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1. Introduction

Quantum systems which interact with their environment appear nat-
urally in various physical problems and have been intensively studied
in the last decades, see e.g. the monographes [19, 22, 38]. Such an
open quantum system is often modeled with the help of a maximal
dissipative operator, i.e., a closed linear operator AD in some Hilbert
space H which satisfies

Im (ADf, f) ≤ 0, f ∈ dom(AD),

and does not admit a proper extension in H with this property. The
dynamics in the open quantum system are described by the contrac-
tion semigroup e−itAD , t ≥ 0. In the physical literature the maximal
dissipative operator AD is usually called a pseudo-Hamiltonian. It is
well known that AD admits a self-adjoint dilation K̃ in a Hilbert space
K which contains H as a closed subspace, that is, K̃ is a self-adjoint
operator in K and

PH

(
K̃ − λ

)−1
↾H= (AD − λ)−1

holds for all λ ∈ C+ := {z ∈ C : Im (z) > 0}, cf. [39]. Since the

operator K̃ is self-adjoint it can be regarded as the Hamiltonian or so-
called quasi-Hamiltonian of a closed quantum system which contains
the open quantum system {AD,H} as a subsystem.

In this paper we first assume that an open quantum system is
described by a single pseudo-Hamiltonian AD in H and that AD is an
extension of a closed densely defined symmetric operator A in H with
finite equal deficiency indices. Then the self-adjoint dilation K̃ can be
realized as a self-adjoint extension of the symmetric operator A ⊕ G

in K = H ⊕ L2(R,HD), where HD is finite-dimensional and G is the
symmetric operator in L2(R,HD) given by

Gg := −i d
dx

g, dom(G) =
{
g ∈W 1

2 (R,HD) : g(0) = 0
}
,

see Section 3.1. If A0 is a self-adjoint extension of A in H andG0 denotes
the usual self-adjoint momentum operator in L2(R,HD),

G0g := −i d
dx

g, dom(G) = W 1
2 (R,HD),

then the dilation K̃ can be regarded as a singular perturbation (or
more precisely a finite rank perturbation in resolvent sense) of the
“unperturbed operator” K0 := A0 ⊕ G0, cf. [8, 45]. From a physical
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point of view K0 describes a situation where both subsystems {A0,H}
and {G0, L

2(R,HD)} do not interact while K̃ takes into account an
interaction of the subsystems. Since the spectrum σ(G0) of the mo-
mentum operator is the whole real axis, standard perturbation results
yield σ(K̃) = σ(K0) = R and, in particular, K0 and K̃ are necessarily

not semibounded from below. For this reasonK0 and K̃ are often called
quasi-Hamiltonians rather than Hamiltonians.

The pair {K̃,K0} is a complete scattering system in K = H ⊕
L2(R,HD), that is, the wave operators

W±(K̃,K0) := s- lim
t→±∞

eitK̃e−itK0P ac(K0)

exist and are complete, cf. [9, 14, 68, 69]. Here P ac(K0) denotes the
orthogonal projection in K onto the absolutely continuous subspace
Kac(K0) of K0. The scattering operator

S(K̃,K0) := W+(K̃,K0)
∗W−(K̃,K0)

of the scattering system {K̃,K0} regarded as an operator in Kac(K0) is
unitary, commutes with the absolutely continuous partKac

0 ofK0 and is
unitarily equivalent to a multiplication operator induced by a (matrix-

valued) function {S̃(λ)}λ∈R in a spectral representation L2(R, dλ,Kλ)

of Kac
0 = Aac

0 ⊕ G0, cf. [14]. The family {S̃(λ)} is called the scatter-

ing matrix of the scattering system {K̃,K0} and is one of the most
important quantities in the analysis of scattering processes.

In our setting the scattering matrix {S̃(λ)} decomposes into a 2×2
block matrix function in L2(R, dλ,Kλ) and it is one of our main goals
in Section 3 to show that the left upper corner in this decomposition
coincides with the scattering matrix {SD(λ)} of the dissipative scatter-

ing system {AD, A0}, cf. [59, 61, 62]. The right lower corner of {S̃(λ)}
can be interpreted as the Lax-Phillips scattering matrix {SLP (λ)} cor-

responding to the Lax-Phillips scattering system {K̃,D−,D+}. Here
D± := L2(R±,HD) are so-called incoming and outgoing subspaces for

the dilation K̃, we refer to [14, 53] for details on Lax-Phillips scattering

theory. The scattering matrices {S̃(λ)}, {SD(λ)} and {SLP (λ)} are
all explicitely expressed in terms of an ”abstract” Titchmarsh-Weyl
function M(·) and a dissipative matrix D which corresponds to the
maximal dissipative operator AD in H and plays the role of an ”ab-
stract” boundary condition. With the help of this representation of
{SLP (λ)} we easily recover the famous relation

SLP (λ) = WAD
(λ− i0)∗
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4 J. Behrndt, M.M. Malamud, and H. Neidhardt

found by Adamyan and Arov in [2, 3, 4, 5] between the Lax-Phillips
scattering matrix and the characteristic function WAD

(·) of the maxi-
mal dissipative operator AD, cf. Corollary 3.11. We point out that M(·)
and D are completely determined by the operators A ⊂ A0 and AD

from the inner system. This is interesting also from the viewpoint of
inverse problems, namely, the scattering matrix {S̃(λ)} of {K̃,K0}, in
particular, the Lax-Phillips scattering matrix {SLP (λ)} can be recov-
ered having to disposal only the dissipative scattering system {AD, A0},
see Theorem 3.6 and Remark 3.7.

We emphasize that this simple and somehow straightforward em-
bedding method of an open quantum system into a closed quantum sys-
tem by choosing a self-adjoint dilation K̃ of the pseudo-HamiltonianAD

is very convenient for mathematical scattering theory, but difficult to
legitimate from a physical point of view, since the quasi-Hamiltonians
K̃ and K0 are necessarily not semibounded from below.

In the second part of the paper we investigate open quantum sys-
tems which are described by an appropriate chosen family of maximal
dissipative operators {A(µ)}, µ ∈ C+, instead of a single pseudo-
Hamiltonian AD. Similarly to the first part of the paper we assume
that the maximal dissipative operators A(µ) are extensions of a fixed
symmetric operator A in H with equal finite deficiency indices. Under
suitable (rather weak) assumptions on the family {A(µ)} there exists a
symmetric operator T in a Hilbert space G and a self-adjoint extension
L̃ of L = A⊕ T in L = H ⊕ G such that

PH

(
L̃− µ

)−1
↾H=

(
A(µ) − µ

)−1
, µ ∈ C+, (1.1)

holds, see Section 4.2. For example, in one-dimensional models for
carrier transport in semiconductors the operators A(µ) are regular
Sturm-Liouville differential operators in L2((a, b)) with µ-dependent

dissipative boundary conditions and the ”linearization” L̃ is a singular
Sturm-Liouville operator in L2(R), cf. [11, 35, 40, 49] and Section 4.4.
We remark that one can regard and interpret relation (1.1) also from

an opposite point of view. Namely, if a self-adjoint operator L̃ in a
Hilbert space L is given, then the compression of the resolvent of L̃
onto any closed subspace H of L defines a family of maximal dissipative
operators {A(µ)} via (1.1), so that each closed quantum system {L̃,L}
naturally contains open quantum subsystems {{A(µ)},H} of the type
we investigate here. Nevertheless, since from a purely mathematical
point of view both approaches are equivalent we will not explicitely
discuss this second interpretation.

If A0 and T0 are self-adjoint extensions of A and T in H and G,
respectively, then again L̃ can be regarded as a singular perturbation
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of the self-adjoint operator L0 := A0 ⊕ T0 in L. As above L0 describes
a situation where the subsystems {A0,H} and {T0,G} do not interact

while L̃ takes into account a certain interaction. We note that ifA and T
have finite deficiency indices, then the operator L̃ is semibounded from
below if and only if A and T are semibounded from below. Well-known
results imply that the pair {L̃, L0} is a complete scattering system in

the closed quantum system and again the scattering matrix {S̃(λ)}
decomposes into a 2× 2 block matrix function which can be calculated
in terms of abstract Titchmarsh-Weyl functions. This framework the
problem is quite similar to the problem of zero-range potentials with
internal structure investigated by Pavlov and his group in the eighties,
see for example [51, 65, 66]. However, using boundary triplets and ab-
stract Titchmarsh-Weyl functions we present here a general framework
in which singular perturbation problems can be embedded and solved.

On the other hand it can be shown that the family {A(µ)}, µ ∈ C+,
admits a continuation to R, that is, the limit A(µ + i0) exists for a.e.
µ ∈ R in the strong resolvent sense and defines a maximal dissipative
operator. The family A(µ + i0), µ ∈ R, can be regarded as a family
of energy dependent pseudo-Hamiltonians in H and, in particular, each
pseudo-Hamiltonian A(µ+ i0) gives rise to a quasi-Hamiltonian K̃µ in

H ⊕ L2(R,Hµ), a complete scattering system {K̃µ, A0 ⊕ −i d
dx} and a

corresponding scattering matrix {S̃µ(λ)} as illustrated in the first part
of the introduction.

One of our main observations in Section 4 is that the scattering
matrix {S̃(λ)} of the scattering system {L̃, L0} in H ⊕ G is related to

the scattering matrices {S̃µ(λ)} of the systems {K̃µ, A0⊕−i d
dx}, µ ∈ R,

in H ⊕ L2(R,Hµ) via

S̃(µ) = S̃µ(µ) for a.e. µ ∈ R. (1.2)

In other words, the scattering matrix {S̃(λ)} of the scattering system

{L̃, L0} can be completely recovered from scattering matrices of scatter-
ing systems for single quasi-Hamiltonians. Furthermore, under certain
continuity properties of the abstract Titchmarsh Weyl functions this
implies S̃(λ) ≈ S̃µ(λ) for all λ in a sufficiently small neighborhood
of the fixed energy µ ∈ R, which legitimizes the concept of single
quasi-Hamiltonians for small energy ranges.

Similarly to the case of a single pseudo-Hamiltonian the diagonal
entries of {S̃(µ)} or {S̃µ(µ)} can be interpreted as scattering matri-
ces corresponding to energy dependent dissipative scattering systems
and energy-dependent Lax-Phillips scattering systems. Moreover, if
{SLP

µ (λ)} is the scattering matrix of the Lax-Phillips scattering sys-

tem {K̃µ, L
2(R±,Hµ)} and WA(µ)(·) denote the characteristic functions
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of the maximal dissipative operators A(µ) then an energy-dependent
modification

SLP
µ (µ) = WA(µ)(µ− i0)∗

of the classical Adamyan-Arov result holds for a.e. µ ∈ R, cf. Sec-
tion 4.3.

The paper is organized as follows. In Section 2 we give a brief
introduction into extension and spectral theory of symmetric and self-
adjoint operators with the help of boundary triplets and associated
Weyl functions. These concepts will play an important role throughout
the paper. Furthermore, we recall a recent result on the representa-
tion of the scattering matrix of a scattering system consisting of two
self-adjoint extensions of a symmetric operator from [15], see also [6].
Section 3 is devoted to open quantum systems described by a single
pseudo-Hamiltonian AD in H. In Theorem 3.2 a minimal self-adjoint
dilation K̃ in H⊕L2(R,HD) of the maximal dissipative operator AD is
explicitely constructed. Section 3.2 and Section 3.3 deal with the scat-
tering matrix of {K̃,K0} and the interpretation of the diagonal entries
as scattering matrices of the dissipative scattering system {AD, A0} and

the Lax-Phillips scattering system {K̃, L2(R±,HD)}. In Section 3.4 we
give an example of a pseudo-Hamiltonian which arises in the theory of
dissipative Schrödinger-Poisson systems, cf. [12, 13, 46]. In Section 4
the family {A(µ)} of maximal dissipative operators in H is introduced

and, following ideas of [26], we construct a self-adjoint operator L̃ in a
Hilbert space L, H ⊂ L, such that (1.1) holds. After some preparatory

work the relation (1.2) between the scattering matrices of {L̃, L0} and
the scattering systems consisting of quasi-Hamiltonians is verified in
Section 4.3. Finally, in Section 4.4 we consider a so-called quantum
transmitting Schrödinger-Poisson system as an example for an open
quantum system which consists of a family of energy-dependent pseudo-
Hamiltonians, cf. [11, 17, 20, 35, 40, 49].

Acknowledgment. The authors are grateful to Professor Peter Lax
for helpful comments and fruitful discussions. Moreover, we would like
to thank one of the referees for drawing our attention to further physical
applications.

Notations. Throughout this paper (H, (·, ·)) and (G, (·, ·)) denote sep-
arable Hilbert spaces. The linear space of bounded linear operators
defined on H with values in G will be denoted by [H,G]. If H = G

we simply write [H]. The set of closed operators in H is denoted by
C(H). The resolvent set ρ(S) of a closed linear operator S ∈ C(H) is
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the set of all λ ∈ C such that (S − λ)−1 ∈ [H], the spectrum σ(S) of
S is the complement of ρ(S) in C. The notations σp(S), σc(S), σac(S)
and σr(S) stand for the point, continuous, absolutely continuous and
residual spectrum of S, respectively. The domain, kernel and range of a
linear operator are denoted by dom(·), ker(·) and ran (·), respectively.

2. Self-adjoint extensions and scattering systems

In this section we briefly review the notion of abstract boundary triplets
and associated Weyl functions in the extension theory of symmetric
operators, see e.g. [28, 29, 31, 42]. For scattering systems consisting of
a pair of self-adjoint extensions of a symmetric operator with finite de-
ficiency indices we recall a result on the representation of the scattering
matrix in terms of a Weyl function proved in [15].

2.1. Boundary triplets and closed extensions

Let A be a densely defined closed symmetric operator in the separable
Hilbert space H with equal deficiency indices n±(A) = dimker(A∗∓i) ≤
∞. We use the concept of boundary triplets for the description of the
closed extensions AΘ ⊆ A∗ of A in H.

DEFINITION 2.1. A triplet Π = {H,Γ0,Γ1} is called a boundary
triplet for the adjoint operator A∗ if H is a Hilbert space and Γ0,Γ1 :
dom(A∗) → H are linear mappings such that the ”abstract Green iden-
tity”

(A∗f, g) − (f,A∗g) = (Γ1f,Γ0g) − (Γ0f,Γ1g),

holds for all f, g ∈ dom(A∗) and the map Γ := (Γ0,Γ1)
⊤ : dom(A∗) →

H×H is surjective.

We refer to [29] and [31] for a detailed study of boundary triplets
and recall only some important facts. First of all a boundary triplet
Π = {H,Γ0,Γ1} for A∗ exists since the deficiency indices n±(A) of
A are assumed to be equal. Then n±(A) = dimH and A = A∗ ↾

ker(Γ0) ∩ ker(Γ1) holds. We note that a boundary triplet for A∗ is not
unique.

In order to describe the closed extensions AΘ ⊆ A∗ of A with the
help of a boundary triplet Π = {H,Γ0,Γ1} for A∗ we have to consider

the set C̃(H) of closed linear relations in H, that is, the set of closed
linear subspaces of H × H. We usually use a column vector notation
for the elements in a linear relation Θ. A closed linear operator in H is
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8 J. Behrndt, M.M. Malamud, and H. Neidhardt

identified with its graph, so that the set C(H) of closed linear operators

in H is viewed as a subset of C̃(H), in particular, a linear relation Θ is
an operator if and only if the multivalued part mulΘ =

{
f ′ :

( 0
f ′

) ∈ Θ
}

is trivial. For the usual definitions of the linear operations with linear
relations, the inverse, the resolvent set and the spectrum we refer to
[33]. Recall that the adjoint relation Θ∗ ∈ C̃(H) of a linear relation Θ
in H is defined as

Θ∗ =

{(
k

k′

)
: (h′, k) = (h, k′) for all

(
h

h′

)
∈ Θ

}

and Θ is said to be symmetric (self-adjoint) if Θ ⊂ Θ∗ (resp. Θ = Θ∗).
Notice that this definition extends the definition of the adjoint operator.
For a self-adjoint relation Θ = Θ∗ in H the multivalued part mulΘ is
the orthogonal complement of domΘ in H. Setting Hop := domΘ and
H∞ = mulΘ one verifies that Θ can be written as the direct orthogonal
sum of a self-adjoint operator Θop in the Hilbert space Hop and the

“pure” relation Θ∞ =
{( 0

f ′

)
: f ′ ∈ mulΘ

}
in the Hilbert space H∞.

A linear relation Θ in H is called dissipative if Im (h′, h) ≤ 0
holds for all (h, h′)⊤ ∈ Θ and Θ is called maximal dissipative if it is
dissipative and does not admit proper dissipative extensions in H; then
Θ is necessarily closed, Θ ∈ C̃(H). We remark that a linear relation Θ
is maximal dissipative if and only if Θ is dissipative and some λ ∈ C+

(and hence every λ ∈ C+) belongs to ρ(Θ).
A description of all closed (symmetric, self-adjoint, (maximal) dis-

sipative) extensions of A is given in the next proposition.

PROPOSITION 2.2. Let A be a densely defined closed symmetric op-
erator in H with equal deficiency indices and let Π = {H,Γ0,Γ1} be a
boundary triplet for A∗. Then the mapping

Θ 7→ AΘ := A∗ ↾
{
f ∈ dom(A∗) : (Γ0f,Γ1f)⊤ ∈ Θ

}
(2.1)

establishes a bijective correspondence between the set C̃(H) and the set
of closed extensions AΘ ⊆ A∗ of A where (·, ·)⊤ is the transposed vector.
Furthermore

(AΘ)∗ = AΘ∗

holds for any Θ ∈ C̃(H). The extension AΘ in (2.1) is symmetric (self-
adjoint, dissipative, maximal dissipative) if and only if Θ is symmetric
(self-adjoint, dissipative, maximal dissipative).

It follows immediately from this proposition that if Π = {H,Γ0,Γ1}
is a boundary triplet for A∗, then the extensions

A0 := A∗ ↾ ker(Γ0) and A1 := A∗ ↾ ker(Γ1)
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are self-adjoint. In the sequel usually the extension A0 corresponding
to the boundary mapping Γ0 is regarded as a ”fixed” self-adjoint ex-
tension. We note that the closed extension AΘ in (2.1) is disjoint with
A0, that is dom(AΘ)∩dom(A0) = dom(A), if and only if Θ ∈ C(H). In
this case (2.1) takes the form

AΘ = A∗ ↾ ker
(
Γ1 − ΘΓ0

)
. (2.2)

For simplicity we will often restrict ourselves to simple symmetric
operators. Recall that a symmetric operator is said to be simple if there
is no nontrivial subspace which reduces it to a self-adjoint operator.
By [50] each symmetric operator A in H can be written as the direct

orthogonal sum Â⊕As of a simple symmetric operator Â in the Hilbert
space

Ĥ = clospan
{
ker(A∗ − λ) : λ ∈ C\R

}

and a self-adjoint operator As in H ⊖ Ĥ. Here clospan{·} denotes the

closed linear span. Obviously A is simple if and only if Ĥ coincides
with H. Notice that if Π = {H,Γ0,Γ1} is a boundary triplet for the

adjoint A∗ of a non-simple symmetric operator A = Â ⊕ As, then
Π̂ = {H, Γ̂0, Γ̂1}, where

Γ̂0 := Γ0 ↾ dom
(
(Â)∗

)
and Γ̂1 := Γ1 ↾ dom

(
(Â)∗

)
,

is a boundary triplet for the simple part (Â)∗ ∈ C(Ĥ) such that the

extension AΘ = A∗ ↾ Γ(−1)Θ, Θ ∈ C̃(H), in H is given by ÂΘ ⊕ As,

ÂΘ := (Â)∗ ↾ Γ̂(−1)Θ ∈ C(Ĥ), and the Weyl functions and γ-fields of

Π = {H,Γ0,Γ1} and Π̂ = {H, Γ̂0, Γ̂1} coincide.
We say that a maximal dissipative operator is completely non-

self-adjoint if there is no nontrivial reducing subspace in which it is
self-adjoint. Notice that each maximal dissipative operator decomposes
orthogonally into a self-adjoint part and a completely non-self-adjoint
part, see e.g. [39].

2.2. Weyl functions, γ-fields and resolvents of extensions

Let, as in Section 2.1, A be a densely defined closed symmetric operator
in H with equal deficiency indices. If λ ∈ C is a point of regular type
of A, i.e. (A− λ)−1 is bounded, we denote the defect subspace of A by
Nλ = ker(A∗−λ). The following definition can be found in [28, 29, 31].

DEFINITION 2.3. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗.
The operator valued functions γ(·) : ρ(A0) → [H,H] and M(·) :
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10 J. Behrndt, M.M. Malamud, and H. Neidhardt

ρ(A0) → [H] defined by

γ(λ) :=
(
Γ0 ↾ Nλ

)−1
and M(λ) := Γ1γ(λ), λ ∈ ρ(A0), (2.3)

are called the γ-field and the Weyl function, respectively, corresponding
to the boundary triplet Π.

It follows from the identity dom(A∗) = ker(Γ0)+̇Nλ, λ ∈ ρ(A0), where
as above A0 = A∗ ↾ ker(Γ0), that the γ-field γ(·) and the Weyl func-
tion M(·) in (2.3) are well defined. Moreover both γ(·) and M(·) are
holomorphic on ρ(A0) and the relations

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1)γ(µ), λ, µ ∈ ρ(A0),

and

M(λ) −M(µ)∗ = (λ− µ)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.4)

are valid (see [29]). The identity (2.4) yields that M(·) is a Nevanlinna
function, that is, M(·) is a ([H]-valued) holomorphic function on C\R

and

M(λ) = M(λ)∗ and
Im (M(λ))

Im (λ)
≥ 0 (2.5)

hold for all λ ∈ C\R. The union of C\R and the set of all points λ ∈ R

such that M can be analytically continued to λ and the continuations
from C+ and C− coincide is denoted by h(M). Besides (2.5) it follows
also from (2.4) that the Weyl function M(·) satisfies 0 ∈ ρ(Im (M(λ)))
for all λ ∈ C\R; Nevanlinna functions with this additional property are
sometimes called uniformly strict, cf. [27]. Conversely, each [H]-valued
Nevanlinna function τ with the additional property 0 ∈ ρ(Im (τ(λ))) for
some (and hence for all) λ ∈ C\R can be realized as a Weyl function
corresponding to some boundary triplet, we refer to [29, 52, 54] for
further details.

Let again Π = {H,Γ0,Γ1} be a boundary triplet for A∗ with cor-
responding γ-field γ(·) and Weyl function M(·). The spectrum and the
resolvent set of the closed (not necessarily self-adjoint) extensions of A
can be described with the help of the function M(·). More precisely, if

AΘ ⊆ A∗ is the extension corresponding to Θ ∈ C̃(H) via (2.1), then
a point λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(AΘ), i = p, c, r) if and only if
0 ∈ ρ(Θ −M(λ)) (resp. 0 ∈ σi(Θ −M(λ)), i = p, c, r). Moreover, for
λ ∈ ρ(A0) ∩ ρ(AΘ) the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ −M(λ)

)−1
γ(λ)∗ (2.6)
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holds, cf. [28, 29, 31]. Formula (2.6) is a generalization of the known
Krein formula for canonical resolvents. We emphasize that it is valid
for any closed extension AΘ ⊆ A∗ of A with a nonempty resolvent set.

2.3. Self-adjoint extensions and scattering

Let A be a densely defined closed symmetric operator with equal finite
deficiency indices, i.e., n+(A) = n−(A) < ∞. Let Π = {H,Γ0,Γ1},
A0 := A∗ ↾ ker(Γ0), be a boundary triplet for A∗ and let AΘ be a self-

adjoint extension of A which corresponds to a self-adjoint Θ ∈ C̃(H).
Since here dimH is finite by (2.6)

(AΘ − λ)−1 − (A0 − λ)−1, λ ∈ ρ(AΘ) ∩ ρ(A0),

is a finite rank operator and therefore the pair {AΘ, A0} performs a
so-called complete scattering system, that is, the wave operators

W±(AΘ, A0) := s- lim
t→±∞

eitAΘe−itA0P ac(A0),

exist and their ranges coincide with the absolutely continuous subspace
Hac(AΘ) of AΘ, cf. [14, 48, 68, 69]. P ac(A0) denotes the orthogonal
projection onto the absolutely continuous subspace Hac(A0) of A0. The
scattering operator S(AΘ, A0) of the scattering system {AΘ, A0} is then
defined by

S(AΘ, A0) := W+(AΘ, A0)
∗W−(AΘ, A0).

If we regard the scattering operator as an operator in Hac(A0), then
S(AΘ, A0) is unitary, commutes with the absolutely continuous part

Aac
0 := A0 ↾ dom(A0) ∩ Hac(A0)

of A0 and it follows that S(AΘ, A0) is unitarily equivalent to a mul-
tiplication operator induced by a family {SΘ(λ)} of unitary operators
in a spectral representation of Aac

0 , see e.g. [14, Proposition 9.57]. This
family is called the scattering matrix of the scattering system {AΘ, A0}.

We note that if the symmetric operator A is not simple, then the
Hilbert space H can be decomposed as H = Ĥ ⊕ (Ĥ)⊥ (cf. the end of
Section 2.1) such that the scattering operator is given by the orthogonal

sum S(ÂΘ, Â0)⊕I, where AΘ = ÂΘ⊕As and A0 = Â0⊕As, and hence it
is sufficient to consider simple symmetric operators A in the following.

Since the deficiency indices of A are finite the Weyl function M(·)
corresponding to the boundary triplet Π = {H,Γ0,Γ1} is a matrix-
valued Nevanlinna function. By Fatous theorem (see [34, 41]) then the
limit

M(λ+ i0) := lim
ǫ→+0

M(λ+ iǫ) (2.7)
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from the upper half-plane exists for a.e. λ ∈ R. We denote the set of
real points where the limit in (2.7) exits by ΣM and we agree to use
a similar notation for arbitrary scalar and matrix-valued Nevanlinna
functions. Furthermore we will make use of the notation

HM(λ) := ran
(
Im (M(λ))

)
, λ ∈ ΣM , (2.8)

and we will in general regard HM(λ) as a subspace of H. The orthogonal
projection and restriction onto HM(λ) will be denoted by PM(λ) and
↾HM(λ)

, respectively. Notice that for λ ∈ ρ(A0) ∩ R the Hilbert space

HM(λ) is trivial by (2.4). Again we agree to use a notation analogous
to (2.8) for arbitrary Nevanlinna functions. The family {PM(λ)}λ∈ΣM

of orthogonal projections in H onto HM(λ), λ ∈ ΣM , is measurable

and defines an orthogonal projection in the Hilbert space L2(R, dλ,H);
sometimes we write L2(R,H) instead of L2(R, dλ,H). The range of this
projection is denoted by L2(R, dλ,HM(λ)).

Besides the Weyl function M(·) we will also make use of the
function

λ 7→ NΘ(λ) :=
(
Θ −M(λ)

)−1
, λ ∈ C\R, (2.9)

where Θ ∈ C̃(H) is the self-adjoint relation corresponding to the ex-
tension AΘ via (2.1). Since λ ∈ ρ(A0) ∩ ρ(AΘ) if and only if 0 ∈
ρ(Θ − M(λ)) the function NΘ(·) is well defined. It is not difficult
to see that NΘ(·) is an [H]-valued Nevanlinna function and hence
NΘ(λ + i0) = limǫ→0NΘ(λ + iǫ) exists for almost every λ ∈ R, we
denote this set by ΣNΘ . We claim that

NΘ(λ+ i0) =
(
Θ −M(λ+ i0)

)−1
, λ ∈ ΣM ∩ ΣNΘ , (2.10)

holds. In fact, if Θ is a self-adjoint matrix then (2.10) follows imme-
diately from NΘ(λ)(Θ −M(λ)) = (Θ −M(λ))NΘ(λ) = IH, λ ∈ C+.

If Θ ∈ C̃(H) has a nontrivial multivalued part we decompose Θ as
Θ = Θop ⊕ Θ∞, where Θop is a self-adjoint matrix in Hop = domΘop

and Θ∞ is a pure relation in H∞ = H ⊖ Hop, cf. Section 2.1, and
denote the orthogonal projection and restriction in H onto Hop by Pop

and ↾Hop , respectively. Then we have

λ 7→ NΘ(λ) =
(
Θop − PopM(λ)↾Hop

)−1
Pop, λ ∈ C\R,

(see e.g. [52, page 137]) and from

NΘ(λ+ i0) =
(
Θop − PopM(λ+ i0)↾Hop

)−1
Pop

for all λ ∈ ΣM ∩ΣNΘ we conclude (2.10). Observe that R\(ΣM ∩ΣNΘ)
has Lebesgue measure zero.
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The next representation theorem of the scattering matrix is essen-
tial in the following, cf. [15, Theorem 3.8]. Since the scattering matrix
is only determined up to a set of Lebesgue measure zero we choose the
representative of the equivalence class defined on ΣM ∩ ΣNΘ .

THEOREM 2.4. Let A be a densely defined closed simple symmetric
operator with finite deficiency indices in the separable Hilbert space H,
let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ with corresponding
Weyl function M(·) and define HM(λ), λ ∈ ΣM , as in (2.8). Further-

more, let A0 = A∗ ↾ ker(Γ0) and let AΘ = A∗ ↾ Γ(−1)Θ, Θ ∈ C̃(H), be a
self-adjoint extension of A. Then the following holds.

(i) Aac
0 is unitarily equivalent to the multiplication operator with the

free variable in L2(R, dλ,HM(λ)).

(ii) In L2(R, dλ,HM(λ)) the scattering matrix {SΘ(λ)} of the complete
scattering system {AΘ, A0} is given by

SΘ(λ) = IHM(λ)

+ 2iPM(λ)

√
Im (M(λ))

(
Θ −M(λ)

)−1
√

Im (M(λ)) ↾HM(λ)

for all λ ∈ ΣM ∩ ΣNΘ , where M(λ) := M(λ+ i0).

A similar representation of the S-matrix for point interactions was ob-
tained in [6], see also [8]. In order to show the usefulness of Theorem 2.4
and to make the reader more familiar with the notion of boundary
triplets and associated Weyl functions we calculate the scattering ma-

trix of the scattering system {− d2

dx2 + δ,− d2

dx2 } in the following simple
example.

EXAMPLE 2.5. Let us consider the densely defined closed simple
symmetric operator

(Af)(x) := −f ′′(x), dom(A) =
{
f ∈W 2

2 (R) : f(0) = 0
}
,

in L2(R), see e.g. [7]. Clearly A has deficiency indices n+(A) = n−(A) =
1 and it is well-known that the adjoint operator A∗ is given by

(A∗f)(x) = −f ′′(x),
dom(A∗) =

{
f ∈W 2

2 (R\{0}) : f(0+) = f(0−), f ′′ ∈ L2(R)
}
.

It is not difficult to verify that Π = {C,Γ0,Γ1}, where

Γ0f := f ′(0+) − f ′(0−) and Γ1f := −f(0+), f ∈ dom(A∗),
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14 J. Behrndt, M.M. Malamud, and H. Neidhardt

is a boundary triplet for A∗ and A0 = A∗ ↾ ker(Γ0) coincides with the
usual self-adjoint second order differential operator defined on W 2

2 (R).
Moreover the defect space ker(A∗ − λ), λ 6∈ [0,∞), is spanned by the
function

x 7→ ei
√

λxχR+(x) + e−i
√

λxχR−(x), λ 6∈ [0,∞),

where the square root is defined on C with a cut along [0,∞) and fixed
by Im (

√
λ) > 0 for λ 6∈ [0,∞) and by

√
λ ≥ 0 for λ ∈ [0,∞). Therefore

we find that the Weyl function M(·) corresponding to Π = {C,Γ0,Γ1}
is given by

M(λ) =
Γ1fλ

Γ0fλ
=

i

2
√
λ
, fλ ∈ ker(A∗ − λ), λ 6∈ [0,∞).

Let α ∈ R\{0} and consider the self-adjoint extension A−α−1 corre-
sponding to the parameter −α−1, A−α−1 = A∗ ↾ ker(Γ1 + α−1Γ0),
i.e.

(A−α−1f)(x) = −f ′′(x)
dom(A−α−1) =

{
f ∈ dom(A∗) : αf(0±) = f ′(0+) − f ′(0−)

}
.

This self-adjoint operator is often denoted by − d2

dx2 +αδ, see [7]. It fol-
lows immediately from Theorem 2.4 that the scattering matrix {S(λ)}
of the scattering system {A−α−1 , A0} is given by

S(λ) =
2
√
λ− iα

2
√
λ+ iα

, λ > 0.

We note that scattering systems of the form {− d2

dx2 +αδ′,− d2

dx2 }, α ∈ R,
can be investigated in a similar way as above. Other examples can be
found in [15].

3. Dissipative and Lax-Phillips scattering systems

In this section we regard scattering systems {AD, A0} consisting of a
maximal dissipative and a self-adjoint extension of a symmetric oper-
ator A with finite deficiency indices. In the theory of open quantum
system the maximal dissipative operator AD is often called a pseudo-
Hamiltonian. We shall explicitely construct a dilation (or so-called

quasi-Hamiltonian) K̃ of AD and calculate the scattering matrix of the

scattering system {K̃, A0 ⊕ G0}, where G0 is a self-adjoint first order
differential operator. The diagonal entries of the scattering matrix then
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turn out to be the scattering matrix of the dissipative scattering system
{AD, A0} and of a so-called Lax-Phillips scattering system, respectively.

We emphasize that this efficient and somehow straightforward
method for the analysis of scattering processes for open quantum sys-
tems has the essential disadvantage that the quasi-Hamiltonians K̃ and
A0 ⊕G0 are necessarily not semibounded from below.

3.1. Self-adjoint dilations of maximal dissipative operators

Let in the following A be a densely defined closed simple symmetric
operator in the separable Hilbert space H with equal finite deficiency
indices n±(A) = n < ∞, let Π = {H,Γ0,Γ1}, A0 = A∗ ↾ ker(Γ0), be a
boundary triplet for A∗ and let D ∈ [H] be a dissipative n× n-matrix.
Then the closed extension

AD = A∗ ↾ ker(Γ1 −DΓ0)

of A corresponding to Θ = D via (2.1)-(2.2) is maximal dissipative and
C+ belongs to ρ(AD). Notice that here we restrict ourselves to maxi-
mal dissipative extensions AD corresponding to dissipative matrices D
instead of maximal dissipative relations in the finite dimensional space
H. This is no essential restriction, see Remark 3.3 at the end of this
subsection. For λ ∈ ρ(AD)∩ ρ(A0) the resolvent of the extension AD is
given by

(AD − λ)−1 = (A0 − λ)−1 + γ(λ)
(
D −M(λ)

)−1
γ(λ)∗, (3.1)

cf. (2.6). Write the dissipative matrix D ∈ [H] as

D = Re (D) + iIm (D),

decompose H as the direct orthogonal sum of the finite dimensional
subspaces ker(Im (D)) and HD := ran (Im (D)),

H = ker(Im (D)) ⊕HD, (3.2)

and denote by PD and ↾HD
the orthogonal projection and restriction in

H onto HD. Since Im (D) ≤ 0 the self-adjoint matrix −PDIm (D)↾HD
∈

[HD] is strictly positive and the next lemma shows how −iPDIm (D)↾HD

(and iPDIm (D)↾HD
) can be realized as a Weyl function of a differential

operator.

LEMMA 3.1. Let G be the symmetric first order differential operator
in the Hilbert space L2(R,HD) defined by

(Gg)(x) = −ig′(x), dom(G) =
{
g ∈W 1

2 (R,HD) : g(0) = 0
}
.
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16 J. Behrndt, M.M. Malamud, and H. Neidhardt

Then G is simple, n±(G) = dimHD and the adjoint operator G∗g =
−ig′ is defined on dom(G∗) = W 1

2 (R−,HD)⊕W 1
2 (R+,HD). Moreover,

the triplet ΠG = {HD,Υ0,Υ1}, where

Υ0g :=
1√
2

(−PDIm (D)↾HD

)− 1
2
(
g(0+) − g(0−)

)
,

Υ1g :=
i√
2

(−PDIm (D)↾HD

) 1
2
(
g(0+) + g(0−)

)
,

g ∈ dom(G∗), is a boundary triplet for G∗ and G0 := G∗ ↾ ker(Υ0) is
the usual self-adjoint first order differential operator in L2(R,HD) with
domain dom(G0) = W 1

2 (R,HD) and σ(G0) = R. The Weyl function
τ(·) corresponding to the boundary triplet ΠG = {HD,Υ0,Υ1} is given
by

τ(λ) =

{
−iPDIm (D)↾HD

, λ ∈ C+,

iPDIm (D)↾HD
, λ ∈ C−.

(3.3)

Proof. Besides the assertion that ΠG = {HD,Υ0,Υ1} is a bound-
ary triplet for G∗ with Weyl function τ(·) given by (3.3) the statements
of the lemma are well-known. We note only that the simplicity of G
follows from [1, VIII.104] and the fact that G can be written as a finite
direct orthogonal sum of first order differential operators on R− and
R+.

A straightforward calculation shows that the identity

(G∗g, k) − (g,G∗k) = i(g(0+), k(0+))− i(g(0−), k(0−))

= (Υ1g,Υ0k) − (Υ0g,Υ1k)

holds for all g, k ∈ dom(G∗). Moreover the mapping (Γ0,Γ1)
⊤ is surjec-

tive. Indeed, for an element (h, h′)⊤ ∈ HD ×HD we choose g ∈ domG∗

such that

g(0+) =
1√
2

{(−PDIm (D)↾HD

) 1
2h− i

(−PDIm (D)↾HD

)− 1
2h′
}

and

g(0−) =
1√
2

{
−(−PDIm (D)↾HD

) 1
2h− i

(−PDIm (D)↾HD

)− 1
2h′
}

holds. Then a simple calculation shows Υ0g = h, Υ1g = h′ and therefore
ΠG = {HD,Υ0,Υ1} is a boundary triplet for G∗. It is not difficult to
check that the defect subspace Nλ = ker(G∗ − λ) is

Nλ =

{
sp
{
x 7→ eiλxχR+(x)ξ : ξ ∈ HD

}
, λ ∈ C+,

sp
{
x 7→ eiλxχR−(x)ξ : ξ ∈ HD

}
, λ ∈ C−,
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and hence we conclude that the Weyl function of ΠG = {HD,Υ0,Υ1}
is given by (3.3). 2

Let AD be the maximal dissipative extension of A in H from above
and let G be the first order differential operator from Lemma 3.1.
Clearly K := A ⊕ G is a densely defined closed simple symmetric
operator in the separable Hilbert space

K := H ⊕ L2(R,HD)

with equal finite deficiency indices n±(K) = n±(A) + n±(G) <∞ and
the adjoint is K∗ = A∗ ⊕G∗. The elements in dom(K∗) = dom(A∗) ⊕
dom(G∗) will be written in the form f⊕g, f ∈ dom(A∗), g ∈ dom(G∗).

In the next theorem we construct a self-adjoint extension K̃ of K in K

which is a minimal self-adjoint dilation of the dissipative operator AD

in H. The construction is based on the idea of the coupling method from
[26]. It is worth to mention that in the case of a (scalar) Sturm-Liouville
operator with real potential and dissipative boundary condition our
construction coincides with the one proposed by B.S. Pavlov in [64, 67],
cf. Example 3.5 below.

THEOREM 3.2. Let A, Π = {H,Γ0,Γ1} and AD be as in the beginning
of this section, let G and ΠG = {HD,Υ0,Υ1} be as in Lemma 3.1 and
K = A⊕G. Then

K̃ = K∗ ↾



f ⊕ g ∈ dom(K∗) :

PDΓ0f − Υ0g = 0,
(1 − PD)(Γ1 − Re (D)Γ0)f = 0,
PD(Γ1 − Re (D)Γ0)f + Υ1g = 0





(3.4)

is a minimal self-adjoint dilation of the maximal dissipative operator
AD, that is, for all λ ∈ C+

PH

(
K̃ − λ

)−1
↾H= (AD − λ)−1

holds and the minimality condition K = clospan{(K̃ − λ)−1H : λ ∈
C\R} is satisfied. Moreover σ(K̃) = R.

Proof. Let γ(·), ν(·) and M(·), τ(·) be the γ-fields and Weyl func-
tions of the boundary triplets Π = {H,Γ0,Γ1} and ΠG = {HD,Υ0,Υ1},
respectively. Then it is straightforward to check that Π̃ = {H̃, Γ̃0, Γ̃1},
where

H̃ := H⊕HD, Γ̃0 :=

(
Γ0

Υ0

)
and Γ̃1 :=

(
Γ1 − Re (D)Γ0

Υ1

)
, (3.5)
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18 J. Behrndt, M.M. Malamud, and H. Neidhardt

is a boundary triplet for K∗ = A∗ ⊕ G∗ and the corresponding Weyl
function M̃(·) and γ-field γ̃(·) are given by

M̃(λ) =

(
M(λ) − Re (D) 0

0 τ(λ)

)
, λ ∈ C\R, (3.6)

and

γ̃(λ) =

(
γ(λ) 0

0 ν(λ)

)
, λ ∈ C\R, (3.7)

respectively. Notice also that K0 := K∗ ↾ ker(Γ̃0) = A0 ⊕G0 holds.

With respect to the decomposition H̃ = ker(Im (D)) ⊕HD ⊕ HD

of H̃ (cf. (3.2)) we define the linear relation Θ̃ by

Θ̃ :=

{(
(u, v, v)⊤

(0,−w,w)⊤

)
: u ∈ ker(Im (D), v, w ∈ HD

}
∈ C̃(H̃). (3.8)

We leave it to the reader to check that Θ̃ is self-adjoint. Hence by
Proposition 2.2 the operator K

Θ̃
= K∗ ↾ Γ̃(−1)Θ̃ is a self-adjoint ex-

tension of the symmetric operator K = A ⊕G in K = H ⊕ L2(R,HD)

and one verifies without difficulty that this extension coincides with K̃
from (3.4), K̃ = K

Θ̃
.

In order to calculate (K̃−λ)−1, λ ∈ C\R, we use the block matrix
decomposition

M(λ) − Re (D) =

(
MD

11(λ) MD
12(λ)

MD
21(λ) MD

22(λ)

)
∈ [ker(Im (D)) ⊕HD

]
(3.9)

of M(λ) − Re (D) ∈ [H]. Then the definition of Θ̃ in (3.8) and (3.6)
imply

(
Θ̃ − M̃(λ)

)−1
=











−MD
11(λ)u−MD

12(λ)v
−w −MD

21(λ)u−MD
22(λ)v

w − τ(λ)v




(u, v, v)⊤


 :

u ∈ ker(Im (D))
v, w ∈ HD





and since every λ ∈ C\R belongs to ρ(K̃) ∩ ρ(K0), K0 = A0 ⊕ G0,

it follows that (Θ̃ − M̃(λ))−1, λ ∈ C\R, is the graph of a bounded

everywhere defined operator. In order to calculate (Θ̃ − M̃(λ))−1 in a
more explicit form we set

x := −MD
11(λ)u−MD

12(λ)v,
y := −w −MD

21(λ)u−MD
22(λ)v,

z := w − τ(λ)v.
(3.10)
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This yields

(
x

y + z

)
= −

(
MD

11(λ) MD
12(λ)

MD
21(λ) MD

22(λ) + τ(λ)

)(
u

v

)

and by (3.3) and (3.9) we have

−
(
MD

11(λ) MD
12(λ)

MD
21(λ) MD

22(λ) + τ(λ)

)
=

{
D −M(λ), λ ∈ C+,

D∗ −M(λ), λ ∈ C−
. (3.11)

Hence for λ ∈ C+ we find
(
u

v

)
=
(
D −M(λ)

)−1
(

x

y + z

)
,

which implies
(
u

v

)
=
(
D −M(λ)

)−1
(
x

y

)
+
(
D −M(λ)

)−1
↾HD

z (3.12)

and

v = PD

(
D −M(λ)

)−1
(
x

y

)
+ PD

(
D −M(λ)

)−1
↾HD

z. (3.13)

Therefore by inserting (3.10), (3.12) and (3.13) into the above expres-

sion for (Θ̃ − M̃(λ))−1 we obtain

(
Θ̃ − M̃(λ)

)−1
=

(
(D −M(λ))−1 (D −M(λ))−1 ↾HD

PD(D −M(λ))−1 PD(D −M(λ))−1 ↾HD

)
(3.14)

for all λ ∈ C+ and by (2.6) the resolvent of the self-adjoint extension

K̃ admits the representation

(
K̃ − λ

)−1
= (K0 − λ)−1 + γ̃(λ)

(
Θ̃ − M̃(λ)

)−1
γ̃(λ)∗, (3.15)

λ ∈ C\R. It follows from K0 = A0 ⊕ G0, (3.7) and (3.14) that for

λ ∈ C+ the compressed resolvent of K̃ onto H is given by

PH

(
K̃ − λ

)−1
↾ H = (A0 − λ)−1 + γ(λ)

(
D −M(λ)

)−1
γ(λ)∗,

where PH denotes the orthogonal projection in K onto H... Taking into
account (3.1) we get

PH

(
K̃ − λ

)−1
↾ H = (AD − λ)−1, λ ∈ C+,

and hence K̃ is a self-adjoint dilation of AD. Since σ(G0) = R it follows

from well-known perturbation results and (3.15) that σ(K̃) = R holds.
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It remains to show that K̃ satisfies the minimality condition

K = H ⊕ L2(R,HD) = clospan
{
(K̃ − λ)−1H : λ ∈ C\R

}
. (3.16)

First of all s-limt→+∞(−it)(K̃ − it)−1 = IK implies that H is a subset
of the right hand side of (3.16). The orthogonal projection in K onto
L2(R,HD) is denoted by PL2 . Then we conclude from (3.7), (3.14) and
(3.15) that for λ ∈ C+

PL2

(
K̃ − λ

)−1
↾H= ν(λ)PD

(
D −M(λ)

)−1
γ(λ)∗ (3.17)

holds and this gives

ran
(
PL2

(
K̃ − λ

)−1
↾H

)
= ker(G∗ − λ), λ ∈ C+.

From (3.11) it follows that similar to the matrix representation (3.14)

the left lower corner of (Θ̃ − M̃(λ))−1 is given by PD(D∗ −M(λ))−1

for λ ∈ C−. Hence, the analogon of (3.17) for λ ∈ C− implies that

ran
(
PL2

(
K̃ − λ

)−1
↾H

)
= ker(G∗ − λ)

is true for λ ∈ C−. Since by Lemma 3.1 the symmetric operator G is
simple it follows that

L2(R,HD) = clospan
{
ker(G∗ − λ) : λ ∈ C\R

}

holds, cf. Section 2.1, and therefore the minimality condition (3.16)
holds. 2

REMARK 3.3. We note that also in the case when the parameter D
is not a dissipative matrix but a maximal dissipative relation in H a
minimal self-adjoint dilation of AD can be constructed in a similar way
as in Theorem 3.2.

Indeed, let A and Π = {H,Γ0,Γ1} be as in the beginning of this

section and let D̃ ∈ C̃(H) be a maximal dissipative relation in H. Then

D̃ can be written as the direct orthogonal sum of a dissipative matrix
D̃op in Hop := H⊖mul D̃ and an undetermined part or ”pure relation”

D̃∞ := {( 0
y

)
: y ∈ mul D̃}. It follows that

B := A∗ ↾ Γ(−1){( 0
y

)
: y ∈ mul D̃

}
= A∗ ↾ Γ(−1)D̃∞

is a closed symmetric extension of A and

{Hop,Γ0 ↾dom(B∗), PopΓ1 ↾dom(B∗)

}
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is a boundary triplet for

B∗ = A∗ ↾
{
f ∈ dom(A∗) : (1 − Pop)Γ0f = 0

}

with A∗ ↾ ker(Γ0) = B∗ ↾ ker(Γ0 ↾dom(B∗)). In terms of this boundary

triplet the maximal dissipative extension A
D̃

= Γ(−1)D̃ coincides with
the extension

B
D̃op

= B∗ ↾ ker
(
PopΓ1 ↾dom(B∗) −D̃opΓ0 ↾dom(B∗)

)

corresponding to the operator part D̃op ∈ [Hop] of D̃.

REMARK 3.4. In the special case ker(ImD) = {0} the relations (3.4)
take the form

Γ0f − Υ0g = 0 and (Γ1 − Re (D)Γ0)f + Υ1g = 0,

so that K̃ is a coupling of the self-adjoint operators A0 and G0 corre-
sponding to the coupling of the boundary triplets ΠA = {H,Γ0,Γ1 −
Re (D)Γ0} and ΠG = {H,Υ0,Υ1} in the sense of [26]. In the case

ker(ImD) 6= {0} another construction of K̃ is based on the concept of
boundary relations (see [27]).

A minimal self-adjoint dilation K̃ for a scalar Sturm-Liouville op-
erator with a complex (dissipative) boundary condition has originally
been constructed by B.S. Pavlov in [64]. For the scalar case (n = 1)
the operator in (3.20) in the following example coincides with the one
in [64].

EXAMPLE 3.5. Let Q+ ∈ L1
loc(R+, [C

n]) be a matrix valued function
such that Q+(·) = Q+(·)∗, and let A be the usual minimal operator
in H = L2(R+,C

n) associated with the Sturm-Liouville differential

expression − d2

dx2 +Q+,

A = − d2

dx2
+Q+, dom(A) =

{
f ∈ Dmax,+ : f(0) = f ′(0) = 0

}
,

where Dmax,+ is the maximal domain defined by

Dmax,+ =
{
f ∈L2(R+,C

n) :f, f ′∈AC(R+,C
n),−f ′′ +Q+f ∈ L2(R+,C

n)
}
.

It is well known that the adjoint operator A∗ is given by

A∗ = − d2

dx2 +Q+, dom(A∗) = Dmax,+.

mpag03.tex; 3/12/2007; 15:20; p.21



22 J. Behrndt, M.M. Malamud, and H. Neidhardt

In the following we assume that the limit point case prevails at
+∞, so that the deficiency indices n±(A) of A are both equal to n. In
this case a boundary triplet Π = {C

n,Γ0,Γ1} for A∗ is

Γ0f := f(0), Γ1f := f ′(0), f ∈ dom(A∗) = Dmax,+. (3.18)

For any dissipative matrix D ∈ [Cn] we consider the (maximal) dissi-
pative extension AD of A determined by

AD = A∗ ↾ ker(Γ1 −DΓ0), ImD ≤ 0. (3.19)

(a) First suppose 0 ∈ ρ(ImD). Then HD = C
n and by Theorem 3.2

and Remark 3.4 the (minimal) self-adjoint dilation K̃ of the operator
AD is a self-adjoint operator in K = L2(R+,C

n)⊕L2(R,Cn) defined by

K̃(f ⊕ g) =
(−f ′′ +Q+f

)⊕−ig′,

dom(K̃) =





f ∈ Dmax,+, g ∈W 1
2 (R−,Cn) ⊕W 1

2 (R+,C
n)

f ′(0) −Df(0) = −i(−2ImD)1/2g(0−),

f ′(0) −D∗f(0) = −i(−2ImD)1/2g(0+)




.

(3.20)

(b) Let now ker(ImD) 6= {0}, so that HD = ran (ImD) = C
k 6= C

n.

According to Theorem 3.2 the (minimal) self-adjoint dilation K̃ of the
operator AD in K = L2(R+,C

n) ⊕ L2(R,Ck) is defined by

K̃(f ⊕ g) =
(−f ′′ +Q+f

)⊕−ig′,

dom(K̃) =





f ∈ Dmax,+, g ∈W 1
2 (R−,Ck) ⊕W 1

2 (R+,C
k)

PD[f ′(0) −Df(0)] = −i(−2PDIm (D)↾HD
)1/2g(0−),

PD[f ′(0) −D∗f(0)] = −i(−2PDIm (D)↾HD
)1/2g(0+),

f ′(0) − Re(D)f(0) ∈ HD




.

3.2. Dilations and dissipative scattering systems

Let, as in the previous section, A be a densely defined closed simple
symmetric operator in H with equal finite deficiency indices and let
Π = {H,Γ0,Γ1} be a boundary triplet for A∗, A0 = A∗ ↾ ker Γ0,
with corresponding Weyl function M(·). Let D ∈ [H] be a dissipative
matrix and let AD = A∗ ↾ ker(Γ1−DΓ0) be the corresponding maximal
dissipative extension in H. Since C+ ∋ λ 7→M(λ) −D is a Nevanlinna
function the limits

M(λ+ i0) −D = lim
ǫ→+0

M(λ+ iǫ) −D
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and

ND(λ+ i0) = lim
ǫ→+0

ND(λ+ iǫ) = lim
ǫ→+0

(
D −M(λ+ iǫ)

)−1

exist for a.e. λ ∈ R. We denote these sets of real points λ by ΣM and
ΣND . Then we have

ND(λ+ i0) =
(
D −M(λ+ i0)

)−1
, λ ∈ ΣM ∩ ΣND , (3.21)

cf. Section 2.3. Let G be the symmetric first order differential operator
in L2(R,HD) and let ΠG = {HD,Υ0,Υ1} be the boundary triplet
from Lemma 3.1. Then G0 = G∗ ↾ ker(Υ0) is the usual self-adjoint
differentiation operator in L2(R,HD) and K0 = A0 ⊕G0 is self-adjoint
in K = H ⊕ L2(R,HD). In the next theorem we consider the complete

scattering system {K̃,K0}, where K̃ is the minimal self-adjoint dilation
of AD in K from Theorem 3.2.

THEOREM 3.6. Let A, Π = {H,Γ0,Γ1}, M(·) and AD be as above

and define HM(λ), λ ∈ ΣM , as in (2.8). Let K0 = A0 ⊕ G0 and let K̃
be the minimal self-adjoint dilation of AD from Theorem 3.2. Then the
following holds.

(i) Kac
0 = Aac

0 ⊕G0 is unitarily equivalent to the multiplication operator
with the free variable in L2(R, dλ,HM(λ) ⊕HD).

(ii) In L2(R, dλ,HM(λ)⊕HD) the scattering matrix {S̃(λ)} of the com-

plete scattering system {K̃,K0} is given by

S̃(λ) =

(
IHM(λ)

0

0 IHD

)
+ 2i

(
T̃11(λ) T̃12(λ)

T̃21(λ) T̃22(λ)

)
∈ [HM(λ) ⊕HD],

for all λ ∈ ΣM ∩ ΣND , where

T̃11(λ) = PM(λ)

√
Im (M(λ))

(
D −M(λ)

)−1
√

Im (M(λ)) ↾HM(λ)
,

T̃12(λ) = PM(λ)

√
Im (M(λ))

(
D −M(λ)

)−1
√
−Im (D) ↾HD

,

T̃21(λ) = PD

√
−Im (D)

(
D −M(λ)

)−1
√

Im (M(λ)) ↾HM(λ)
,

T̃22(λ) = PD

√
−Im (D)

(
D −M(λ)

)−1
√
−Im (D) ↾HD

and M(λ) = M(λ+ i0).
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Proof. Let K = A ⊕ G and let Π̃ = {H ⊕ HD, Γ̃0, Γ̃1} be the
boundary triplet for K∗ from (3.5). Notice that since A and G are
densely defined closed simple symmetric operators also K is a densely
defined closed simple symmetric operator. Recall that for λ ∈ C+ the
Weyl function of Π̃ = {H ⊕HD, Γ̃0, Γ̃1} is given by

M̃(λ) =

(
M(λ) − Re (D) 0

0 −iPDIm (D) ↾HD

)
. (3.22)

Then Theorem 2.4 implies that

L2(
R, dλ,H

M̃(λ)

)
, H

M̃(λ)
= HM(λ) ⊕HD, λ ∈ ΣM ,

performs a spectral representation of the absolutely continuous part

Kac
0 = K0 ↾ dom(K0) ∩ Kac(K0)

= A0 ⊕G0 ↾
(
dom(A0) ∩ Hac(A0)

)⊕ L2(R,HD) = Aac
0 ⊕G0

of K0 such that the scattering matrix {S̃(λ)} of the scattering system

{K̃,K0} is given by

S̃(λ) = (3.23)

IH
M̃(λ)

+ 2iP
M̃(λ)

√
Im (M̃(λ))

(
Θ̃ − M̃(λ)

)−1
√

Im (M̃(λ)) ↾H
M̃(λ)

for all λ ∈ ΣM̃ ∩ Σ
N

Θ̃ , where P
M̃(λ)

and ↾H
M̃(λ)

are the projection and

restriction in H̃ = H ⊕ HD onto H
M̃(λ)

. Here Θ̃ is the self-adjoint

relation from (3.8) and the function N
Θ̃

is defined analogously to (2.9)
and

N
Θ̃
(λ+ i0) =

(
Θ̃ − M̃(λ+ i0)

)−1

holds for all λ ∈ ΣM̃ ∩ Σ
N

Θ̃ , cf. (2.10).
By (3.22) we have

√
Im (M̃(λ+ i0)) =

(√
Im (M(λ+ i0)) 0

0 PD

√
−Im (D) ↾HD

)

for all λ ∈ ΣM̃ = ΣM and (3.14) yields

(
Θ̃ − M̃(λ+ i0)

)−1
=

(
(D −M(λ+ i0))−1 (D −M(λ+ i0))−1 ↾HD

PD(D −M(λ+ i0))−1 PD(D −M(λ+ i0))−1 ↾HD

)
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for λ ∈ ΣM ∩Σ
N

Θ̃ . It follows that the sets ΣM ∩Σ
N

Θ̃ and ΣM ∩ΣND , see
(3.21), coincide and by inserting the above expressions into (3.23) we

conclude that for each λ ∈ ΣM ∩ ΣND the scattering matrix {S̃(λ)} is
a two-by-two block operator matrix with respect to the decomposition

H
M̃(λ)

= HM(λ) ⊕HD, λ ∈ ΣM ∩ ΣND ,

with the entries from assertion (ii). 2

REMARK 3.7. It is worth to note that the scattering matrix {S̃(λ)} of

the scattering system {K̃,K0} in Theorem 3.6 depends only on the dis-
sipative matrix D and the Weyl function M(·) of the boundary triplet

Π = {H,Γ0,Γ1} for A∗. In other words, the scattering matrix {S̃(λ)} is
completely determined by objects corresponding to the operators A,A0

and AD in H.

Let AD and A0 be as in the beginning of this section. In the
following we will focus on the so-called dissipative scattering system
{AD, A0} and we refer the reader to [23, 24, 55, 56, 57, 58, 59, 60, 61] for
a detailed investigation of such scattering systems. We recall only that
the wave operators W±(AD, A0) of the dissipative scattering system
{AD, A0} are defined by

W+(AD, A0) = s- lim
t→+∞

eitA∗
De−itA0P ac(A0)

and

W−(AD, A0) = s- lim
t→+∞

e−itADeitA0P ac(A0),

where e−itAD := s-limn→∞(1 + it
nAD)−n, see e.g. [48, §IX]. The scat-

tering operator

SD := W+(AD, A0)
∗W−(AD, A0)

of the dissipative scattering system {AD, A0} will be regarded as an
operator in Hac(A0). Then SD is a contraction which in general is not
unitary. Since SD and Aac

0 commute it follows that SD is unitarily
equivalent to a multiplication operator induced by a family {SD(λ)} of
contractive operators in a spectral representation of Aac

0 .
With the help of Theorem 3.6 we obtain a representation of the

scattering matrix of the dissipative scattering system {AD, A0} in terms
of the Weyl function M(·) of Π = {H,Γ0,Γ1} in the following corollary,
cf. Theorem 2.4.
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COROLLARY 3.8. Let A, Π = {H,Γ0,Γ1}, A0 = A∗ ↾ ker(Γ0), M(·)
and AD be as above and define HM(λ), λ ∈ ΣM , as in (2.8). Then the
following holds.

(i) Aac
0 is unitarily equivalent to the multiplication operator with the

free variable in L2(R, dλ,HM(λ)).

(ii) In L2(R, dλ,HM(λ)) the scattering matrix {SD(λ)} of the dissipa-
tive scattering system {AD, A0} is given by

SD(λ) = IHM(λ)
+ 2iPM(λ)

√
Im (M(λ))

(
D −M(λ)

)−1√
Im (M(λ)) ↾HM(λ)

for all λ ∈ ΣM ∩ ΣND , where M(λ) = M(λ+ i0).

Proof. Let K̃ be the minimal self-adjoint dilation of AD from
Theorem 3.2. Since for t ≥ 0 we have

PHe
−itK̃ ↾ H = s- lim

n→∞
PH

(
1 + it

n K̃
)−n

↾H= s- lim
n→∞

(
1 + it

nAD
)−n

= e−itAD

it follows that the wave operators W+(AD, A0) and W−(AD, A0) coin-
cide with

PHW+(K̃,K0) ↾H = s- lim
t→+∞

PHe
itK̃e−itK0P ac(K0) ↾H

= s- lim
t→+∞

PHe
itK̃ ↾H e

−itA0P ac(A0)

and

PHW−(K̃,K0) ↾H = s- lim
t→−∞

PHe
itK̃e−itK0P ac(K0) ↾H

= s- lim
t→+∞

PHe
−itK̃ ↾H e

itA0P ac(A0),

respectively. This implies that the scattering operator SD coincides
with the compression PHac(A0)S(K̃,K0) ↾Hac(A0) of the scattering oper-

ator S(K̃,K0) onto Hac(A0). Therefore the scattering matrix SD(λ) of
the dissipative scattering system is given by the upper left corner

{
IHM(λ)

+ 2iT̃11(λ)
}
, λ ∈ ΣM ∩ ΣND ,

of the scattering matrix {S̃(λ)} of the scattering system {K̃,K0}, see
Theorem 3.6. 2
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3.3. Lax-Phillips scattering systems

Let againA, Π = {H,Γ0,Γ1}, {AD, A0} andG,G0, ΠG = {HD,Υ0,Υ1}
be as in the previous subsections. In Corollary 3.8 we have shown that
the scattering matrix of the dissipative scattering system {AD, A0} is
the left upper corner in the block operator matrix representation of
the scattering matrix {S̃(λ)} of the scattering system {K̃,K0}, where

K̃ is a minimal self-adjoint dilation of AD in K = H ⊕ L2(R,HD) and
K0 = A0 ⊕G0, cf. Theorem 3.6.

In the following we are going to interpret the right lower corner of
{S̃(λ)} as the scattering matrix corresponding to a Lax-Phillips scatter-
ing system, see e.g. [14, 53] for further details. To this end we decompose
the space L2(R,HD) into the orthogonal sum of the subspaces

D− := L2(R−,HD) and D+ := L2(R+,HD). (3.24)

Then clearly K = H⊕D−⊕D+ and we agree to denote the elements in K

in the form f⊕g−⊕g+, f ∈ H, g± ∈ D± and g = g−⊕g+ ∈ L2(R,HD).
By J+ and J− we denote the operators

J+ : L2(R,HD) → K, g 7→ 0 ⊕ 0 ⊕ g+,

and

J− : L2(R,HD) → K, g 7→ 0 ⊕ g− ⊕ 0,

respectively. Notice that J+ + J− is the embedding of L2(R,HD) into
K. In the next lemma we show that D+ and D− are so-called outgoing

and incoming subspaces for the self-adjoint dilation K̃ in K.

LEMMA 3.9. Let K̃ be the self-adjoint operator from Theorem 3.2, let
D± be as in (3.24) and A0 = A∗ ↾ ker(Γ0) be as above. Then

e−itK̃D± ⊆ D±, t ∈ R±, and
⋂

t∈R

e−itK̃D± = {0},

and, if in addition σ(A0) is singular, then

⋃

t∈R

e−itK̃D+ =
⋃

t∈R

e−itK̃D− = Kac(K̃). (3.25)

Proof. Let us first show that

e−itK̃ ↾ D± = J±e
−itG0 ↾ D±, t ∈ R±, (3.26)

holds. In fact, since e−itG0 is the right shift group we have

e−itG0(dom(G) ∩ D±) ⊆ dom(G) ∩ D±, t ∈ R±,
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where dom(G) ∩ D± = {W 1,2(R,HD) : f(x) = 0, x ∈ R±}. Let us fix
some t ∈ R± and denote the symmetric operator A⊕G by K. Since

J±
(
dom(G) ∩ D±

) ⊂ dom(K) ⊂ dom(K̃)

the function

ft,±(s) := ei(s−t)K̃J±e
−isG0 ↾D± f±, s ∈ R±, f± ∈ dom(G) ∩ D±,

is differentiable and

d

ds
ft,±(s) = iei(s−t)K̃(K̃ − 0H ⊕G0

)
J±e

−isG0 ↾D± f± = 0, t ∈ R±,

holds. Hence we have ft,±(0) = ft,±(t) and together with the observa-
tion that the set dom(G)∩D± is dense in D± this immediately implies

(3.26). Then we obtain e−itK̃D± ⊆ D±, t ∈ R± and

⋂

t∈R

e−itK̃D± ⊆
⋂

t∈R±

e−itK̃D± =
⋂

t∈R±

J±e
−itG0D± = {0}.

Let us show (3.25). Since A has finite deficiency indices the wave

operators W±(K̃, A0 ⊕G0) exist and are complete, i.e.,

ran
(
W±(K̃, A0 ⊕G0)

)
= Kac(K̃)

holds. Since A0 is singular we have

W±(K̃, A0 ⊕G0) = s- lim
t→±∞

eitK̃(J+ + J−)e−itG0 ↾L2

and it follows from (3.26) that W±(K̃, A0 ⊕G0)f± = f± for f± ∈ D±,

so that in particular D± and e−itG0D± ∈ Kac(K̃) for t ∈ R±. Assume
now that g ∈ L2(R,HD) vanishes identically on some open interval
(−∞, α). Then for r > 0 sufficiently large e−irG0g ∈ D+ and by (3.26)
for t > r

eitK̃(J+ + J−)e−i(t−r)G0e−irG0g = eirK̃J+e
−irG0g.

Since the elements g ∈ L2(R,HD) which vanish on intervals (−∞, α)

form a dense set in L2(R,HD) and the wave operator W+(K̃, A0 ⊕G0)
is complete we conclude that

⋃

r∈R+

eirK̃D+ (3.27)
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is a dense set in Kac(K̃). A similar argument shows that the set (3.27)
with R+ and D+ replaced by R− and D−, respectively, is also dense in

Kac(K̃). This implies (3.25). 2

According to Lemma 3.9 the system {K̃,D−,D+} is a Lax-Phillips
scattering system and in particular the Lax-Phillips wave operators

Ω± := s- lim
t→±∞

eitK̃J±e
−itG0 : L2(R,HD) → K

exist, cf. [14]. We note that s-limt→±∞ J∓e−itG0 = 0 and therefore the

restrictions of the wave operators W±(K̃,K0) of the scattering system

{K̃,K0}, K0 = A0 ⊕G0, onto L2(R,HD),

W±(K̃,K0) ↾L2= s- lim
t→±∞

eitK̃(J+ + J−)e−itG0 ,

coincide with the Lax-Phillips wave operators Ω±. Hence the Lax-
Phillips scattering operator SLP := Ω∗

+Ω− admits the representation

SLP = PL2S(K̃,K0) ↾L2

where S(K̃,K0) = W+(K̃,K0)
∗W−(K̃,K0) is the scattering operator

of the scattering system {K̃,K0}. The Lax-Phillips scattering operator
SLP is a contraction in L2(R,HD) and commutes with the self-adjoint
differential operatorG0. Hence SLP is unitarily equivalent to a multipli-
cation operator induced by a family {SLP (λ)} of contractive operators
in L2(R,HD), this family is called the Lax-Phillips scattering matrix.

The above considerations together with Theorem 3.6 immediately
imply the following corollary on the representation of the Lax-Phillips
scattering matrix.

COROLLARY 3.10. Let {K̃,D−,D+} be the Lax-Phillips scattering
system considered in Lemma 3.9 and let A, Π = {H,Γ0,Γ1}, AD,
M(·) and G0 be as in the previous subsections. Then G0 = Gac

0 is
unitarily equivalent to the multiplication operator with the free variable
in L2(R,HD) = L2(R, dλ,HD) and the Lax-Phillips scattering matrix
{SLP (λ)} admits the representation

SLP (λ) = IHD
+ 2iPD

√
Im (−D)

(
D −M(λ)

)−1
√

Im (−D) ↾HD

(3.28)

for λ ∈ ΣM ∩ ΣND , where M(λ) = M(λ+ i0).

Let again AD be the maximal dissipative extension of A corre-
sponding to the maximal dissipative matrix D ∈ [H] and let HD =
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ran (Im (D)). By [30] the characteristic function WAD
of the completely

non-self-adjoint part of AD is given by

WAD
: C− → [HD]

µ 7→ IHD
− 2iPD

√
−Im (D)

(
D∗ −M(µ)

)−1
√
−Im (D) ↾HD

.
(3.29)

Comparing (3.28) and (3.29) we obtain the famous relation be-
tween the Lax-Phillips scattering matrix and the characteristic function
found by Adamyan and Arov in [2, 3, 4, 5].

COROLLARY 3.11. Let the assumption be as in Corollary 3.10. Then
the Lax-Phillips scattering matrix {SLP (λ)} and the characteristic func-
tion WAD

of the maximal dissipative operator AD are related by

SLP (λ) = WAD
(λ− i0)∗, λ ∈ ΣM ∩ ΣND .

Next we consider the special case that the spectrum σ(A0) of the
self-adjoint extension A0 = A∗ ↾ ker(Γ0) is purely singular, Hac(A0) =
{0}. As usual let M(·) be the Weyl function corresponding to Π =
{H,Γ0,Γ1}. Then we have HM(λ) = ran (Im (M(λ+ i0))) = {0} for a.e.

λ ∈ ΣM , cf. [18], and if even σ(A0) = σp(A0) then HM(λ) = {0} for all

λ ∈ ΣM . Therefore Theorem 3.6 and Corollaries 3.10 and 3.11 imply
the following statement.

COROLLARY 3.12. Let the assumption be as in Corollary 3.10, let
K0 = A0 ⊕ G0 and assume in addition that σ(A0) is purely singular.

Then the scattering matrix {S̃(λ)} of the complete scattering system

{K̃,K0} coincides with the Lax-Phillips scattering matrix {SLP (λ)} of

the Lax-Phillips scattering system {K̃,D−,D+}, that is,

S̃(λ) = SLP (λ) = WAD
(λ− i0)∗ (3.30)

for a.e. λ ∈ R. If even σ(A0) = σp(A0), then (3.30) holds for all
λ ∈ ΣM ∩ ΣND .

3.4. 1D-Schrödinger operators with dissipative boundary

conditions

In this subsection we consider an open quantum system consisting
of a self-adjoint and a maximal dissipative extension of a symmetric
regular Sturm-Liouville differential operator. Such maximal dissipative
operators or pseudo-Hamiltonians are used in the description of carrier
transport in semi-conductors, see e.g. [10, 12, 35, 40, 46, 47, 49].
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Assume that −∞ < xl < xr < ∞ and let V ∈ L∞((xl, xr)) be a
real valued function. Moreover let m ∈ L∞((xl, xr)) be a real function
such that m > 0 and m−1 ∈ L∞((xl, xr)). It is well-known that

(Af)(x) := −1

2

d

dx

1

m(x)

d

dx
f(x) + V (x)f(x),

dom(A) :=




f ∈ L2((xl, xr)) :

f, 1
mf

′ ∈W 1
2 ((xl, xr))

f(xl) = f(xr) = 0(
1
mf

′
)

(xl) =
(

1
mf

′
)

(xr) = 0




,

is a densely defined closed simple symmetric operator in the Hilbert
space H := L2((xl, xr)). The deficiency indices of A are n+(A) =
n−(A) = 2 and the adjoint operator A∗ is given by

(A∗f)(x) = −1

2

d

dx

1

m(x)

d

dx
f(x) + V (x)f(x),

dom(A∗) =

{
f ∈ H : f,

1

m
f ′ ∈W 1

2 ((xl, xr))

}
.

It is straightforward to verify that Π = {C
2,Γ0,Γ1}, where

Γ0f :=

(
f(xl)
f(xr)

)
and Γ1f :=




(
1

2mf
′
)

(xl)

−
(

1
2mf

′
)

(xr)


 , (3.31)

f ∈ dom(A∗), is a boundary triplet for A∗. Notice that the self-adjoint
extension A0 = A∗ ↾ ker(Γ0) corresponds to Dirichlet boundary condi-
tions, that is,

dom(A0) =

{
f ∈ H : f,

1

m
f ′ ∈W 1

2 ((xl, xr)), f(xl) = f(xr) = 0

}
.

It is well known that A0 is semibounded from below and that σ(A0)
consists of eigenvalues accumulating to +∞. As usual we denote the
Weyl function corresponding to Π = {C

2,Γ0,Γ1} by M(·). Here M(·) is
a two-by-two matrix-valued function which has poles at the eigenvalues
of A0 and in particular we have

HM(λ) = ran
(
Im (M(λ))

)
= {0} for all λ ∈ ΣM . (3.32)

If ϕλ, ψλ ∈ L2((xl, xr)) are fundamental solutions of

−1
2

(
1
mf

′)′ + V f = λf
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satisfying the boundary conditions

ϕλ(xl) = 1,
(

1
mϕ

′
λ

)
(xl) = 0, ψλ(xl) = 0,

(
1
mψ

′
λ

)
(xl) = 1, (3.33)

then M can be written as

M(λ) =
1

2ψλ(xr)

(−ϕλ(xr) 1
1 −( 1

mψ
′
λ

)
(xr)

)
, λ ∈ ρ(A0). (3.34)

We are interested in maximal dissipative extensions

AD = A∗ ↾ ker(Γ1 −DΓ0)

of A where D ∈ [C2] has the special form

D =

(−κl 0
0 −κr

)
, Im (κl) ≥ 0, Im (κr) ≥ 0. (3.35)

Of course, if both κl and κr are real constants then HD = ran (Im (D)) =
{0} and AD is self-adjoint. In this case AD can be identified with the

self-adjoint dilation K̃ acting in H ⊕ L2(R, {0})=̃H, cf. Theorem 3.2.
Let us first consider the situation where both κl and κr have pos-

itive imaginary parts. Then HD = C
2 and the self-adjoint dilation K̃

from Theorem 3.2 is given by

K̃(f ⊕ g− ⊕ g+) =
(−1

2

(
1
mf

′)′ + V f
)⊕−ig′− ⊕−ig′+,

dom K̃ =

{
f, 1

mf
′ ∈W 1

2 ((xl, xr)),
g± ∈W 1

2 (R±,C2)
:

Γ0f − Υ0g = 0,
(Γ1 − Re (D)Γ0)f + Υ1g = 0

}
.

Here ΠG = {C
2,Υ0,Υ1} is the boundary triplet for first order differ-

ential operator G ⊂ G∗ in L2(R,C2) from Lemma 3.1 and we have
decomposed the elements f ⊕ g in H ⊕ L2(R,C2) as agreed in the
beginning of Section 3.3. Let us set

g−(0−) =

(
gl(0−)
gr(0−)

)
and g+(0+) =

(
gl(0+)
gr(0+)

)
.

Then a straightforward calculation using the definitions of Π = {C
2,Γ0,Γ1}

and ΠG = {C
2,Υ0,Υ1} in (3.31) and Lemma 3.1, respectively, shows

that an element f ⊕ g− ⊕ g+ belongs to dom(K̃) if and only if

(
1

2mf
′)(xl) + κlf(xl) = −i

√
2Im (κl)gl(0−)

(
1

2mf
′)(xl) + κlf(xl) = −i

√
2Im (κl)gl(0+)

(
1

2mf
′)(xr) − κrf(xr) = i

√
2Im (κr)gr(0−)

(
1

2mf
′)(xr) − κrf(xr) = i

√
2Im (κr)gr(0+)
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holds. We note that this dilation K̃ is isomorphic in the sense of [39,
Section I.4] to those used in [12, 13, 46, 47].

Theorem 3.6 and the fact that σ(A0) is singular (cf. (3.32)) imply

that the scattering matrix {S̃(λ)} of the scattering system {K̃,K0},
K0 = A0 ⊕G0, coincides with

SLP (λ) = IC2 + 2i
√
−Im (D)

(
D −M(λ)

)−1
√
−Im (D) ∈ [C2]

for all λ 6∈ σp(A0) ∩ R, where M(λ) = M(λ + i0) (cf. Corollary 3.12).
By (3.35) here

√
−Im (D) is a diagonal matrix with entries

√
Im (κl)

and
√

Im (κr). We leave it to the reader to compute SLP (λ) explicitely
in terms of the fundamental solutions ϕλ and ψλ in (3.33). According
to Corollary 3.11 the continuation of the characteristic function WAD

of the completely non-self-adjoint pseudo-Hamiltonian AD from C− to
R\{σp(A0)} coincides with SLP (λ)∗,

WAD
(λ− i0) = IC2 − 2i

√
−Im (D)

(
D∗ −M(λ)

)−1
√
−Im (D)

= SLP (λ)∗.

Next we consider briefly the case where one of the entries of D in
(3.35) is real. Assume e.g. κl ∈ R. In this case HD = C=̃{0}⊕C, PD is
the orthogonal projection onto the second component in C

2 and G is
a first order differential operator in L2(R,C). The self-adjoint dilation

K̃ is

K̃(f ⊕ g− ⊕ g+) =
(−1

2

(
1
mf

′)′ + V f
)⊕−ig′− ⊕−ig′+,

dom K̃ =




f, 1

mf
′ ∈W 1

2 ((xl, xr)),
g± ∈W 1

2 (R±,C2)
:

PDΓ0f − Υ0g = 0,
(1 − PD)(Γ1 − Re (D)Γ0)f = 0,
PD(Γ1 − Re (D)Γ0)f + Υ1g = 0



 ,

and explicitely this means that an element f ⊕ g− ⊕ g+ belongs to

dom(K̃) if and only if

(
1

2mf
)′

(xr) − κrf(xr) = i
√

2Im (κr)g+(0+)

(
1

2mf
)′

(xr) − κrf(xr) = i
√

2Im (κr)g−(0−)
(

1
2mf

)′
(xl) + κlf(xl) = 0

holds. The scattering matrix of {K̃,K0} is given by

SLP (λ) = IHD
+ 2iIm (κr)PD

(
D −M(λ)

)−1
↾HD

, λ ∈ ΣM ,
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which is now a scalar function, and is related to the characteristic
function of the maximal dissipative operator AD by SLP (λ) = WAD

(λ−
i0)∗.

4. Energy dependent scattering systems

In this section we consider families {A−τ(λ), A0} of scattering systems,
where τ(·) is a matrix Nevanlinna function and {A−τ(λ)} is a family of
maximal dissipative extensions of a symmetric operator A with finite
deficiency indices. Such scattering systems arise naturally in the de-
scription of open quantum systems, see e.g. Section 4.4 where a simple
model of a so-called quantum transmitting Schrödinger-Poisson system
is described. Following ideas in [26] (see also [16, 21, 32, 43, 44]) the
family {A−τ(λ)} is “linearized” in an abstract way, that is, we construct

a self-adjoint extension L̃ of A which acts in a larger Hilbert space H⊕G

and satisfies

PH

(
L̃− λ

)−1
↾H=

(
A−τ(λ) − λ

)−1
,

so that, roughly speaking, the open quantum system is embedded into
a closed system. The corresponding Hamiltonian L̃ is semibounded if
and only if A0 is semibounded and τ(·) is holomorphic on some interval
(−∞, η). The essential observation here is that the scattering matrix of

{L̃, L0}, where L0 is the direct orthogonal sum of A0 and a self-adjoint
operator connected with τ(·), pointwise coincides with the scattering

matrix of a scattering system {K̃,K0} as investigated in the previous
section. From a physical point of view this in particular justifies the
use of quasi-Hamiltonians K̃ for the analysis of scattering processes in
suitable small energy ranges.

4.1. The Štraus family and its characteristic functions

Let A be a densely defined closed simple symmetric operator in the
separable Hilbert space H with equal finite deficiency indices n±(A) =
n < ∞ and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Assume
that τ(·) is an [H]-valued Nevanlinna function and consider the family
{A−τ(λ)},

A−τ(λ) := A∗ ↾ ker
(
Γ1 + τ(λ)Γ0

)
, λ ∈ C+,

of closed extension of A. Sometimes it is convenient to consider A−τ(λ)

for all λ ∈ h(τ), that is, for all λ ∈ C\R and all real points λ where τ
is holomorphic, cf. Section 2.2. Since Im τ(λ) ≥ 0 for λ ∈ C+ it follows

mpag03.tex; 3/12/2007; 15:20; p.34



Scattering Theory for Open Quantum Systems 35

that each A−τ(λ), λ ∈ C+, is a maximal dissipative extension of A in

H. The family {A−τ(λ)}λ∈C+ is called the Štraus family of A associated
with τ (cf. [63] and e.g. [25, Section 3.3]) and for brevity we shall often
call {A−τ(λ)} simply Štraus family.

Since H is finite dimensional Fatous theorem (see [34, 41]) implies
that the limit τ(λ+i0) = limǫ→+0 τ(λ+iǫ) from the upper half-plane ex-
ists for a.e. λ ∈ R. As in Section 2.3 we denote set of real points λ where
this limit exists by Στ . If there is no danger of confusion we will usually
write τ(λ) instead of τ(λ+i0) for λ ∈ Στ . Obviously, the Lebesgue mea-
sure of R \Στ is zero. Hence the Štraus family {A−τ(λ)}λ∈C+ admits a
continuation to C+∪Στ which is also denoted by {A−τ(λ)}, λ ∈ C+∪Στ .
We remark that in the case Im (τ(λ)) = 0 for some λ ∈ C+ ∪ Στ the
maximal dissipative operator A−τ(λ) is self-adjoint.

Let M(·) be the Weyl function corresponding to the boundary
triplet Π = {H,Γ0,Γ1}. Then M(·) is an [H]-valued Nevanlinna func-
tion and Im (M(λ)) is strictly positive for λ ∈ C+. Therefore

N−τ(λ)(λ) := −(τ(λ) +M(λ)
)−1

, λ ∈ C+,

is a well-defined Nevanlinna function, see also (2.9). The set of all real
λ where the limit

N−τ(λ+i0)(λ+ i0) = lim
ǫ→+0

−(τ(λ+ iǫ) +M(λ+ iǫ)
)−1

exists will for brevity be denoted by ΣN . Furthermore, for fixed λ ∈ Στ

we define an [H]-valued Nevanlinna function Q−τ(λ)(·) by

Q−τ(λ)(µ) := −(τ(λ) +M(µ)
)−1

, µ ∈ C+, (4.1)

and denote by ΣQλ the set of all real points µ where the limit

Q−τ(λ)(µ+ i0) = lim
ǫ→+0

Q−τ(λ)(µ+ iǫ) (4.2)

exists. Notice that the complements R\ΣN and R\ΣQλ are of Lebesgue
measure zero. The next lemma will be used in Section 4.3.

LEMMA 4.1. Let A, Π = {H,Γ0,Γ1}, M(·) and τ(·) be as above. Then
the following assertions (i)-(iii) are true.

(i) If λ ∈ Στ and µ ∈ ΣM ∩ ΣQλ, then the operator τ(λ) + M(µ) is
invertible and

(
τ(λ) +M(µ)

)−1
= lim

ǫ→+0

(
τ(λ) +M(µ+ iǫ)

)−1
. (4.3)
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(ii) If λ ∈ Στ ∩ ΣM ∩ ΣN , then the operator τ(λ) +M(λ) is invertible
and

(
τ(λ) +M(λ)

)−1
= lim

ǫ→+0

(
τ(λ+ iǫ) +M(λ+ iǫ)

)−1
. (4.4)

(iii) If λ ∈ Στ ∩ ΣM ∩ ΣN , then λ ∈ ΣQλ and

(
τ(λ) +M(λ)

)−1
= lim

ǫ→+0

(
τ(λ) +M(λ+ iǫ)

)−1
. (4.5)

Proof. (i) If λ ∈ Στ , µ ∈ ΣM , then

lim
ǫ→+0

(
τ(λ) +M(µ+ iǫ)

)
= τ(λ) +M(µ).

Since

(
τ(λ) +M(µ+ iǫ)

)
Q−τ(λ)(µ+ iǫ) =

Q−τ(λ)(µ+ iǫ)
(
τ(λ) +M(µ+ iǫ)

)
= −IH

for all ǫ > 0, we get

−IH =
(
τ(λ) +M(µ)

)
Q−τ(λ)(µ) = Q−τ(λ)(µ)

(
τ(λ) +M(µ)

)

for λ ∈ Στ and µ ∈ ΣM ∩ ΣQλ which proves (4.3).
(ii) For λ ∈ Στ ∩ ΣM clearly

lim
ǫ→+0

(
τ(λ+ iǫ) +M(λ+ iǫ)

)
= τ(λ) +M(λ)

exists. Since (τ(λ)+M(λ))N−τ(λ)(λ) = N−τ(λ)(λ)(τ(λ)+M(λ)) = −IH
for all λ ∈ C+ we have

−IH =
(
τ(λ) +M(λ)

)
N−τ(λ)(λ) = N−τ(λ)(λ)

(
τ(λ) +M(λ)

)

for λ ∈ Στ ∩ ΣM ∩ ΣN which verifies (4.4).
(iii) Let λ ∈ Στ ∩ΣM ∩ΣN . Let us show that λ ∈ ΣQλ , i.e., we have

to show that limǫ→+0(τ(λ) + M(λ + iǫ))−1 exists. Since τ(λ) +M(λ)
is boundedly invertible and τ(λ) +M(λ + iǫ), ǫ > 0, converges in the
operator norm to τ(λ)+M(λ) the family {(τ(λ)+M(λ+ iǫ))−1}ǫ>0 is
uniformly bounded. Using

(
τ(λ) +M(λ+ iǫ)

)−1 − (τ(λ) +M(λ)
)−1

= −(τ(λ) +M(λ+ iǫ)
)−1(

M(λ+ iǫ) −M(λ)
)(
τ(λ) +M(λ)

)−1
,
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ǫ > 0, one obtains the existence of limǫ→+0(τ(λ) + M(λ + iǫ))−1 and
(4.5). 2

Let A, Π = {H,Γ0,Γ1} and M(·) be as in the beginning of this section
and let as above τ(·) be a matrix Nevanlinna function with values
in [H]. For each maximal dissipative operator from the Štraus family
{A−τ(λ)}λ∈C+ the characteristic function WA−τ(λ)

is given by

WA−τ(λ)
: C− → [Hτ(λ)] (4.6)

µ 7→ IHτ(λ)
+ 2iPτ(λ)

√
Im (τ(λ))

(
τ(λ)∗ +M(µ)

)−1
√

Im (τ(λ)) ↾Hτ(λ)
,

(see [30] and (3.29)), where we have used Hτ(λ) = ran (Im (τ(λ))), λ ∈
Στ , and denoted the projection and restriction onto Hτ(λ) by Pτ(λ) and
↾Hτ(λ)

, respectively.

If we regard the Štraus family {A−τ(λ)} on the larger set C+ ∪Στ ,
then for λ ∈ Στ the characteristic function WA−τ(λ)

(·) is defined as in

(4.6). Notice that in the case Im (τ(λ)) = 0 for λ ∈ Στ the characteristic
function of the self-adjoint extensionA−τ(λ) ofA is the identity operator
on the trivial space Hτ(λ) = {0}. Since the characteristic functions
WA−τ(λ)

(·), λ ∈ C+ ∪ Στ , are contractive [Hτ(λ)]-valued functions in
the lower half-plane, the limits

WA−τ(λ)
(µ− i0) = lim

ǫ→+0
WA−τ(λ)

(µ− iǫ)

exist for a.e. µ ∈ R, cf. [39]. The next proposition is a simple conse-
quence of Lemma 4.1.

PROPOSITION 4.2. Let A, Π = {H,Γ0,Γ1} and M(·) be as above and
let τ(·) be an [H]-valued Nevanlinna function. Let {A−τ(λ)}λ∈C+∪Στ

be the Štraus family of maximal dissipative extensions of A and let
WA−τ(λ)

(·) be the corresponding characteristic functions. Then the fol-
lowing holds.

(i) If λ ∈ Στ and µ ∈ ΣM ∩ΣQλ, then the limit WA−τ(λ)
(µ− i0) exists

and

WA−τ(λ)
(µ− i0) =

IHτ(λ)
+ 2iPτ(λ)

√
Im (τ(λ))(τ(λ)∗ +M(µ)∗)−1

√
Im (τ(λ)) ↾Hτ(λ)

.

(ii) If λ ∈ Στ ∩ ΣM ∩ ΣN , then the limit WA−τ(λ)
(λ− i0) exists and

WA−τ(λ)
(λ− i0) =

IHτ(λ)
+ 2iPτ(λ)

√
Im (τ(λ))(τ(λ)∗ +M(λ)∗)−1

√
Im (τ(λ)) ↾Hτ(λ)

.
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4.2. Coupling of symmetric operators and coupled

scattering systems

Let, as in the previous subsection A be a densely defined closed simple
symmetric operator in H with equal finite deficiency indices and let
Π = {H,Γ0,Γ1} be a boundary triplet for A∗ with corresponding
Weyl function M(·). Let τ(·) be an [H]-valued Nevanlinna function
and assume in addition that τ can be realized as the Weyl function
corresponding to a densely defined closed simple symmetric operator
T in some separable Hilbert space G and a suitable boundary triplet
ΠT = {H,Υ0,Υ1} for T ∗. It is worth to note that the Nevanlinna
function τ(·) has this property if and only if Im (τ(λ)) is invertible for
some (and hence for all) λ ∈ C+ and

lim
y→∞

1

y

(
τ(iy)h, h

)
= 0 and lim

y→∞
y Im

(
τ(iy)h, h

)
= ∞ (4.7)

hold for all h ∈ H, h 6= 0, (see e.g. [52, Corollary 2.5 and Corollary 2.6]
and [29, 54]).

In the following the function −τ(·) and the Štraus family

A−τ(λ) = A∗ ↾ ker
(
Γ1 + τ(λ)Γ0

)
(4.8)

are in a certain sense the counterparts of the dissipative matrixD ∈ [H]
and the corresponding maximal dissipative extension AD from Sec-
tion 3.1. Similarly to Theorem 3.2 we construct an ”energy dependent
dilation” in Theorem 4.3 below, that is, we find a self-adjoint operator
L̃ such that

PH

(
L̃− λ)−1 ↾H=

(
A−τ(λ) − λ

)−1

holds.
First we fix a separable Hilbert space G, a densely defined closed

simple symmetric operator T ∈ C(G) and a boundary triplet ΠT =
{H,Υ0,Υ1} for T ∗ such that τ(·) is the corresponding Weyl function.
We note that T and G are unique up to unitary equivalence and the
resolvent set ρ(T0) of the self-adjoint operator T0 := T ∗ ↾ ker(Υ0)
coincides with the set h(τ) of points of holomorphy of τ , cf. Section 2.2.
Since the deficiency indices of T are n+(T ) = n−(T ) = n it follows that

L := A⊕ T, domL = domA⊕ domT,

is a densely defined closed simple symmetric operator in the separable
Hilbert space L := H ⊕ G with deficiency indices n±(L) = n±(A) +
n±(T ) = 2n.

The following theorem has originally been proved in [26, § 5]. For
the sake of completeness we present a direct proof here, cf. [16].
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THEOREM 4.3. Let A, Π = {H,Γ0,Γ1}, M(·) and τ(·) be as above,
let T be a densely defined closed simple symmetric operator in G and
ΠT = {H,Υ0,Υ1} be a boundary triplet for T ∗ with Weyl function τ(·).
Then

L̃ = L∗ ↾

{
f ⊕ g ∈ dom(L∗) :

Γ0f − Υ0g = 0
Γ1f + Υ1g = 0

}
, (4.9)

is a self-adjoint operator in L such that

PH

(
L̃− λ)−1 ↾H=

(
A−τ(λ) − λ

)−1

holds for all λ ∈ ρ(A0) ∩ h(τ) ∩ h(−(M + τ)−1) and the minimality
condition

L = clospan
{(
L̃− λ

)−1
H : λ ∈ C\R

}

is satisfied. Moreover, L̃ is semibounded from below if and only if A0 is
semibounded from below and (−∞, η) ⊂ h(τ) for some η ∈ R.

Proof. It is easy to see that Π̃ = {H ⊕ H, Γ̃0, Γ̃1}, where Γ̃0 :=

(Γ0,Υ0)
⊤ and Γ̃1 := (Γ1,Υ1)

⊤, is a boundary triplet for L∗ = A∗ ⊕
T ∗. If γ(·) and ν(·) denote the γ-fields of Π = {H,Γ0,Γ1} and ΠT =

{H,Υ0,Υ1}, respectively, then the γ-field γ̃ and Weyl function M̃ of

Π̃ = {H ⊕H, Γ̃0, Γ̃1} are given by

λ 7→ γ̃(λ) =

(
γ(λ) 0

0 ν(λ)

)
and λ 7→ M̃(λ) =

(
M(λ) 0

0 τ(λ)

)
,

λ ∈ ρ(A0) ∩ ρ(T0), A0 = A∗ ↾ ker(Γ0), T0 = T ∗ ↾ ker(Υ0). A simple
calculation shows that the relation

Θ :=

{(
(v, v)⊤

(w,−w)⊤

)
: v, w ∈ H

}
∈ C̃(H⊕H) (4.10)

is self-adjoint in H ⊕ H, hence the operator LΘ = L∗ ↾ Γ̃(−1)Θ is a
self-adjoint extension of L in L = H ⊕ G and LΘ coincides with L̃ in
(4.9). Hence, with L0 = L∗ ↾ ker(Γ̃0) = A0 ⊕ T0 we have

(
L̃− λ

)−1
= (L0 − λ)−1 + γ̃(λ)

(
Θ − M̃(λ)

)−1
γ̃(λ)∗, (4.11)

for all λ ∈ ρ(L̃) ∩ ρ(L0) by (2.6). Note that the difference of the resol-

vents of L̃ and L0 is a finite rank operator and therefore by well-known
perturbation results L̃ is semibounded if and only if L0 is semibounded,
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that is, A0 and T0 are both semibounded. From ρ(T0) = h(τ) we
conclude that the last assertion of the theorem holds.

Similar considerations as in the proof of Theorem 3.2 show that

(
Θ − M̃(λ)

)−1
= −

(
(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

)
(4.12)

holds for all λ ∈ ρ(L̃)∩ ρ(L0). Therefore the compressed resolvent of L̃
has the form

PH

(
L− λ

)−1
↾ H = (A0 − λ)−1 − γ(λ)

(
M(λ) + τ(λ)

)−1
γ(λ)∗

and coincides with (A−τ(λ) − λ)−1 for all λ belonging to

ρ(L0) ∩ ρ(L̃) = ρ(A0) ∩ h(τ) ∩ h
(−(M + τ)−1),

see Section 2.2. The minimality condition follows from the fact that T
is simple, clospan{ker(T ∗ − λ) : λ ∈ C\R}, and (4.11) in a similar way
as in the proof of Theorem 3.2 2

EXAMPLE 4.4. Let A be the symmetric Sturm-Liouville operator
from Example 3.5 and let Π = {C

n,Γ0,Γ1} be the boundary triplet for
A∗ defined by (3.18). Besides the operator A we consider the minimal
operator T in G = L2(R−,Cn) associated with the Sturm-Liouville

differential expression − d2

dx2 +Q−,

T = − d2

dx2
+Q−, dom(T ) =

{
g ∈ Dmax,− : g(0) = g′(0) = 0

}
.

Analogously to Example 3.5 it is assumed that Q− ∈ L1
loc(R−, [Cn])

satisfies Q−(·) = Q−(·)∗, that the limit point case prevails at −∞ and
the maximal domain Dmax,− is defined in the same way as Dmax,+ in
Example 3.5 with R+ and Q+ replaced by R− and Q−, respectively.

It is easy to see that ΠT = {C
n,Υ0,Υ1}, where

Υ0g := g(0), Υ1g := −g′(0), g ∈ dom(T ∗) = Dmax,−, (4.13)

is a boundary triplet for T ∗. For f ∈ dom(A∗) and g ∈ dom(T ∗) the
conditions Γ0f − Υ0g = 0 and Γ1f + Υ1g = 0 in (4.9) stand for

f(0+) = g(0−) and f ′(0+) = g′(0−),

so that the operator L̃ in Theorem 4.3 is the self-adjoint Sturm-Liouville
operator

L̃ = − d2

dx2
+Q, Q(x) =

{
Q+(x), x ∈ R+,

Q−(x), x ∈ R−,

in L2(R,Cn).
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Let A, Π = {H,Γ0,Γ1}, M(·) and T , ΠT = {H,Υ0,Υ1}, τ(·) be as
in the beginning of this subsection. We define the families {HM(λ)}λ∈ΣM

and {Hτ(λ)}λ∈Στ of Hilbert spaces HM(λ) and Hτ(λ) by

HM(λ) = ran
(
Im (M(λ+ i0))

)
and Hτ(λ) = ran

(
Im (τ(λ+ i0))

)

(4.14)

for all real points λ belonging to ΣM and Στ , respectively, cf. Sec-
tion 2.3. As usual the projections and restrictions in H onto HM(λ)

and Hτ(λ) are denoted by PM(λ), ↾HM(λ)
and Pτ(λ), ↾Hτ(λ)

, respectively.
The next theorem is the counterpart of Theorem 3.6 in the present

framework. We consider the complete scattering system {L̃, L0} con-

sisting of the self-adjoint operators L̃ from Theorem 4.3 and

L0 := A0 ⊕ T0, A0 = A∗ ↾ ker(Γ0), T0 = T ∗ ↾ ker(Υ0),

and express the scattering matrix {S̃(λ)} in terms of the function M(·)
and τ(·).

THEOREM 4.5. Let A, Π = {H,Γ0,Γ1}, M(·) and T , ΠT = {H,Υ0,Υ1},
τ(·) be as above. Define HM(λ), Hτ(λ) as in (4.14) and let L0 = A0⊕T0

and L̃ be as in Theorem 4.3. Then the following holds.

(i) Lac
0 = Aac

0 ⊕T ac
0 is unitarily equivalent to the multiplication operator

with the free variable in L2(R, dλ,HM(λ) ⊕Hτ(λ)).

(ii) In L2(R, dλ,HM(λ) ⊕ Hτ(λ)) the scattering matrix {S̃(λ)} of the

complete scattering system {L̃, L0} is given by

S̃(λ) = IHM(λ)⊕Hτ(λ)
− 2i

(
T̃11(λ) T̃12(λ)

T̃21(λ) T̃22(λ)

)
∈ [HM(λ) ⊕Hτ(λ)],

(4.15)

for all λ ∈ ΣM ∩ Στ ∩ ΣN , where

T̃11(λ) = PM(λ)

√
Im (M(λ))

(
M(λ) + τ(λ)

)−1
√

Im (M(λ)) ↾HM(λ)
,

T̃12(λ) = PM(λ)

√
Im (M(λ))

(
M(λ) + τ(λ)

)−1
√

Im (τ(λ)) ↾Hτ(λ)
,

T̃21(λ) = Pτ(λ)

√
Im (τ(λ))

(
M(λ) + τ(λ)

)−1
√

Im (M(λ)) ↾HM(λ)
,

T̃22(λ) = Pτ(λ)

√
Im (τ(λ))

(
M(λ) + τ(λ)

)−1
√

Im (τ(λ)) ↾Hτ(λ)

and M(λ) = M(λ+ i0), τ(λ) = τ(λ+ i0).
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Proof. Let L = A⊕T and let Π̃ = {H⊕H, Γ̃0, Γ̃1} be the boundary
triplet for L∗ from the proof of Theorem 4.3. The corresponding Weyl
function M̃ is

λ 7→ M̃(λ) =

(
M(λ) 0

0 τ(λ)

)
, λ ∈ ρ(A0) ∩ ρ(T0), (4.16)

and since L is a densely defined closed simple symmetric operator in
the separable Hilbert space L = H⊕G we can apply Theorem 2.4. First
of all we immediately conclude from

H
M̃(λ)

= HM(λ) ⊕Hτ(λ), λ ∈ ΣM̃ = ΣM ∩ Στ ,

that the absolutely continuous part Lac
0 = Aac

0 ⊕ T ac
0 of L0 is unitarily

equivalent to the multiplication operator with the free variable in the
direct integral L2(R, dλ,HM(λ) ⊕Hτ(λ)). Moreover

S̃(λ) = IH̃λ
+ 2iP

M̃(λ)

√
Im (M̃(λ))

(
Θ − M̃(λ)

)−1
√

Im (M̃(λ)) ↾H
M̃(λ)

(4.17)

holds for λ ∈ ΣM̃∩ΣNΘ , where Θ is the self-adjoint relation from (4.10),
the set ΣNΘ is defined as in Section 2.3 and P

M̃(λ)
and ↾H

M̃(λ)
denote

the projection and restriction in H⊕H onto H
M̃(λ)

, respectively.

For λ ∈ ΣM̃ ∩ ΣNΘ we have

lim
ǫ→+0

(
Θ − M̃(λ+ iǫ)

)−1
=
(
Θ − M̃(λ+ i0)

)−1

and

(
Θ − M̃(λ)

)−1
= −

(
(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

)
,

cf. (4.12). This implies that the sets ΣM̃ ∩ ΣNΘ and ΣM ∩ Στ ∩ ΣN

coincide. Moreover, by inserting the above expression for (Θ−M̃(λ))−1,
λ ∈ ΣM ∩ Στ ∩ ΣN into (4.17) and taking into account (4.16) we find

that the scattering matrix {S̃(λ)} of the scattering system {L̃, L0} has
the form asserted in (ii). 2

The following corollary, which is of similar type as Corollary 3.12,
is a simple consequence of Theorem 4.5 and Proposition 4.2.

COROLLARY 4.6. Let the assumptions be as in Theorem 4.5, let
WA−τ(λ)

(·) be the characteristic function of the extension A−τ(λ) in

(4.8) and assume in addition that σ(A0) is purely singular. Then Lac
0 is
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unitarily equivalent to the multiplication operator with the free variable
in L2(R, dλ,Hτ(λ)) and the scattering matrix {S̃(λ)} of the complete

scattering system {L̃, L0} is given by

S̃(λ) = WA−τ(λ)
(λ− i0)∗

= IHτ(λ)
− 2iPτ(λ)

√
Im (τ(λ))

(
M(λ) + τ(λ)

)−1
√

Im (τ(λ)) ↾Hτ(λ)

for a.e. λ ∈ R. In the special case σ(A0) = σp(A0) this relation holds
for all λ ∈ ΣM ∩ Στ ∩ ΣN .

COROLLARY 4.7. Let the assumptions be as in Corollary 4.6 and
suppose that the defect of A is one, n±(A) = 1. Then

S̃(λ) = WA−τ(λ)
(λ− i0)∗ =

M(λ) + τ(λ)

M(λ) + τ(λ)

holds for a.e. λ ∈ R with Im τ(λ+ i0) 6= 0.

4.3. Scattering matrices of energy dependent and fixed

dissipative scattering systems

Let A, Π = {H,Γ0,Γ1}, A0 = A∗ ↾ ker(Γ0) and τ(·) be as in the
previous subsections and let {A−τ(λ)} be the Štraus family associated
with τ from (4.8). In the following we first fix some µ ∈ C+∪Στ and con-
sider the fixed dissipative scattering system {A−τ(µ), A0}. Notice that if

µ ∈ Στ it may happen that A−τ(µ) is self-adjoint. Let us denote by K̃µ

the minimal self-adjoint dilation of the maximal dissipative extension
A−τ(µ) in H ⊕ L2(R, dλ,Hτ(µ)) constructed in Theorem 3.2. Here the
fixed Hilbert space Hτ(µ) = ran (Im (τ(µ))) coincides with H if µ ∈ C+

or Hτ(µ) is a (possibly trivial) subspace of H if µ ∈ Στ . Furthermore,
if K0 = A0 ⊕ G0, where G0 is the first order differential operator in
L2(R, dλ,Hτ(µ)) from Lemma 3.1, then according to Theorem 3.6 the
absolutely continuous part Kac

0 = Aac
0 ⊕ G0 of K0 is unitarily equiva-

lent to the multiplication operator with the free variable in the direct
integral L2(R, dλ,HM(λ)⊕Hτ(µ)) and the scattering matrix {S̃µ(λ)} of

the scattering system {K̃µ,K0} is given by

S̃µ(λ) = IHM(λ)⊕Hτ(µ)
− 2i

(
T̃11,µ(λ) T̃12,µ(λ)

T̃21,µ(λ) T̃22,µ(λ)

)
∈ [HM(λ) ⊕Hτ(µ)

]
,

(4.18)
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for all λ ∈ ΣM ∩ ΣQµ , where

T̃11,µ(λ) = PM(λ)

√
Im (M(λ))

(
τ(µ) +M(λ)

)−1
√

Im (M(λ)) ↾HM(λ)
,

T̃12,µ(λ) = PM(λ)

√
Im (M(λ))

(
τ(µ) +M(λ)

)−1
√

Im (τ(µ)) ↾Hτ(µ)
,

T̃21,µ(λ) = Pτ(µ)

√
Im (τ(µ))

(
τ(µ) +M(λ)

)−1
√

Im (M(λ)) ↾HM(λ)
,

T̃22,µ(λ) = Pτ(λ)

√
Im (τ(µ))

(
τ(µ) +M(λ)

)−1
√

Im (τ(µ)) ↾Hτ(µ)

and M(λ) = M(λ + i0). Here the set ΣQµ and the corresponding
function λ 7→ Q−τ(µ)(λ) defined in (4.1)-(4.2) replace ΣND and λ 7→
(D −M(λ))−1 in Theorem 3.6, respectively.

The following theorem is one of the main results of this paper.
Roughly speaking it says that the scattering matrix of the scattering
system {L̃, L0} from Theorem 4.5 pointwise coincides with scattering

matrices of scattering systems {K̃µ,K0} of the above form.

THEOREM 4.8. Let A, Π = {H,Γ0,Γ1}, M(·) and T , ΠT = {H,Υ0,Υ1},
τ(·) be as in the beginning of Section 4.2 and let L0 = A0⊕T0 and L̃ be
as in Theorem 4.3. For µ ∈ Στ denote the minimal self-adjoint dilation
of A−τ(µ) in H ⊕ L2(R,Hτ(µ)) by K̃µ and let K0 = A0 ⊕G0, where G0

is the self-adjoint first order differential operator in L2(R,Hτ(µ)).

Then for each µ ∈ ΣM ∩Στ ∩ΣN the value of the scattering matrix
{S̃µ(λ)} of the scattering system {K̃µ,K0} at energy λ = µ coincides

with the value of the scattering matrix {S̃(λ)} of the scattering system

{L̃, L0} at energy λ = µ, that is,

S̃(µ) = S̃µ(µ) for all µ ∈ ΣM ∩ Στ ∩ ΣN . (4.19)

Proof. According to Lemma 4.1 (iii) each real µ ∈ ΣM ∩Στ ∩ΣN

belongs also to the set ΣQµ . Therefore by comparing Theorem 4.5 with
the scattering matrix {S̃µ(λ)} of {K̃µ,K0} at energy λ = µ in (4.18)
we conclude (4.19). 2

REMARK 4.9. The statements of Theorem 4.5 and Theorem 4.8 are
also interesting from the viewpoint of inverse problems. Namely, if
τ(·) is a matrix Nevanlinna function, satisfying ker(Im (τ(λ))) = 0,
λ ∈ C+, and the conditions (4.7), and if {A−τ(λ), A0} is a family of
energy dependent dissipative scattering systems as considered above,
then in general the Hilbert space G and the operators T ⊂ T0 are not
explicitely known, and hence also the scattering system {L̃, L0} is not
explicitely known. However, according to Theorem 4.5 the scattering
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matrix {S̃(λ)} can be expressed in terms of τ(·) and the Weyl function

M(·), and by Theorem 4.8 {S̃(λ)} can be obtained with the help of the

scattering matrices {S̃µ(λ)} of the scattering systems {K̃µ,K0}.

In the following corollary the scattering matrices {S−τ(µ)(λ)} of the
energy dependent dissipative scattering systems {A−τ(µ), A0}, µ ∈ Στ ,
are evaluated at energy λ = µ.

COROLLARY 4.10. Let the assumptions be as in Theorem 4.8 and let
µ ∈ ΣM ∩Στ ∩ΣN . Then the scattering matrix {S−τ(µ)(λ)} of the dis-
sipative scattering system {A−τ(µ), A0} at energy λ = µ coincides with

the upper left corner of the scattering matrix {S̃(λ)} of the scattering

system {L̃, L0} at energy λ = µ.

Let again K̃µ be the minimal self-adjoint dilation of the maximal
dissipative operator A−τ(µ) in H⊕L2(R, dλ,Hτ(µ)). In the next corollary

we focus on the Lax-Phillips scattering matrices {SLP
µ (λ)} of the Lax-

Phillips scattering systems {K̃µ,D−,µ,D+,µ}, where

D−,µ := L2(
R−,Hτ(µ)

)
and D+,µ := L2(

R+,Hτ(µ)

)

are incoming and outgoing subspaces for K̃µ, cf. Lemma 3.9. IfWA−τ(µ)
(·)

is the characteristic function of A−τ(µ), cf. (4.6), then according to
Corollaries 3.10 and 3.11 we have

SLP
µ (λ) = WA−τ(µ)

(λ− i0)∗ =

IHτ(λ)
− 2iPτ(λ)

√
Im (τ(λ))

(
τ(µ) +M(λ)

)−1
√

Im (τ(λ)) ↾Hτ(λ)

for all λ ∈ ΣM ∩ΣQµ , cf. Proposition 4.2 and Corollary 4.6. Statements
(ii) and (iii) of the following corollary can be regarded as generalizations
of the classical Adamyan-Arov result, cf. [2, 3, 4, 5] and Corollary 3.11.

COROLLARY 4.11. Let the assumptions be as in Theorem 4.8 and let
µ ∈ ΣM ∩ Στ ∩ ΣN .

(i) The scattering matrix {SLP
µ (λ)} of the Lax Phillips scattering sys-

tem {K̃µ,D−,µ,D+,µ} at energy λ = µ coincides with the lower

right corner of the scattering matrix {S̃(λ)} of the scattering system

{L̃, L0} at λ = µ.
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(ii) The characteristic function WA−τ(µ)
(·) of A−τ(µ) satisfies

SLP
µ (µ) = WA−τ(µ)

(µ− i0)∗

= IHτ(µ)
− 2iPτ(µ)

√
Im (τ(µ))

(
τ(µ) +M(µ)

)−1
√

Im (τ(µ)) ↾Hτ(µ)
.

(iii) If σ(A0) is purely singular, then

S̃(µ) = SLP
µ (µ) = WA−τ(µ)

(µ− i0)∗

holds for a.e. µ ∈ R. In the special case σ(A0) = σp(A0) this is true
for all µ ∈ ΣM ∩ Στ ∩ ΣN .

4.4. 1D-Schrödinger operators with transparent boundary

conditions

As an example we consider an open quantum system of similar type
as in Section 3.4. Instead of a single pseudo-Hamiltonian AD here the
open quantum system is described by a family of energy dependent
pseudo-Hamiltonians {A−τ(λ)} which is sometimes called a quantum
transmitting family.

Let, as in Section 3.4, (xl, xr) ⊂ R be a bounded interval and let
A be the symmetric Sturm-Liouville operator in H = L2((xl, xr)) given
by

(Af)(x) = −1

2

d

dx

1

m(x)

d

dx
f(x) + V (x)f(x),

dom(A) =




f ∈ H :

f, 1
mf

′ ∈W 1
2 ((xl, xr))

f(xl) = f(xr) = 0(
1
mf

′
)

(xl) =
(

1
mf

′
)

(xr) = 0




,

where V,m,m−1 ∈ L∞((xl, xr)) are real functions and m > 0. Let vl,

vr be real constants, let ml,mr > 0 and define Ṽ , m̃ ∈ L∞(R) by

Ṽ (x) :=





vl x ∈ (−∞, xl]

V (x) x ∈ (xl, xr)

vr x ∈ [xr,∞)

(4.20)

and

m̃(x) :=





ml x ∈ (−∞, xl]

m(x) x ∈ (xl, xr)

mr x ∈ [xr,∞)

, (4.21)
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respectively. We choose the boundary triplet Π = {C
2,Γ0,Γ1},

Γ0f =

(
f(xl)
f(xr)

)
, Γ1f =




(
1

2mf
′
)

(xl)

−
(

1
2mf

′
)

(xr)


 , f ∈ dom(A∗),

from (3.31) for A∗.
In the following we consider the Štraus family

A−τ(λ) = A∗ ↾ ker
(
Γ1 + τ(λ)Γ0

)
, λ ∈ C+ ∪ Στ ,

associated with the 2 × 2-matrix Nevanlinna function

λ 7→ τ(λ) =


 i
√

λ−vl

2ml
0

0 i
√

λ−vr

2mr


 ; (4.22)

here the square root is defined on C with a cut along [0,∞) and fixed
by Im (

√
λ) > 0 for λ 6∈ [0,∞) and by

√
λ ≥ 0 for λ ∈ [0,∞), cf.

Example 2.5, so that indeed Im (τ(λ)) > 0 for λ ∈ C+ and τ(λ) = τ(λ),
λ ∈ C\R. Moreover it is not difficult to see that τ(·) is holomorphic
on C\[min{vl, vr},∞) and Στ = R. The Štraus family {A−τ(λ)}, λ ∈
C+ ∪ Στ , has the explicit form

(
A−τ(λ)f

)
(x) := −1

2

d

dx

1

m

d

dx
f(x) + V (x)f(x),

dom
(
A−τ(λ)

)
=




f ∈ H :

f, 1
mf

′ ∈W 1
2 ((xl, xr)),(

1
2mf

′
)

(xl) = −i
√

λ−vl

2ml
f(xl),(

1
2mf

′
)

(xr) = i
√

λ−vr

2mr
f(xr)




.

(4.23)

The operator A−τ(λ) is self-adjoint if λ ∈ (−∞,min{vl, vr}] and max-

imal dissipative if λ ∈ (min{vl, vr},∞). We note that the Štraus fam-
ily in (4.23) plays an important role for the quantum transmitting
Schrödinger-Poisson system in [11] where it was called the quantum
transmitting family. For this open quantum system the boundary con-
ditions in (4.23) are often called transparent or absorbing boundary
conditions, see e.g. [36, 37].

We leave it to the reader to verify that the Nevanlinna function
τ(·) in (4.22) satisfies the conditions (4.7). Hence by [29, 52, 54] there
exists a separable Hilbert space G, a densely defined closed simple
symmetric operator T in G and a boundary triplet ΠT = {C

2,Υ0,Υ1}
for T ∗ such that τ(·) is the corresponding Weyl function. Here G, T
and ΠT = {C

2,Υ0,Υ1} can be explicitly described. Indeed, as Hilbert
space G we choose L2((−∞, xl) ∪ (xr,∞)) and frequently we identify
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this space with L2((−∞, xl)) ⊕ L2((xr,∞)). An element g ∈ G will
be written in the form g = gl ⊕ gr, where gl ∈ L2((−∞, xl)) and
gr ∈ L2((xr,∞)). The operator T in G is defined by

(Tg)(x) :=

(
−1

2
d
dx

1
ml

d
dxgl(x) + vlgl(x) 0

0 −1
2

d
dx

1
mr

d
dxgr(x) + vrgr(x)

)
,

dom(T ) :=

{
g = gl ⊕ gr ∈ G :

g ∈W 2
2 ((−∞, xl)) ⊕W 2

2 ((xr,∞))
gl(xl) = gr(xr) = g′l(xl) = g′r(xl) = 0

}
,

and it is well-known that T is a densely defined closed simple symmetric
operator in G with deficiency indices n+(T ) = n−(T ) = 2. The adjoint
operator T ∗ is given by

(T ∗g)(x) =

(
−1

2
d
dx

1
ml

d
dxgl(x) + vlgl(x) 0

0 −1
2

d
dx

1
mr

d
dxgr(x) + vrgr(x)

)
,

dom(T ∗) =
{
g = gl ⊕ gr ∈ G : W 2

2 ((−∞, xl)) ⊕W 2
2 ((xr,∞))

}
.

We leave it to the reader to check that ΠT = {C
2,Υ0,Υ1}, where

Υ0g :=

(
gl(xl)
gr(xr)

)
and Υ1g :=

(
− 1

2ml
g′l(xl)

1
2mr

g′r(xr)

)
,

g = gl ⊕ gr ∈ dom(T ∗), is a boundary triplet for T ∗. Notice that
T0 = T ∗ ↾ ker(Υ0) is the restriction of T ∗ to the domain

dom(T0) =
{
g ∈ dom(T ∗) : gl(xl) = gr(xr) = 0

}
,

that is, T0 corresponds to Dirichlet boundary conditions. It is not diffi-
cult to see that σ(T0) = [min{vl, vr},∞) and hence the Weyl function
of ΠT = {C

2,Υ0,Υ1} is holomorphic on C\[min{vl, vr},∞).

LEMMA 4.12. Let T ⊂ T ∗ and ΠT = {C
2,Υ0,Υ1} be as above. Then

the corresponding Weyl function coincides with τ(·) in (4.22).

Proof. A straightforward calculation shows that

hl,λ(x) :=
i√

2ml(λ− vl)
exp

{
−i
√

2ml(λ− vl)(x− xl)

}

belongs to L2((−∞, xl)) for λ ∈ C\[vl,∞) and satisfies

−1

2

d

dx

1

ml

d

dx
hl,λ(x) + vlhl,λ(x) = λhl,λ(x).
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Analogously the function

kr,λ(x) :=
i√

2ml(λ− vr)
exp

{
i
√

2mr(λ− vr)(x− xr)

}

belongs to L2((xr,∞)) for λ ∈ C\[vr,∞) and satisfies

−1

2

d

dx

1

mr

d

dx
kr,λ(x) + vrkr,λ(x) = λkr,λ(x).

Therefore the functions

hλ := hl,λ ⊕ 0 and kλ := 0 ⊕ kr,λ

belong to G and we have ker(T ∗ − λ) = sp{hλ, kλ}.
As the Weyl function τ̂ (·) associated with T and ΠT = {C

2,Υ0,Υ1}
is defined by

Υ1gλ = τ̂ (λ)Υ0gλ for all gλ ∈ ker(T ∗ − λ),

λ ∈ C\[min{vl, vr},∞), we conclude from

Υ1hλ =
1

2

(
− 1

ml

0

)
and Υ0hλ =

( i√
2ml(λ−vl)

0

)

and

Υ1kλ =
1

2

(
0

− 1
mr

)
and Υ0kλ =

(
0
i√

2mr(λ−vr)

)

that τ̂ has the form (4.22), τ̂(·) = τ(·). 2

Let A, Π = {C
2,Γ0,Γ1} and T , ΠT = {C

2,Υ0,Υ1} be as above.
Then according to Theorem 4.3 the operator

L̃ := A∗ ⊕ T ∗ ↾

{
f ⊕ g ∈ dom(A∗ ⊕ T ∗) :

Γ0f − Υ0g = 0
Γ1f + Υ1g = 0

}
(4.24)

is a self-adjoint extension of A ⊕ T in H ⊕ G. We can identify H ⊕ G

with L2((−∞, xl))⊕L2((xl, xr))⊕L2((xr,∞)) and L2(R). The elements
f ⊕ g in H ⊕ G, f ∈ H, g = gl ⊕ gr ∈ G will be written in the form
gl ⊕f ⊕ gr. The conditions Γ0f = Υ0g and Γ1f = −Υ1g, f ∈ dom(A∗),
g ∈ dom(T ∗), have the form

(
f(xl)
f(xr)

)
=

(
gl(xl)
gr(xr)

)
and




(
1

2mf
′
l

)
(xl)

−
(

1
2mf

′
r

)
(xr)


 =

(
1

2ml
g′(xl)

− 1
2mr

g′(xr)

)
.
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Therefore an element gl ⊕ f ⊕ gr in the domain of (4.24) has the
properties

gl(xl) = f(xl) and f(xr) = gr(xr)

as well as

1

ml
g′l(xl) =

(
1

m
f ′
)

(xl) and

(
1

m
f ′
)

(xr) =
1

mr
g′r(xr)

and the self-adjoint operator L̃ in (4.24) becomes

L̃(gl ⊕ f ⊕ gr) =


−1

2
d
dx

1
ml

d
dxgl + vlgl 0 0

0 −1
2

d
dx

1
m

d
dxf + V f 0

0 0 −1
2

d
dx

1
mr

d
dxgr + vrgr


 .

With the help of (4.20) and (4.21) we see that (4.24) can be regarded
as the usual self-adjoint second order differential operator

L̃ = −1

2

d

dx

1

m̃

d

dx
+ Ṽ

on the maximal domain in L2(R), that is, (4.24) coincides with the
so-called Buslaev-Fomin operator from [11].

Denote by M(·) the Weyl function corresponding to A and the
boundary triplet Π = {C

2,Γ0,Γ1}, cf. (3.33)-(3.34). Since σ(A0) con-
sists of eigenvalues Corollary 4.6 implies that the scattering matrix
{S̃(λ)} of the scattering system {L̃, L0}, L0 = A0 ⊕ T0, is given by

S̃(λ) = IHτ(λ)
− 2iPτ(λ)

√
Im (τ(λ))

(
M(λ) + τ(λ)

)−1
√

Im (τ(λ)) ↾Hτ(λ)

for all λ ∈ ρ(A0) ∩ ΣN , where

Hτ(λ) = ran (Im (τ(λ))) =





{0}, λ ∈ (−∞,min{vl, vr}],
C, λ ∈ (min{vl, vr},max{vl, vr}],
C

2, λ ∈ (max{vl, vr},∞).

The scattering system {L̃, L0} was already investigated in [10, 11].

There it was in particular shown that the scattering matrix {S̃(λ)}
and the characteristic function WA−τ(λ)

(·) of the maximal dissipative

extension A−τ(λ) from (4.23) are connected via

S̃(λ) = WA−τ(λ)
(λ− i0)∗,
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which we here immediately obtain from Corollary 4.6.
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