the Strauss family $\{H(\lambda)\}_{\lambda\in\Sigma^{\tau}}$ satisfy

$$W_{H(\lambda)}(\lambda - i0) = \frac{\tau(\lambda) + M(\lambda)}{\overline{\tau(\lambda)} + \overline{M(\lambda)}}$$

for a.e. $\lambda \in \mathbb{R}$. Since A_0 has no absolutely continuous spectrum one has $\overline{M(\lambda)} = M(\lambda)$ for a.e. $\lambda \in \mathbb{R}$. Comparing this with relation (III.3) we obtain (III.6).

IV. ACKNOWLEDGMENTS

Jussi Behrndt gratefully acknowledges support by DFG, Grant KON 921/2006 527803. Hagen Neidhardt gratefully acknowledges support by DFG, Grant 1480/2.

REFERENCES

- [1] V.M. Adamjan, D.Z. Arov: Unitary couplings of semi-unitary operators, Akad. Nauk Armjan. SSR Dokl. 43 (1966) No. 5, 257-263.
- [2] V.M. Adamjan, D.Z. Arov: Unitary couplings of semi-unitary operators, Mat. Issled. 1 (1966) vyp. 2, 3-64.
- [3] V.M: Adamjan, D.Z. Arov: On scattering operators and contraction semigroups in Hilbert space, Dokl. Akad. Nauk SSSR 165 (1965), 9–12.
- [4] V.M. Adamjan, D.Z. Arov: On a class of scattering operators and characteristic operator-functions of contractions. Dokl. Akad. Nauk SSSR 160 (1965), 9–12.
- [5] W.O. Amrein, J.M. Jauch, K.B. Sinha: *Scattering Theory in Quantum Mechanics*, Lecture Notes and Supplements in Physics, No. 16. W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1977.
- [6] H. Baumgärtel, M. Wollenberg: Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983.
- [7] J. Behrndt, M.M. Malamud, H. Neidhardt: Scattering matrices and Weyl functions, submitted.
- [8] V.A. Derkach, S. Hassi, M.M. Malamud, H. de Snoo: Generalized resolvents of symmetric operators and admissibility, Methods Funct. Anal. Topology 6 (2000), 24–53.
- [9] V.A. Derkach, M.M. Malamud: On the Weyl function and hermitian operators with gaps, Russian Acad. Sci. Dokl. Math. 35 (1987) No. 2, 393–398.
- [10] V.A. Derkach, M.M. Malamud: Generalized resolvents and the boundary value problems for hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1–95.
- [11] V.A. Derkach, M.M. Malamud: Characteristic functions of almost solvable extensions of Hermitian operators, Ukrain. Mat. Zh. 44 (1992), 435–459 (russian); translation in Ukrainian Math. J. 44 (1992), 379–401.
- [12] V.A. Derkach, M.M. Malamud: The extension theory of hermitian operators and the moment problem, J. Math. Sci. (New York) 73 (1995), 141–242.
- [13] C. Foias, B. Sz.-Nagy: Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadmiai Kiad, Budapest 1970.
- [14] V.I. Gorbachuk, M.L. Gorbachuk: Boundary Value Problems for Operator Differential Equations, Mathematics and its Applications (Soviet Series) 48, Kluwer Academic Publishers Group, Dordrecht, 1991.
- [15] T. Kato: Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York 1966
- [16] P.D. Lax, R.S. Phillips: Scattering Theory, Academic Press, New York-London 1967.
- [17] Ja.G. Sinai: Dynamical systems with countable Lebesgue spectrum, I, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 899-924.
- [18] A.V. Strauss: Extensions and generalized resolvents of a symmetric operator which is not densely defined, Izv. Akad. Nauk. SSSR, Ser. Mat. 34 (1970), 175–202 (Russian); (English translation in Math. USSR-Izvestija 4 (1970), 179–208.
- [19] D.R. Yafaev: Mathematical Scattering Theory: General Theory, Translations of Mathematical Monographs, 105. American Mathematical Society, Providence, RI, 1992.