
Scattering Systems and Characteristic Functions

Jussi Behrndt, Mark M. Malamud and Hagen Neidhardt

Abstract— The well-known relation between the scattering matrix of the Lax-Phillips scattering theory and the characteristic
function of Foias and Sz.-Nagy found by Adamyan and Arov is extended to a scattering theory of singular perturbations
which includes the usual ones as a special case.
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I. INTRODUCTION

For the needs of acoustic scattering a new type of scatteringtheory was created by Lax and Phillips in [16] which
differed essentially from the classical scattering theory, cf. [5], [6], [19]. Instead of an unperturbed and a perturbed
selfadjoint operator a Lax-Phillips scattering system consists only of a “perturbed” operatorL acting in a separable
Hilbert spaceL. It is assumed that the operatorL admits an incoming subspaceD+ ⊆ L and an outgoing subspace
D− ⊆ L satisfying the conditions

(i) e−itLD± ⊆ D±, ±t ≥ 0, (ii)
⋂

t∈R

e−itLD± = {0},

(iii)
⋃

t∈R

e−itLD± = L and (iv) D+ ⊥ D−,

cf. [6], [16]. An “unperturbed” operator is not explicitly given. It was shown in [17] (see also [6, Theorem 12.3]) that
under the above assumptions (i)-(iv) the isometric semigroups

U±(t) := e−itL ↾ D±, ±t ≥ 0,

admit a minimal unitary coupling, that is, there exists a unitary groupe−itT0 , t ∈ R, in the Hilbert space

K := D− ⊕D+ ⊆ L

such that

U±(t) = e−itT0 ↾ D±, ±t ≥ 0 and
⋃

t∈R

e−itT0D± = K

holds. It turns out that the self-adjoint operatorT0 is unitarily equivalent to the differentiation operator−i d
dx in L2(R, k),

wherek is some auxiliary Hilbert space.
The Lax-Phillips wave operators are defined by

Ω± := s- lim
t→±∞

eitLJ±e−itT0 : K −→ L,

whereJ± is the embedding of the subspacesD± into L, and the Lax-Phillips scattering operatorSLP is given by

SLP := Ω∗
+Ω− : K −→ K.

SinceSLP is unitary and commutes withT0 one obtains thatSLP is unitarily equivalent to a multiplication operator
in L2(R, k) induced by a measurable family{SLP (λ)} of unitary operators which is called the Lax-Phillips scattering
matrix.

Denoting byPL
H the orthogonal projection fromL onto H := L ⊖ K one defines a contractionC0-semigroup by

Z(t) := PL
H e−itL ↾ H, t ≥ 0,

and it follows that there is a completely non-selfadjoint maximal dissipative operatorH in H such that the representation

Z(t) = e−itH , t ≥ 0,
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holds. We note thatL andH are related via

PL
H (L − z)−1 ↾ H = (H − z)−1, z ∈ C+. (I.1)

By [13] the operatorH is determined up to unitary equivalence by its characteristic function WH(·) : C− → L(k),
wherek is an auxiliary Hilbert space, see above, andL(k) denotes the space of bounded linear operators defined onk.
Recall thatWH(·) is holomorphic and contraction-valued. In [1], [2], [3], [4] it was shown by Adamyan and Arov that
the scattering matrix{SLP (λ)} of Lax and Phillips and the characteristic functionWH(λ− i0) of Foias and Sz.-Nagy
are related by

SLP (λ) = WH(λ − i0)∗ for a.e.λ ∈ R. (I.2)

This unexpected connection offers a nice possibility to calculate the Lax-Phillips scattering matrix via the characteristic
function of a maximal dissipative operator.

In this note we consider scattering systems{L, L0}, where it is assumed thatL0 coincides with the orthogonal sum
of two self-adjoint operatorsA0 and T0 in the Hilbert spacesH and K, respectively, and thatL is special self-adjoint
singular perturbation ofL0 in L = H ⊕ K. Moreover we suppose thatL and L0 are self-adjoint extension of some
symmetric operatorA ⊕ T in L, where bothA and T are one-dimensional restrictions ofA0 and T0 in H and K,
respectively. Then we obtain a family{H(z)}z∈C+

of maximal dissipative operators inH such that the relation

PL
H (L − z)−1 ↾ H = (H(z) − z)−1, z ∈ C+, (I.3)

holds, cf. Theorem 3.1. Note that (I.3) can be regarded as an extension of the relation (I.1). The family{H(z)}z∈C+
of

extensions ofA is calledStrauss family. Naturally, the question arises whether the family of characteristic functions of
the Strauss family is related to the usual scattering matrix{S(λ)} of the complete scattering system{L, L0} (see [6],
[15], [19] and Section III) like the characteristic function of H is related to the Lax-Phillips scattering matrix{SLP (λ)}
by (I.2). In fact, under the additional assumption that the spectrum ofA0 is purely singular, here we are able to prove
that the scattering matrix{S(λ)} admits the representation

S(λ) = WH(λ+i0)(λ − i0)∗ for a.e.λ ∈ R,

whereH(λ+ i0) is a suitable defined continuation of the Strauss family toR andWH(λ+i0)(·) denotes the characteristic
function of H(λ + i0).

II. EXTENSION THEORY OF SYMMETRIC OPERATORS

A. Boundary triples and closed extensions

Let A be a densely defined closed symmetric operator in the separable Hilbert spaceH with equal deficiency indices
n±(A) = dimker(A∗ ∓ i) ≤ ∞. Recall that a tripleΠ = {H, Γ0, Γ1} is said to be aboundary triplefor the adjoint
operatorA∗ if (H, (·, ·)) is a Hilbert space andΓ0, Γ1 : dom (A∗) → H are linear mappings such that

(A∗f, g) − (f, A∗g) = (Γ1f, Γ0g) − (Γ0f, Γ1g)

for all f, g ∈ dom (A∗), and the mapping

Γ :=

(
Γ0

Γ1

)
: dom (A∗) −→ H×H

is surjective, see [14] and e.g. [9], [10], [12].
We refer to [9], [10] and [12] for a detailed study of boundarytriples and recall only some important facts. If

Π = {H, Γ0, Γ1} is a boundary triple forA∗, then the mapping

Θ 7→ AΘ := Γ−1Θ =

{
f ∈ dom (A∗) :

(
Γ0f

Γ1f

)
∈ Θ

}

establishes a bijective correspondence between the setC̃(H) of closed linear relations inH and the set of closed
extensionsAΘ ⊂ A∗ of A. Moreover the extensionAΘ is symmetric (self-adjoint, dissipative, maximal dissipative)
if and only if Θ is symmetric (resp. self-adjoint, dissipative, maximal dissipative). Note that in particular the operator
A0 := A∗ ↾ ker(Γ0) is a self-adjoint extension ofA. Here a linear relationΘ is calleddissipativeif ℑm(h′, h) ≤ 0 for
all (h, h′)⊤ ∈ Θ and it is calledmaximal dissipativeif it is dissipative and has no dissipative extensions.

Let Nλ = ker(A∗ − λ) be the defect subspace ofA at the pointλ. The operator valued functions

γ(·) : ρ(A0) → L(H, H) and M(·) : ρ(A0) → L(H)



defined by

γ(λ) :=
(
Γ0 ↾ Nλ

)−1
, λ ∈ ρ(A0), and M(λ) := Γ1γ(λ), λ ∈ ρ(A0),

are called theγ-field and theWeyl function, respectively, corresponding to the boundary tripleΠ, cf. [9], [10], [12]. We
note thatM(·) is a so-called Nevanlinna function with the additional property 0 ∈ ρ(ℑm(M(λ))) for λ ∈ C\R.

The spectrum and the resolvent set of a proper (not necessarily self-adjoint) extensionAΘ ⊆ A∗ of A can be described
with the help of the Weyl function. Namely a pointλ ∈ ρ(A0) belongs toρ(AΘ) (σi(AΘ), i = p, c, r) if and only if
0 ∈ ρ(Θ − M(λ)) (resp.0 ∈ σi(Θ − M(λ)), i = p, c, r). Moreover, forλ ∈ ρ(A0) ∩ ρ(AΘ) the well-known resolvent
formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)∗

holds, see [9], [10], [12]. IfΘ ∈ L(H) is a dissipative operator, then the closed extension

AΘ = A∗ ↾ ker(Γ1 − ΘΓ0)

of A is maximal dissipative andC+ belongs toρ(AΘ). It follows from [11] that thecharacteristic functionof AΘ is
given by

WAΘ
: C− → L(HΘ), µ 7→ IHΘ

− 2i
√
−ℑmΘ

(
Θ∗ − M(µ)

)−1√−ℑmΘ, (II.1)

whereHΘ = clo{ran (ℑm(Θ))}.

B. The Strauss family and its characteristic function

Let nowA be a densely defined closed symmetric operator with deficiency indicesn±(A) = 1 and letΠ = {C, Γ0, Γ1}
be a boundary triple forA∗ with corresponding (scalar) Weyl functionM(·). Further, letτ (·) be a scalar Nevanlinna
function. The family{H(λ)}λ∈C+

of maximal dissipative extensions ofA defined by

H(λ) := A∗ ↾
{
f ∈ dom (A∗) : Γ1f = −τ (λ)Γ0f

}
,

λ ∈ C+, is called theStrauss family ofA (associated with the functionτ ), cf. [18]. It follows from (II.1) that for any
λ ∈ C+ with ℑm(τ (λ)) 6= 0 the characteristic function ofH(λ) is given by

WH(λ)(µ) =
τ (λ) + M(µ)

τ (λ) + M(µ)
, µ ∈ C−. (II.2)

In the following we make the convention thatWH(λ)(µ) ≡ 1 if ℑm(τ (λ)) = 0.
Sinceτ is a Nevanlinna function the limitτ (λ + i0) = limǫ→+0 τ (λ + iǫ) from the upper half-plane exists for a.e.

λ ∈ R. We set

Στ :=
{
λ ∈ R : τ (λ) = lim

ǫ→+0
τ (λ + iǫ) exists

}
.

Then the Strauss family{H(λ)}λ∈C+
admits a continuation toC+ ∪Στ which is also denoted byH(λ), λ ∈ C+ ∪Στ .

If ℑm(τ (λ + i0)) 6= 0, then the characteristic functionµ 7→ WH(λ)(µ), µ ∈ C−, will be defined as in (II.2). The next
proposition shows thatWH(λ)(λ − i0) exists for a.e.λ ∈ Στ with ℑm(τ (λ + i0)) 6= 0.

Proposition 2.1:Let A be a densely defined closed symmetric operator with deficiency indices n±(A) = 1, let
Π = {C, Γ0, Γ1} be a boundary triple forA∗ and letM(·) be the corresponding Weyl function. Further, letτ (·) be
a Nevanlinna function and letµ 7→ WH(λ)(µ), µ ∈ C−, be the family of characteristic functions (II.2) of the Strauss
family {H(λ)}. Then for a.e.λ ∈ Στ the limit τ (λ) + M(λ) exists, is invertible and

(
τ (λ) + M(λ)

)−1
= lim

ǫ→0

(
τ (λ + iǫ) + M(λ + iǫ)

)−1

holds. Moreover, the boundary value

WH(λ)(λ − i0) := lim
ǫ→+0

WH(λ)(λ − iǫ)

of the characteristic functionWH(λ)(µ), µ ∈ C−, exists and is given by

WH(λ)(λ − i0) =
τ (λ) + M(λ)

τ (λ) + M(λ)

for a.e.λ ∈ Στ , where we have used the conventionWH(λ)(λ − i0) ≡ 1 if ℑm(τ (λ)) = 0.



III. SCATTERING SYSTEMS

A. Coupling of symmetric operators

Let A and T be densely defined closed simple symmetric operators in the separable Hilbert spacesH and K,
respectively, assume that their deficiency indices aren±(A) = n±(T ) = 1, and letΠA = {C, Γ0, Γ1} and ΠT =
{C, Υ0, Υ1} be boundary triples forA∗ andT ∗ with

A0 := A∗ ↾ ker(Γ0) and T0 := T ∗ ↾ ker(Υ0).

The next theorem can be found in a slightly different form in [8].

Theorem 3.1:Let A, T , ΠA andΠT be as above and denote the correspondingγ-fields and Weyl functions byγ, ν

andM andτ , respectively. Then the following assertions (i)-(iv) hold.

(i) ΠA ⊕ ΠT = {C2, Γ̃0, Γ̃1}, where Γ̃0 := (Γ0, Υ0)
⊤ and Γ̃1 := (Γ1, Υ1)

⊤, is a boundary triple for the operator
A∗ ⊕ T ∗ with correspondingγ-field γ̃ and Weyl functionM̃ given by

λ 7→ γ̃(λ) =

(
γ(λ) 0

0 ν(λ)

)
and λ 7→ M̃(λ) =

(
M(λ) 0

0 τ (λ)

)
.

(ii) The closed extensionL := A∗ ⊕ T ∗ ↾ Γ̃−1Θ̃ corresponding to the relation

Θ̃ :=

{(
(v, v)⊤

(w,−w)⊤

)
: v, w ∈ C

}
∈ C̃(C2)

is self-adjoint in the Hilbert spaceH ⊕ K and is given by

L = A∗ ⊕ T ∗ ↾
{

f1 ⊕ f2 ∈ dom (A∗ ⊕ T ∗) : Γ0f1 − Υ0f2 = Γ1f1 + Υ1f2 = 0
}
.

(iii) For λ ∈ C\R we have
(
L − λ

)−1
= (L0 − λ)−1 + γ̃(λ)

(
Θ̃ − M̃(λ)

)−1
γ̃(λ)∗, (III.1)

whereL0 := A0 ⊕ T0 = A∗ ⊕ T ∗ ↾ ker Γ̃0. The compressed resolvent ofL onto H is given by

PH

(
L − λ

)−1
↾H = (A0 − λ)−1 − γ(λ)

(
M(λ) + τ (λ)

)−1
γ(λ)∗.

(iv) The Strauss familyH(λ) = A∗ ↾ ker(Γ1 + τ (λ)Γ0) satisfies

(H(λ) − λ)−1 = PH

(
L − λ

)−1
↾ H

for all λ ∈ C+.

B. Coupling and scattering

In this section we consider the scattering system{L, L0} consisting of the self-adjoint operatorsL and L0 in the
Hilbert spaceH ⊕ K defined in Theorem 3.1. Since by (III.1) the resolvents ofL andL0 differ by a rank two operator
the wave operators

W±(L, L0) = s − lim
t→±∞

eitLe−itL0P ac(L0)

exist and are complete, whereP ac(L0) denotes the orthogonal projection onto the absolutely continuous subspace
Hac(L0) of L0. Completeness means that the ranges ofW±(L, L0) coincide with the absolutely continuous subspace
Hac(L) of L, cf. [6], [15], [19]. Thescattering operatorS of the scattering system{L, L0} is then defined by

S := W+(L, L0)
∗W−(L, L0). (III.2)

Since the scattering operatorS commutes withL0 it follows that S is unitarily equivalent to a multiplication operator
induced by a family{S(λ)} of unitary operators in a spectral representation of

Lac
0 := L0 ↾ dom (L0) ∩ H

ac(L0).

With the help of Theorem 3.1 and [7, Theorem 3.8] we obtain a representation of the scattering matrix{S(λ)} of
the scattering system{L, L0} in the next theorem.

Theorem 3.2:Let A, T , ΠA andΠT be as in Theorem 3.1 and letγ, ν andM andτ be the correspondingγ-fields
and Weyl functions, respectively. Assume thatA0 has no absolutely continuous spectrum, letL0 = A0 ⊕ T0 and letL



be the coupling of the operatorsA0 and T0 defined in Theorem 3.1 (ii). Then there is a direct integral representation
L2(R, dλ,Hλ) of the absolutely continuous partT ac

0 of T0,

Hλ =

{
C if ℑm(τ (λ)) 6= 0

{0} if ℑm(τ (λ)) = 0
,

such that the scattering matrix{S(λ)} of the scattering system{L, L0} admits the representation

S(λ) =
τ (λ) + M(λ)

τ (λ) + M(λ)
(III.3)

for a.e.λ ∈ R, whereτ (λ) = τ (λ+i0), M(λ) = M(λ+i0) and we have used the conventionS(λ) ≡ 1 if ℑm(τ (λ)) = 0.

Proof: Let ΠA ⊕ ΠT = {C2, Γ̃0, Γ̃1}, where

Γ̃0 = (Γ0, Υ0)
⊤ and Γ̃1 = (Γ1, Υ1)

⊤,

be the boundary triple forA∗⊕T ∗ from Theorem 3.1. Then the corresponding Weyl function is a2×2-matrix function
given by

λ 7→ M̃(λ) =

(
M(λ) 0

0 τ (λ)

)
, λ ∈ ρ(L0),

and a simple calculation shows that

(
Θ̃ − M̃(λ)

)−1
= −

(
(τ (λ) + M(λ))−1 (τ (λ) + M(λ))−1

(τ (λ) + M(λ))−1 (τ (λ) + M(λ))−1

)
(III.4)

holds for allλ ∈ ρ(L0) ∩ ρ(L). By [7, Theorem 3.8] there is a direct integral representation L2(R, dλ, H̃λ), where

H̃λ := ran
(
ℑm(M̃(λ + i0))

)
,

of the absolutely continuous partLac
0 of L0 such that the scattering matrix{S(λ)} admits the representation

S(λ) = I eHλ

+ 2i
(
ℑm

(
M̃(λ + i0)

))1/2(
Θ̃ − M̃(λ + i0)

)−1(ℑm
(
M̃(λ + i0)

))1/2

for a.e.λ ∈ R. Sinceσ(A0) is purely singular we getLac
0 = 0 ⊕ T ac

0 and therefore we have

ℑm
(
M̃(λ + i0)

)
=

(
0 0
0 ℑm(τ (λ + i0))

)
(III.5)

for a.e.λ ∈ R and hence by inserting (III.4) and (III.5) we conclude that the scattering matrix admits the representation
(III.3).

In the following theorem we establish a connection between the scattering matrix{S(λ)} of the scattering system
{L, L0} and the characteristic functions of the Strauss family{H(λ)}. In the framework of Lax-Phillips scattering theory
relation (III.6) below can be regarded as a generalization of the Adamyan-Arov result discussed in the introduction. A
more detailed exposition with illustrating examples will be published elsewhere.

Theorem 3.3:Let A, T , ΠA and ΠT be as in Theorem 3.1 and Theorem 3.2 and letγ, ν and M and τ be the
correspondingγ-fields and Weyl functions, respectively. Assume thatA0 = A∗ ↾ ker(Γ0) has no absolutely continuous
spectrum, letL0 = A0 ⊕ T0 and letL be the coupling of the operatorsA0 and T0 defined in Theorem 3.1 (ii). Then
the scattering matrix{S(λ)} of the scattering system{L, L0} is connected with the characteristic functionsWH(λ)(·)
of the the Strauss family{H(λ)}λ∈Στ , cf. (II.2), by

S(λ) = WH(λ)(λ − i0) (III.6)

for a.e.λ ∈ R where we have used the conventionS(λ) ≡ WH(λ)(λ − i0) ≡ 1 if ℑm(τ (λ)) = 0.

Proof: By Proposition 2.1 the characteristic functionsWH(λ)(·) of the Strauss family{H(λ)}λ∈Στ satisfy

WH(λ)(λ − i0) =
τ (λ) + M(λ)

τ (λ) + M(λ)

for a.e.λ ∈ R. SinceA0 has no absolutely continuous spectrum one hasM(λ) = M(λ) for a.e.λ ∈ R. Comparing this
with relation (III.3) we obtain (III.6).
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