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SCATTERING MATRICES AND WEYL FUNCTIONS

JUSSI BEHRNDT, MARK M. MALAMUD and HAGEN NEIDHARDT

Abstract

For a scattering system {AΘ, A0} consisting of selfadjoint extensions AΘ and A0 of a symmetric operator A
with finite deficiency indices, the scattering matrix {SΘ(λ)} and a spectral shift function ξΘ are calculated in
terms of the Weyl function associated with a boundary triplet for A∗, and a simple proof of the Krein-Birman
formula is given. The results are applied to singular Sturm-Liouville operators with scalar and matrix potentials,
to Dirac operators and to Schrödinger operators with point interactions.

1. Introduction

Let q ∈ L1
loc(R+) be a real valued function and consider the singular Sturm-Liouville

differential expression − d2

dx2 + q on R+. We assume that − d2

dx2 + q is in the limit point case at
∞ and regular at zero, i.e. the corresponding minimal operator L,

Lf = −f ′′ + qf, dom (L) =
{
f ∈ Dmax : f(0) = f ′(0) = 0

}
, (1.1)

in L2(R+) has deficiency indices (1, 1). Here Dmax denotes the usual maximal domain consisting
of all functions f ∈ L2(R+) such that f and f ′ are absolutely continuous and −f ′′+qf belongs
to L2(R+). It is well-known that the maximal operator is given by the adjoint L∗f = −f ′′+qf ,
dom (L∗) = Dmax, and that all selfadjoint extensions of L in L2(R+) can be parameterized in
the form

LΘ = L∗ ↾ dom (LΘ), dom (LΘ) =
{
f ∈ Dmax : f ′(0) = Θf(0)

}
, Θ ∈ R ∪ {∞},

where Θ = ∞ corresponds to the Dirichlet boundary condition f(0) = 0.
Since the deficiency indices of L are (1, 1) the pair {LΘ, L∞}, Θ ∈ R, performs a complete

scattering system, that is, the wave operators

W±(LΘ, L∞) = s− lim
t→±∞

eitLΘe−itL∞P ac(L∞)

exist and their ranges coincide with the absolutely continuous subspace of LΘ, cf. [6, 26, 35,
39]. Here P ac(L∞) denotes the orthogonal projection onto the absolutely continuous subspace
of L∞. The scattering operator

SΘ = W+(LΘ, L∞)∗W−(LΘ, L∞)

commutes with the absolutely continuous part of L∞ and therefore SΘ is unitarily equivalent
to a multiplication operator induced by a family {SΘ(λ)} of unitary operators in the spectral
representation of L∞. This family is usually called the scattering matrix of the scattering
system {LΘ, L∞} and is one of the most important quantities in the analysis of scattering
processes.

A spectral representation of the selfadjoint realizations of − d2

dx2 + q and in particular of L∞
has been obtained by H. Weyl in [36, 37, 38], see also [30, 31]. More precisely, if ϕ(·, λ) and
ψ(·, λ) are the fundamental solutions of −u′′ + qu = λu satisfying

ϕ(0, λ) = 1, ϕ′(0, λ) = 0 and ψ(0, λ) = 0, ψ′(0, λ) = 1,
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then there exists a scalar function m such that for each λ ∈ C\R the function

x 7→ ϕ(x, λ) +m(λ)ψ(x, λ), x ∈ R+,

belongs to L2(R+). This so-called Titchmarsh-Weyl function m is a Nevanlinna function which
admits an integral representation

m(λ) = α+

∫∞

−∞

(
1

t− λ
− t

1 + t2

)
dρ(t) (1.2)

with a measure ρ satisfying
∫
(1 + t2)−1dρ(t) < ∞. Since L∞ is unitarily equivalent to the

multiplication operator in L2(R, dρ) the spectral properties of L∞ can be completely described
with the help of the Borel measure ρ, i.e. L∞ is absolutely continuous, singular, continuous or
pure point if and only if ρ is so.

It turns out that the scattering matrix {SΘ(λ)} of the scattering system {LΘ, L∞} and the
Titchmarsh-Weyl function m are connected via

SΘ(λ) =
Θ −m(λ+ i0)

Θ −m(λ+ i0)
(1.3)

for a.e. λ ∈ R with ℑm(m(λ + i0)) 6= 0, cf. Section 5.1. We note that (1.3) seems to be
known to experts. For the special case q = 0 in (1.1) the Titchmarsh-Weyl function is given
by m(λ) = i

√
λ, where

√· is defined on C with a cut along R+ and fixed by ℑm
√
λ > 0 for

λ 6∈ R+ and by
√
λ ≥ 0 for λ ∈ R+. In this case formula (1.3) reduces to

SΘ(λ) =
Θ + i

√
λ

Θ − i
√
λ

for a.e. λ ∈ R+ (1.4)

and can be found in, e.g. [39, §3.1].
The basic aim of the present paper is to generalize the correspondence (1.3) between the

scattering matrix {SΘ(λ)} of {LΘ, L∞} and the Titchmarsh-Weyl function m from above to
scattering systems consisting of a pair of selfadjoint operators, which both are assumed to be
extensions of a symmetric operator with finite deficiency indices, and an abstract analogon of
the function m.

For this we use the concept of so-called boundary triplets and associated Weyl functions
developed in [13, 14]. Namely, if A is a densely defined closed symmetric operator with equal
deficiency indices n±(A) < ∞ in a Hilbert space H and Π = {H,Γ0,Γ1} is a boundary triplet
for A∗, then all selfadjoint extensions AΘ of A in H are labeled by the selfadjoint relations Θ in
the n±(A)-dimensional space H, cf. Section 2.1. The analogon of the Sturm-Liouville operator
L∞ from above is the selfadjoint extension A0 := A∗ ↾ ker(Γ0) corresponding to the selfadjoint
relation {( 0

h ) : h ∈ H}. To the boundary triplet Π one associates a matrix-valued Nevanlinna
function M holomorphic on ρ(A0) which admits an integral representation of the form (1.2)
with a matrix-valued measure closely connected with the spectral measure of A0, see e.g. [2].
This function M is the abstract analogon of the Titchmarsh-Weyl function m from above and
is called the Weyl function corresponding to the boundary triplet Π, cf. Section 2.2.

Since A is assumed to be a symmetric operator with finite deficiency indices the pair
{AΘ, A0}, where Θ is an arbitrary selfadjoint relation in H, is a complete scattering system
with a corresponding scattering matrix {SΘ(λ)}. Our main result is Theorem 3.8, which states
that the direct integral L2(R, µL,Hλ) performs a spectral representation of the absolutely
continuous part Aac

0 of A0 such that the scattering matrix {SΘ(λ)} of the scattering system
{AΘ, A0} has the form

SΘ(λ) = IHλ
+ 2i

√
ℑm(M(λ))

(
Θ −M(λ)

)−1√ℑm(M(λ)) (1.5)

for a.e. λ ∈ R, where Hλ := ran (ℑm(M(λ))), M(λ) := M(λ + i0) and µL is the Lebesgue
measure. If the Weyl function is scalar, i.e. the deficiency indices of A are (1, 1), then we
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immediately get (1.3) from (1.5), see also Corollary 3.11. We note that in [1] (see also [4])
V.M. Adamyan and B.S. Pavlov have already obtained a different (unitarily equivalent) expres-
sion for the scattering matrix of a pair of selfadjoint extensions of a symmetric operator with
finite deficiency indices.

We emphasize that the representation (1.5) in terms of the Weyl function of a fixed bound-
ary triplet has several advantages, e.g. for Sturm-Liouville operators with matrix potentials,
Schrödinger operators with point interactions and Dirac operators the high energy asymptotics
of the scattering matrices can be calculated and explicit formulas can be given (see Section 5).
Furthermore, since the difference of the resolvents of AΘ and A0 is a finite rank operator, the
complete scattering system {AΘ, A0} admits a so-called spectral shift function ξΘ, cf. [28] and
e.g. [9, 10]. Recall that ξΘ is a real function summable with weight (1 + λ2)−1 such that the
trace formula

tr
(
(AΘ − z)−1 − (A0 − z)−1

)
= −

∫
R

1

(λ− z)2
ξΘ(λ) dλ

is valid for z ∈ C\R. The spectral shift function is determined by the trace formula up to a
real constant. Under the assumption that Θ is a selfadjoint matrix, we show that the spectral
shift function of {AΘ, A0} is given (up to a real constant) by

ξΘ(λ) =
1

π
ℑm

(
tr (log(M(λ+ i0) − Θ))

)
for a.e. λ ∈ R,

see Theorem 4.1 and [29] for the case n = 1. With this choice of ξΘ and the representation
(1.5) of the scattering matrix {SΘ(λ)} it is easy to prove an analogon of the Birman-Krein
formula (see [8])

det(SΘ(λ)) = exp
(
−2πiξΘ(λ)

)
for a.e. λ ∈ R

for scattering systems {AΘ, A0} consisting of selfadjoint extensions of a symmetric operator
with finite deficiency indices.

The paper is organized as follows. In Section 2 we briefly recall the notion of boundary triplets
and associated Weyl functions and review some standard facts. Section 3 is devoted to the
study of scattering systems {AΘ, A0} consisting of selfadjoint operators which are extension of
a densely defined closed simple symmetric operator A with finite deficiency indices. After some
preparations we prove the representation (1.5) of the scattering matrix {SΘ(λ)} in Theorem 3.8.
Section 4 is concerned with the spectral shift function and the Birman-Krein formula. In
Section 5 we apply our general result to singular Sturm-Liouville operators with scalar and
matrix potentials, to Dirac operators and to Schrödinger operators with point interactions.
Finally, for the convenience of the reader we repeat some basic facts on direct integrals and
spectral representations in the appendix, thus making our exposition self-contained.

Notations. Throughout the paper H and H denote separable Hilbert spaces with scalar
product (·, ·). The linear space of bounded linear operators defined from H to H is denoted by
[H,H]. For brevity we write [H] instead of [H,H]. The set of closed operators in H is denoted
by C(H). By C̃(H) we denote the set of closed linear relations in H. Observe that C(H) ⊆ C̃(H).
The resolvent set and the spectrum of a linear operator or relation are denoted by ρ(·) and
σ(·), respectively. The domain, kernel and range of a linear operator or relation are denoted by
dom (·), ker(·) and ran (·), respectively. By B(R) we denote the Borel sets of R. The Lebesgue
measure on B(R) is denoted by µL(·).
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2. Extension theory of symmetric operators

2.1. Boundary triplets and closed extensions

Let A be a densely defined closed symmetric operator with equal (possibly infinite) deficiency
indices n±(A) = dimker(A∗ ∓ i) in the separable Hilbert space H. We use the concept of
boundary triplets for the description of the closed extensions AΘ ⊂ A∗ of A in H, see [12, 13,
14, 25].

Definition 2.1. A triplet Π = {H,Γ0,Γ1} is called boundary triplet for the adjoint
operator A∗ if H is a Hilbert space and Γ0,Γ1 : dom (A∗) → H are linear mappings such
that

(i) the abstract second Green’s identity,

(A∗f, g) − (f,A∗g) = (Γ1f,Γ0g) − (Γ0f,Γ1g),

holds for all f, g ∈ dom (A∗) and
(ii) the mapping Γ := (Γ0,Γ1)

⊤ : dom (A∗) −→ H×H is surjective.

We refer to [13] and [14] for a detailed study of boundary triplets and recall only some
important facts. First of all a boundary triplet Π = {H,Γ0,Γ1} for A∗ exists since the deficiency
indices n±(A) of A are assumed to be equal. Then necessarily n±(A) = dimH holds. We note
that a boundary triplet for A∗ is not unique.

An operator Ã is called a proper extension of A if Ã is closed and satisfies A ⊆ Ã ⊆ A∗. Note
that here A is a proper extension of itself. In order to describe the set of proper extensions
of A with the help of a boundary triplet Π = {H,Γ0,Γ1} for A∗ we have to consider the set
C̃(H) of closed linear relations in H, that is, the set of closed linear subspaces of H ⊕ H. A
closed linear operator in H is identified with its graph, so that the set C(H) of closed linear
operators in H is viewed as a subset of C̃(H). For the usual definitions of the linear operations
with linear relations, the inverse, the resolvent set and the spectrum we refer to [15]. Recall
that the adjoint relation Θ∗ ∈ C̃(H) of a linear relation Θ in H is defined as

Θ∗ :=

{(
k
k′

)
: (k, h′) = (k′, h) for all

(
h
h′

)
∈ Θ

}
(2.1)

and Θ is said to be symmetric (selfadjoint) if Θ ⊆ Θ∗ (resp. Θ = Θ∗). Note that definition
(2.1) extends the definition of the adjoint operator.

With a boundary triplet Π = {H,Γ0,Γ1} for A∗ one associates two selfadjoint extensions of
A defined by

A0 := A∗ ↾ ker(Γ0) and A1 := A∗ ↾ ker(Γ1).

A description of all proper (closed symmetric, selfadjoint) extensions of A is given in the next
proposition. Note also that the selfadjointness of A0 and A1 is an immediate consequence of
Proposition 2.2 (ii).

Proposition 2.2. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the mapping

Θ 7→ AΘ := A∗ ↾ Γ−1Θ =
{
f ∈ dom (A∗) : Γf = (Γ0f,Γ1f)⊤ ∈ Θ

}
(2.2)

establishes a bijective correspondence between the set C̃(H) and the set of proper extensions
of A. Moreover, for Θ ∈ C̃(H) the following assertions hold.

(i) (AΘ)∗ = AΘ∗ .
(ii) AΘ is symmetric (selfadjoint) if and only if Θ is symmetric (resp. selfadjoint).
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(iii) AΘ is disjoint with A0, that is dom (AΘ)∩dom (A0) = dom (A), if and only if Θ ∈ C(H).
In this case the extension AΘ in (2.2) is given by

AΘ = A∗ ↾ ker
(
Γ1 − ΘΓ0

)
.

In the following we shall often be concerned with simple symmetric operators. Recall that a
symmetric operator is said to be simple if there is no nontrivial subspace which reduces it to
a selfadjoint operator. By [27] each symmetric operator A in H can be written as the direct
orthogonal sum Â⊕As of a simple symmetric operator Â in the Hilbert space

Ĥ = clospan
{
ker(A∗ − λ) : λ ∈ C\R

}

and a selfadjoint operator As in H⊖ Ĥ. Here clospan{·} denotes the closed linear span of a set.
Obviously, A is simple if and only if Ĥ coincides with H.

2.2. Weyl functions and resolvents of extensions

Let, as in Section 2.1, A be a densely defined closed symmetric operator in H with equal
deficiency indices. If λ ∈ C is a point of regular type of A, i.e. (A−λ)−1 is bounded, we denote
the defect subspace of A by Nλ = ker(A∗ − λ). The following definition can be found in [12,
13, 14].

Definition 2.3. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and A0 = A∗ ↾ ker(Γ0).
The functions γ(·) : ρ(A0) → [H,H] and M(·) : ρ(A0) → [H] defined by

γ(λ) :=
(
Γ0 ↾ Nλ

)−1
and M(λ) := Γ1γ(λ), λ ∈ ρ(A0), (2.3)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary triplet
Π.

It follows from the identity dom (A∗) = ker(Γ0) +̇Nλ, λ ∈ ρ(A0), where A0 = A∗ ↾ ker(Γ0)
as above, that the γ-field γ(·) in (2.3) is well defined. It is easily seen that both γ(·) and M(·)
are holomorphic on ρ(A0). Moreover, the relations

γ(µ) =
(
I + (µ− λ)(A0 − µ)−1

)
γ(λ), λ, µ ∈ ρ(A0), (2.4)

and

M(λ) −M(µ)∗ = (λ− µ)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.5)

are valid (see [13]). The identity (2.5) yields that M(·) is a Nevanlinna function, that is, M(·)
is holomorphic on C\R and has values in [H], M(λ) = M(λ)∗ for all λ ∈ C\R and ℑm(M(λ))
is a nonnegative operator for all λ in the upper half plane C+ = {λ ∈ C : ℑmλ > 0}. Moreover,
it follows from (2.5) that 0 ∈ ρ(ℑm(M(λ))), λ ∈ C\R, holds. It is important to note that if
the operator A is simple, then the Weyl function M(·) determines the pair {A,A0} uniquely
up to unitary equivalence, cf. [12, 13].

In the case that the deficiency indices n+(A) = n−(A) are finite the Weyl function M corre-
sponding to Π = {H,Γ0,Γ1} is a matrix-valued Nevanlinna function in the finite dimensional
space H. From [16, 18] one gets the existence of the (strong) limit

M(λ+ i0) = lim
ǫ→+0

M(λ+ iǫ)

from the upper half-plane for a.e. λ ∈ R.
Let now Π = {H,Γ0,Γ1} be a boundary triplet for A∗ with γ-field γ(·) and Weyl function

M(·). The spectrum and the resolvent set of a proper (not necessarily selfadjoint) extension of A
can be described with the help of the Weyl function. If AΘ ⊆ A∗ is the extension corresponding
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to Θ ∈ C̃(H) via (2.2), then a point λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(AΘ), i = p, c, r) if and
only if 0 ∈ ρ(Θ−M(λ)) (resp. 0 ∈ σi(Θ−M(λ)), i = p, c, r). Moreover, for λ ∈ ρ(A0)∩ ρ(AΘ)
the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ −M(λ)

)−1
γ(λ)∗ (2.6)

holds. Formula (2.6) is a generalization of the known Krein formula for canonical resolvents.
We emphasize that it is valid for any proper extension of A with a nonempty resolvent set. It is
worth noting that the Weyl function can also be used to investigate the absolutely continuous
and singular continuous spectrum of extensions of A, cf. [11].

3. Scattering matrix and Weyl function

Let in the following A be a densely defined closed symmetric operator with equal deficiency
indices n+(A) = n−(A) in the separable Hilbert space H. Let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ and let γ(·) andM(·) be the corresponding γ-field and Weyl function, respectively.
The selfadjoint extension A∗ ↾ ker(Γ0) of A is denoted by A0. Let AΘ be an arbitrary selfadjoint
extension of A in H corresponding to the selfadjoint relation Θ ∈ C̃(H) via (2.2), that is,
AΘ = A∗ ↾ Γ−1Θ.

Later in this section we will assume that the deficiency indices of A are finite. In this case
the wave operators

W±(AΘ, A0) := s− lim
t→±∞

eitAΘe−itA0P ac(A0),

exist and are complete, where P ac(A0) denotes the orthogonal projection onto the absolutely
continuous subspace Hac(A0) of A0. Completeness means that the ranges of W±(AΘ, A0)
coincide with the absolutely continuous subspace Hac(AΘ) of AΘ, cf. [6, 26, 35, 39]. The
scattering operator SΘ of the scattering system {AΘ, A0} is then defined by

SΘ := W+(AΘ, A0)
∗W−(AΘ, A0). (3.1)

Since the scattering operator regarded as an operator in Hac(A0) is unitary and commutes
with the absolutely continuous part Aac

0 := A0 ↾ dom (A0) ∩ Hac(A0) of A0 it follows that
SΘ is unitarily equivalent to a multiplication operator induced by a family {SΘ(λ)} of unitary
operators in a spectral representation of Aac

0 , see [6, Proposition 9.57]. The aim of this section is
to compute this so-called scattering matrix {SΘ(λ)} of the complete scattering system {AΘ, A0}
in a suitable chosen spectral representation of Aac

0 in terms of the Weyl function M(·) and the
extension parameter Θ, see Theorem 3.8.

For this purpose we introduce the identification operator

J := −(AΘ − i)−1(A0 − i)−1 ∈ [H] (3.2)

and we set

B := Γ0(AΘ + i)−1 and C := Γ1(A0 − i)−1. (3.3)

Lemma 3.1. Let A be a densely defined closed symmetric operator in the separable Hilbert
space H and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Let A0 = A∗ ↾ ker(Γ0) and let
AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. Then we have

AΘJf − JA0f = (AΘ − i)−1f − (A0 − i)−1f, f ∈ dom (A0),

and the factorization

(AΘ − i)−1 − (A0 − i)−1 = B∗C (3.4)

holds, where B and C are given by (3.3).
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Proof. The first assertion follows immediately. Let us prove the factorization (3.4). If γ(·)
and M(·) denote the γ-field and Weyl function, respectively, corresponding to the boundary
triplet Π, then the resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ −M(λ)

)−1
γ(λ)∗ (3.5)

holds for all λ ∈ ρ(AΘ) ∩ ρ(A0), cf. (2.6). Applying the operator Γ0 to (3.5), using (3.3),
A0 = A∗ ↾ ker(Γ0) and the relation Γ0γ(−i) = IH we obtain

B = Γ0(AΘ + i)−1 = Γ0(A0 + i)−1 + Γ0γ(−i)
(
Θ −M(−i)

)−1
γ(i)∗

=
(
Θ −M(−i)

)−1
γ(i)∗.

Hence Θ = Θ∗ and M(−i)∗ = M(i) imply

B∗ = γ(i)
(
Θ −M(i)

)−1
. (3.6)

Similarly, setting A1 := A∗ ↾ ker(Γ1) we get from the resolvent formula (3.5)

(A1 − i)−1 = (A0 − i)−1 − γ(i)M(i)−1γ(−i)∗.
On the other hand, by the definition of the Weyl function Γ1γ(i) = M(i) holds. Therefore we
obtain

C = Γ1(A0 − i)−1 = γ(−i)∗ and C∗ = γ(−i). (3.7)

Combining (3.5) with (3.6) and (3.7) we obtain the factorization (3.4).

Lemma 3.2. Let A be a densely defined closed symmetric operator in the separable Hilbert
space H, let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and let M(·) be the corresponding
Weyl function. Further, let A0 = A∗ ↾ ker(Γ0) and let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a
selfadjoint extension of A. Then the relation

B(AΘ − λ)−1B∗ =
1

1 + λ2

((
Θ −M(λ)

)−1 −
(
Θ −M(i)

)−1)− 1

λ+ i
ℑm
(
Θ −M(i)

)−1

holds for all λ ∈ C\{R ∪ ±i}, where B is given by (3.3).

Proof. By (3.3) we have

B(AΘ − λ)−1B∗ = Γ0

{
Γ0(AΘ + i)−1(AΘ − λ)−1(AΘ − i)−1

}∗
.

It follows from the resolvent formula (3.5) that

Γ0(AΘ − µ)−1 =
(
(Θ −M(µ)

)−1
γ(µ)∗

holds for all µ ∈ C\R. Combining this formula with the identity

(AΘ + i)−1(AΘ − λ)−1(AΘ − i)−1 =

1

λ
2

+ 1

{
(AΘ − λ)−1 − (AΘ + i)−1

}
− 1

2i(λ− i)

{
(AΘ − i)−1 − (AΘ + i)−1

}

we obtain

B(AΘ − λ)−1B∗ = Γ0

{
1

λ
2

+ 1

((
Θ −M(λ)

)−1
γ(λ)∗ −

(
Θ −M(−i)

)−1
γ(i)∗

)

− 1

2i(λ− i)

((
Θ −M(i)

)−1
γ(−i)∗ −

(
Θ −M(−i)

)−1
γ(i)∗

)}∗

.

Calculating the adjoint and making use of Γ0γ(µ) = IH, µ ∈ C\R, and the symmetry property
M(λ) = M(λ)∗ the assertion of Lemma 3.2 follows.
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From now on for the rest of this section it will be assumed that both deficiency indices
n+(A) = n−(A) of the symmetric operator A are finite, n±(A) <∞. In this case the dimension
of the Hilbert space H in the boundary triplet Π = {H,Γ0,Γ1} is also finite and coincides
with the number n±(A). Let again A0 = A∗ ↾ ker(Γ0) and J , B and C as in (3.2) and (3.3),
respectively. Then the operators BJ and C are finite dimensional and hence the linear manifold

M := span
{
ran (P ac(A0)J

∗B∗), ran (P ac(A0)C
∗)
}
⊆ H

ac(A0) (3.8)

is finite dimensional. Therefore there is a spectral core ∆0 ⊆ σac(A0) of the selfadjoint operator
Aac

0 := A0 ↾ dom (A0) ∩ Hac(A0) such that M is a spectral manifold, cf. Appendix A. The
spectral measure of A0 will be denoted by E0. We equip M with the semi-scalar products

(f, g)E0,λ =
d

dλ
(E0(λ)f, g), f, g ∈ M, λ ∈ ∆0,

and define the finite dimensional Hilbert spaces M̂λ by

M̂λ := M/ ker(‖ · ‖E0,λ), λ ∈ ∆0, (3.9)

where ‖ · ‖E0,λ is the semi-norm induced by the semi-scalar product (·, ·)E0,λ, see Appendix A.
Further, in accordance with Appendix A we introduce the linear subset Dλ ⊆ Hac(A0), λ ∈ R,
with the semi-norm [·]E0,λ given by (A.2). By factorization and completion of Dλ with respect
to the semi-norm [·]E0,λ we obtain the Banach space

D̂λ := clo[·]E0,λ

(
Dλ/ ker([·]E0,λ)

)
, λ ∈ R,

where clo[·]E0,λ
denotes the completion with respect to [·]E0,λ. By Dλ : Dλ → D̂λ we denote

the canonical embedding operator. From M ⊆ Dλ, λ ∈ ∆0, we have DλM ⊆ D̂λ. Moreover,
since M is a finite dimensional spectral manifold DλM coincides with the Hilbert space M̂λ

for every λ ∈ ∆0, cf. Appendix A.
Following [6, §18.1.4] we introduce the linear operators FBJ(λ) and FC(λ) for every λ ∈ ∆0

by

FBJ (λ) := DλP
ac(A0)J

∗B∗ ∈ [H,M̂λ] (3.10)

and

FC(λ) := DλP
ac(A0)C

∗ ∈ [H,M̂λ].

Lemma 3.3. Let A be a densely defined closed symmetric operator with finite deficiency
indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary triplet for A∗

and let M(·) be the corresponding Weyl function. Further, let A0 = A∗ ↾ ker(Γ0) and let
AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. Then

FBJ (λ) = −FC(λ)

{
1

λ+ i
ℑm
(
Θ −M(i)

)−1
+

1

1 + λ2

(
Θ −M(i)

)−1
}

and M̂λ = ranFC(λ) holds for all λ ∈ ∆0.

Proof. Inserting J from (3.2) into (3.10) we find

FBJ (λ) = −DλP
ac(A0)(A0 + i)−1(AΘ + i)−1B∗.

For f ∈ Hac(A0) Lemma A.3 implies Dλ(A0 + i)−1f = (λ+ i)−1Dλf and therefore

FBJ(λ) = − (λ+ i)−1DλP
ac(A0)(AΘ + i)−1B∗

= − (λ+ i)−1DλP
ac(A0)

(
(AΘ + i)−1 − (A0 + i)−1

)
B∗

− (λ+ i)−1DλP
ac(A0)(A0 + i)−1B∗.

(3.11)
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By (2.5) we have 2iγ(i)∗γ(i) = M(i) −M(−i). Taking this identity into account we obtain
from (3.5), (3.6) and (3.7)

(
(AΘ + i)−1 − (A0 + i)−1

)
B∗ = γ(−i)

(
Θ −M(−i)

)−1
γ(i)∗γ(i)

(
Θ −M(i)

)−1

= C∗(Θ −M(−i)
)−1ℑm(M(i))

(
Θ −M(i)

)−1

= C∗ ℑm
(
Θ −M(i)

)−1
.

(3.12)

On the other hand, by (2.4) we have γ(i) = (A0 + i)(A0− i)−1γ(−i) and this identity combined
with (3.7) and (3.6) yields

B∗ = (A0 + i)(A0 − i)−1C∗(Θ −M(i)
)−1

. (3.13)

Inserting (3.12) and (3.13) into (3.11) and making use of (3.7), Lemma A.3 and the definition
of FC(λ) we obtain

FBJ (λ) = − (λ+ i)−1DλP
ac(A0)C

∗ℑm
(
Θ −M(i)

)−1

− (λ2 + 1)−1DλP
ac(A0)C

∗(Θ −M(i)
)−1

= − FC(λ)

{
1

λ+ i
ℑm
(
Θ −M(i)

)−1
+

1

1 + λ2

(
Θ −M(i)

)−1
}

for all λ ∈ ∆0. Therefore ranFBJ (λ) ⊆ ranFC(λ) and since M̂λ is finite dimensional we have

M̂λ = DλM = span
{
ranFBJ (λ), ranFC(λ)

}
= ranFC(λ), λ ∈ ∆0,

cf. Appendix A. This completes the proof of Lemma 3.3.

In the next lemma we show that the spectral manifold M defined by (3.8) is generating with
respect to Aac

0 if the symmetric operator A is assumed to be simple (cf. Section 2.1 and (A.1)).
Recall that B(R) denotes the set of all Borel subsets of the real axis.

Lemma 3.4. Let A be a densely defined closed symmetric operator in the separable Hilbert
space H and let A0 be a selfadjoint extension of A with spectral measure E0(·). If A is simple,
then the condition

Hac(A0) = clospan
{
E0(∆)f : ∆ ∈ B(R), f ∈ M

}
(3.14)

is satisfied.

Proof. Since A is assumed to be simple we have H = clospan{Nλ : λ ∈ C\R}, where
Nλ = ker(A∗ − λ). Hence

H
ac(A0) = clospan

{
P ac(A0)Nλ : λ ∈ C\R

}
.

From C∗ = γ(−i) we find P ac(A0)N−i ⊂ M and by (2.4) we have

Nλ = (A0 + i)(A0 − λ)−1N−i,

which yields

Nλ ⊆ clospan
{
E0(∆)ran (C∗) : ∆ ∈ B(R)

}

for λ ∈ C\R. Therefore

P ac(A0)Nλ ⊆ clospan
{
E0(∆)P ac(A0)ran (C∗) : ∆ ∈ B(R)

}
⊆ H

ac(A0)

for λ ∈ C\R. Since Hac(A0) = clospan{P ac(A0)Nλ : λ ∈ C\R} holds we find

H
ac(A0) = clospan{E0(∆)P ac(A0)ran (C∗) : ∆ ∈ B(R)}

which proves relation (3.14).
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Let L2(∆0, µL,M̂λ,SM) be the direct integral representation L2(∆0, µL,M̂λ,SM) of Hac(A0)

with respect to the absolutely continuous part Aac
0 of A0, where M̂λ, λ ∈ ∆0, is defined by (3.9),

µL is the Lebesgue measure and SM is the admissible system from Lemma A.2, see Appendix A.
We recall that in this representation Aac

0 is unitarily equivalent to the multiplication operator
M ,

(Mf̂ )(λ) := λf̂(λ), f̂ ∈ dom (M),

where

dom (M) :=
{
f̂ ∈ L2(∆0, µL,M̂λ,SM) : λ 7→ λf̂(λ) ∈ L2(∆0, µL,M̂λ,SM)

}
.

Since the scattering operator SΘ (see (3.1)) of the scattering system {AΘ, A0} commutes with
A0 and Aac

0 Proposition 9.57 of [6] implies that there exists a family {ŜΘ(λ)}λ∈∆0
of unitary

operators in {M̂λ}λ∈∆0
such that the scattering operator SΘ is unitarily equivalent to the

multiplication operator ŜΘ induced by this family in the Hilbert space L2(∆0, µL,M̂λ,SM).
We note that this family is determined up to a set of Lebesgue measure zero and is called the
scattering matrix. The scattering matrix defines the scattering amplitude {T̂Θ(λ)}λ∈∆0

by

T̂Θ(λ) := ŜΘ(λ) − IcMλ
, λ ∈ ∆0.

Obviously, the scattering amplitude induces a multiplication operator T̂Θ in the Hilbert space
L2(∆0, µL,M̂λ,SM) which is unitarily equivalent to the T -operator

TΘ := SΘ − P ac(A0). (3.15)

The scattering amplitude is also determined up to a set of Lebesgue measure zero. Making use
of results from [6, §18] we calculate the scattering amplitude of {AΘ, A0} in terms of the Weyl
function M(·) and the parameter Θ. Recall that the limit M(λ+ i0) exists for a.e. λ ∈ R, cf.
Section 2.2.

Theorem 3.5. Let A be a densely defined closed simple symmetric operator with finite
deficiency indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary triplet
for A∗ and let M(·) be the corresponding Weyl function. Further, let A0 = A∗ ↾ ker(Γ0) and
let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. In the spectral representation

L2(∆0, µL,M̂λ, SM) of Aac
0 the scattering amplitude {T̂Θ(λ)}λ∈∆0

of the scattering system
{AΘ, A0} is given by

T̂Θ(λ) = 2πi(1 + λ2)FC(λ)
(
Θ −M(λ+ i0)

)−1
FC(λ)∗ ∈ [M̂λ]

for a.e. λ ∈ ∆0.

Proof. Besides the scattering system {AΘ, A0} and the corresponding scattering operator
SΘ and T -operator TΘ defined in (3.1) and (3.15), respectively, we consider the scattering
system {AΘ, A0, J}, where J is defined by (3.2). The wave operators of {AΘ, A0, J} are defined
by

W±(AΘ, A0; J) := s- lim
t→±∞

eitAΘJe−itA0P ac(A0);

they exist and are complete since A has finite deficiency indices. Note that

W±(AΘ, A0; J) = −(AΘ − i)−1W±(AΘ, A0)(A0 − i)−1

= −W±(AΘ, A0)(A0 − i)−2
(3.16)

holds. The scattering operator SJ and the T -operator TJ of the scattering system {AΘ, A0; J}
are defined by

SJ := W+(AΘ, A0; J)∗W−(AΘ, A0; J)
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and

TJ : = SJ −W+(AΘ, A0; J)∗W+(AΘ, A0; J)

= SJ − (I +A2
0)

−2P ac(A0),
(3.17)

respectively. The second equality in (3.17) follows from (3.16). Since the scattering operator
SΘ commutes with A0 we obtain

SJ = (I +A2
0)

−2SΘ (3.18)

from (3.16). Note that SJ and TJ both commute with A0 and therefore by [6, Proposition 9.57]
there are families {ŜJ (λ)}λ∈∆0

and {T̂J (λ)}λ∈∆0
such that the operators SJ and TJ are

unitarily equivalent to the multiplication operators ŜJ and T̂J induced by these families in
L2(∆0, µL,M̂λ,SM). From (3.1) and (3.17) we obtain

T̂Θ(λ) = ŜΘ(λ) − IcMλ
and T̂J (λ) = ŜJ (λ) − 1

(1 + λ2)2
IcMλ

for λ ∈ ∆0. As (3.18) implies ŜJ (λ) = (1 + λ2)−2ŜΘ(λ), λ ∈ ∆0, we conclude

T̂J (λ) =
1

(1 + λ2)2
T̂Θ(λ), λ ∈ ∆0. (3.19)

In order to apply [6, Corollary 18.9] we have to verify that

lim
ǫ→+0

B(AΘ − λ− iǫ)−1B∗ (3.20)

exists for a.e. λ ∈ ∆0 in the operator norm and that

s− lim
δ→+0

C
(
(A0 − λ− iδ)−1 − (A0 − λ+ iδ)−1

)
f (3.21)

exist for a.e. λ ∈ ∆0 and all f ∈ M, cf. [6, Theorem 18.7 and Remark 18.8], where C is given
by (3.3). Since H is a finite dimensional space it follows from [16, 18] that the (strong) limit

lim
ǫ→+0

(
−
(
Θ −M(λ+ iǫ)

)−1
)

=: −
(
Θ −M(λ+ i0)

)−1

of the [H]-valued Nevanlinna function λ 7→ −(Θ−M(λ))−1 exists for a.e. λ ∈ ∆0, cf. Section 2.2.
Combining this fact with Lemma 3.2 we obtain that (3.20) holds. Condition (3.21) is fulfilled
since C is a finite dimensional operator and M is a finite dimensional linear manifold. Hence,
by [6, Corollary 18.9] we have

T̂J(λ) = 2πi
{
−FBJ (λ)FC(λ)∗ + FC(λ)B(AΘ − λ− i0)−1B∗FC(λ)∗

}

for a.e. λ ∈ ∆0. Making use of Lemma 3.3 and Lemma 3.2 we obtain

T̂J (λ) = 2πiFC(λ)

{
1

λ+ i
ℑm
(
Θ −M(i)

)−1
+

1

1 + λ2

(
Θ −M(i)

)−1

+
1

1 + λ2

((
Θ −M(λ+ i0)

)−1 −
(
Θ −M(i)

)−1)

− 1

λ+ i
ℑm
(
Θ −M(i)

)−1

}
FC(λ)∗.

Combining this relation with (3.19) we conclude

1

1 + λ2
T̂Θ(λ) = 2πiFC(λ)

(
Θ −M(λ+ i0)

)−1
FC(λ)∗

for a.e. λ ∈ ∆0 which completes the proof.

In the following we are going to replace the direct integral L2(∆0, µL,M̂λ,SM) by a more
convenient one. To this end we prove the following lemma.
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Lemma 3.6. Let A be a densely defined closed simple symmetric operator with finite
deficiency indices in the separable Hilbert space H and let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ with corresponding Weyl function M(·). Further, let A0 = A∗ ↾ ker(Γ0), let
AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A and let ∆0 be a spectral core of
Aac

0 such that M in (3.8) is a spectral manifold. Then

FC(λ)∗FC(λ) =
1

π(1 + λ2)
ℑm

(
M(λ+ i0)

)
(3.22)

holds for a.e. λ ∈ ∆0.

Proof. Let B and C be as in (3.3) and let ∆0 be a spectral core for Aac
0 such that M

defined by (3.8) is a spectral manifold. By definition of the operator Dλ we have

(FC(λ)∗FC(λ)u, v) =
d

dλ
(E0(λ)C∗u, P ac(A0)C

∗v), u, v ∈ H,
for λ ∈ ∆0. It is not difficult to see that

(E0(τ )C
∗u, P ac(A0)C

∗v) =

∫
τ

d

dλ
(E0(λ)C∗u, P ac(A0)C

∗v) dµL(λ)

=

∫
τ

d

dλ
(E0(λ)C∗u,C∗v) dµL(λ)

holds for all u, v ∈ H and any Borel set τ ⊆ R. Hence, we find

d

dλ
(E0(λ)C∗u, P ac(A0)C

∗v) =
d

dλ
(E0(λ)C∗u,C∗v)

for a.e. λ ∈ ∆0 and u, v ∈ H, which yields

(FC(λ)∗FC(λ)u, v) = lim
δ→+0

1

2πi

({
(A0 − λ− iδ)−1 − (A0 − λ+ iδ)−1

}
C∗u,C∗v

)

for a.e. λ ∈ ∆0 and u, v ∈ H. From C = Γ1(A0 − i)−1 = γ(−i)∗ (see (3.3) and (3.7)) and the
relation Γ1(A0 − λ)−1 = γ(λ)∗, λ ∈ C\R, we obtain

C
{
(A0−λ− iδ)−1 − (A0 − λ+ iδ)−1

}
C∗

=
1

i− λ− iδ

{
γ(−i)∗γ(−i) − γ(λ− iδ)∗γ(−i)

}

− 1

i− λ+ iδ

{
γ(−i)∗γ(−i) − γ(λ+ iδ)∗γ(−i)

}
.

With the help of (2.5) it follows that the right hand side can be written as

1

i− λ− iδ

{
ℑm(M(i)) +

M(−i) −M(λ+ iδ)

i+ λ+ iδ

}

− 1

i− λ+ iδ

{
ℑm(M(i)) +

M(−i) −M(λ− iδ)

i+ λ− iδ

}

and we conclude
(
FC(λ)∗FC(λ)u, v

)
=

1

2πi

1

1 + λ2

(
(M(λ+ i0) −M(λ− i0))u, v

)

for a.e. λ ∈ ∆0 and u, v ∈ H which immediately yields (3.22).

In order to state the main result of this section we introduce the Hilbert spaces L2(∆0, µL,H)
and L2(R, µL,H) of square integrable H-valued functions on the spectral core ∆0 of Aac

0 and
on R, respectively. Note that L2(∆0, µL,H) is a subspace of L2(R, µL,H). Let us define the
family {Hλ}λ∈ΛM of Hilbert spaces Hλ by

Hλ := ran
(
ℑm (M(λ+ i0))

)
⊆ H, λ ∈ ΛM , (3.23)
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where M(λ+ i0) = limǫ→0M(λ+ iǫ) and

ΛM :=
{
λ ∈ R : M(λ+ i0) exists

}
.

We note that Hλ can be trivial, Hλ = {0}, and we recall that R\ΛM has Lebesgue measure
zero. By {Q(λ)}λ∈ΛM we denote the family of orthogonal projections from H onto Hλ. One
easily verifies that the family {Q(λ)}λ∈ΛM is measurable. This family induces an orthogonal
projection Q0,

(Q0f)(λ) := Q(λ)f(λ) for a.e. λ ∈ ∆0, f ∈ L2(∆0, µL,H),

in L2(∆0, µL,H). The range of the projection Q0 is denoted by L2(∆0, µL,Hλ). Similarly, the
family {Q(λ)}λ∈ΛM induces an orthogonal projection Q in the Hilbert space L2(R, µL,H), the
range of Q is denoted by L2(R, µL,Hλ). We note that L2(∆0, µL,Hλ) ⊆ L2(R, µL,Hλ) holds.

Lemma 3.7. Let A be a densely defined closed simple symmetric operator with finite
deficiency indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary triplet
for A∗, A0 = A∗ ↾ ker(Γ0) and let M(·) be the corresponding Weyl function. Furthermore, let
∆0 ⊆ σac(A0) be a spectral core of Aac

0 . Then L2(∆0, µL,Hλ) = L2(R, µL,Hλ) holds.

Proof. Define the set ΛM
0 by

ΛM
0 :=

{
λ ∈ ΛM : Hλ 6= {0}

}
. (3.24)

Then we have to verify that µL(ΛM
0 \∆0) = 0 holds. From (2.5) we obtain

ℑm(M(λ)) = ℑm(λ)γ(λ)∗γ(λ), λ ∈ C+,

and from (2.4) we conclude that ℑm(M(λ)) coincides with

ℑm(λ)γ(i)∗
{
I + (λ+ i)(A0 − λ)−1

}{
I + (λ− i)(A0 − λ)−1

}
γ(i).

Hence we have

ℑm(M(λ)) = ℑm(λ)γ(i)∗(A0 + i)(A0 − λ)−1(A0 − i)(A0 − λ)−1γ(i)

for λ ∈ C+ and if λ tends to R from the upper half-plane we get

ℑm(M(λ)) = π(1 + λ2)
γ(i)∗E0(dλ)γ(i)

dλ

for a.e. λ ∈ R. Here E0(·) is the spectral measure of A0. Hence for any bounded Borel set
τ ∈ B(R) we obtain ∫

τ

1

1 + λ2
ℑm(M(λ)) dµL(λ) = πγ(i)∗Eac

0 (τ )γ(i).

Since ∆0 is a spectral core of Aac
0 one has Eac

0 (∆0) = Eac
0 (R) which implies Eac

0 (R\∆0) = 0
and therefore ∫

R\∆0

1

1 + λ2
ℑm(M(λ)) dµL(λ) = 0.

Hence we have ℑm(M(λ)) = 0 for a.e. λ ∈ R\∆0 and thus Hλ = {0} for a.e. λ ∈ R\∆0.
Consequently µL(ΛM

0 \∆0) = 0 and Lemma 3.7 is proved.

We note that the so-called absolutely continuous closure clac(Λ
M
0 ) of the set ΛM

0 (see (3.24)),

clac(Λ
M
0 ) :=

{
x ∈ R : µL

(
(x− ǫ, x+ ǫ) ∩ ΛM

0

)
> 0 ∀ǫ > 0

}
,

coincides with the absolutely continuous spectrum σac(A0) of A0, cf. [11, Proposition 4.2].
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The following theorem is the main result of this section, we calculate the scattering matrix
of {AΘ, A0} in terms of the Weyl function M(·) and the parameter Θ in the direct integral
L2(R, µL,Hλ).

Theorem 3.8. Let A be a densely defined closed simple symmetric operator with equal
finite deficiency indices in the separable Hilbert space H. Let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ with corresponding Weyl function M(·) and define Hλ = ran (ℑm(M(λ+i0))) as
in (3.23). Further, let A0 = A∗ ↾ ker(Γ0) and let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint
extension of A. Then the following holds:

(i) Aac
0 is unitarily equivalent to the multiplication operator with the free variable in

L2(R, µL,Hλ).
(ii) In the spectral representation L2(R, µL,Hλ) of Aac

0 the scattering matrix {SΘ(λ)}λ∈R

of the scattering system {AΘ, A0} is given by

SΘ(λ) = IHλ
+ 2i

√
ℑm(M(λ))

(
Θ −M(λ)

)−1√ℑm(M(λ)) ∈ [Hλ] (3.25)

for a.e. λ ∈ R, where M(λ) := M(λ+ i0).

Proof. From the polar decomposition of FC(λ) ∈ [H,M̂λ] we obtain a family of partial

isometries V (λ) ∈ [M̂λ,H] defined for a.e. λ ∈ ∆0 which map M̂λ = ranFC(λ) isometrically
onto Hλ such that

V (λ)FC(λ) =
1√

π(1 + λ2)

√
ℑm(M(λ+ i0))

holds for a.e. λ ∈ ∆0, cf. Lemma 3.6. Let us introduce the admissible system

S :=

{
n∑

l=1

αl(λ)V (λ)Jλfl

∣∣∣ fl ∈ M, αl ∈ L∞(∆0, µL), n ∈ N

}
⊆ Xλ∈∆0

Hλ.

Since V (·)SM = S one easily verifies that the operator

V : L2(∆0, µL,M̂λ,SM) −→ L2(∆0, µL,Hλ,S),

(V f̂)(λ) := V (λ)f̂(λ), λ ∈ ∆0,

defines an isometry acting from L2(∆0, µL,M̂λ,SM) onto L2(∆0, µL,Hλ,S) such that the

multiplication operators induced by the independent variable in L2(∆0, µL,M̂λ,SM) and
L2(∆0, µL,Hλ,S) are unitarily equivalent. Hence also L2(∆0, µL,Hλ,S) is a spectral represen-
tation of Aac

0 . In the spectral representation L2(∆0, µL,Hλ,S) the operator TΘ = SΘ−P ac(A0)
is unitarily equivalent to the multiplication operator induced by {TΘ(λ)}λ∈∆0

,

TΘ(λ) = V (λ)T̂Θ(λ)V (λ)∗, λ ∈ ∆0,

in L2(∆0, µL,Hλ,S). Using Theorem 3.5 and Lemma 3.6 we find the representation

TΘ(λ) = 2i
√

ℑm(M(λ+ i0))
(
Θ −M(λ+ i0)

)−1√ℑm(M(λ+ i0))

for a.e. λ ∈ ∆0 and therefore the scattering matrix {SΘ(λ)}λ∈∆0
has the form (3.25).

A straightforward computation shows that L2(∆0, µL,Hλ,S) is equal to the subspace

L2(∆0, µL,Hλ) ⊆ L2(∆0, µL,H).

Taking into account Lemma 3.7 we find L2(∆0, µL,Hλ,S) = L2(R, µL,Hλ) and therefore
L2(R, µL,Hλ) performs a spectral representation of Aac

0 such that the scattering matrix is
given by (3.25).
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Remark 3.9. Note that the scattering matrix {SΘ(λ)} in (3.25) is defined for a.e. λ ∈ R

and not only on a spectral core of A0. In particular, if ℑm(M(λ)) = 0 for some λ ∈ R, then
Hλ = {0} and SΘ(λ) = I{0}. In this case we set detSΘ(λ) = 1.

Remark 3.10. Since the scattering matrix {SΘ(λ)} in (3.25) is determined only up to a set
of Lebesgue measure zero it seems quite natural to choose the representative of the equivalence
class which is defined on the set ΛM ∩ ΛNΘ , where NΘ is defined by NΘ(λ) = (Θ −M(λ))−1

and ΛNΘ denotes the set of real points where the limit NΘ(λ+ i0) exists. We note that NΘ(·)
is an [H]-valued Nevanlinna function and that NΘ(λ+ i0) = (Θ −M(λ+ i0))−1 holds for all
λ ∈ ΛM ∩ ΛNΘ .

Corollary 3.11. Let A, Π, A0 and AΘ be as in Theorem 3.8 and assume, in addition,
that the Weyl function M(·) is of scalar type, i.e. M(·) = m(·)IH with a scalar Nevanlinna
function m(·). Then L2(R, µL,Hλ) performs a spectral representation of Aac

0 such that the
scattering matrix {SΘ(λ)}λ∈R of the scattering system {AΘ, A0} admits the representation

SΘ(λ) = IHλ
+ 2iℑm(m(λ))

(
Θ −m(λ) · IH

)−1 ∈ [Hλ]

for a.e. λ ∈ R. Here Hλ = H if ℑm(m(λ)) 6= 0 and Hλ = {0} otherwise. If, in addition Θ ∈ [H],
then

SΘ(λ) =
(
Θ −m(λ) · IH

)(
Θ −m(λ) · IH

)−1
. (3.26)

for a.e. λ ∈ R with ℑm(m(λ)) 6= 0.

Remark 3.12. It follows from (3.25) that if Θ ∈ [H], then the scattering matrix {SΘ(λ)}
admits the representation

SΘ(λ) =
(
ℑm(M(λ))

)−1/2
S(λ)

(
ℑm(M(λ))

)1/2 ∈ [Hλ] (3.27)

for a.e. λ ∈ R with ℑm(M(λ)) 6= 0, where

S(λ) :=
(
Θ −M(λ− i0)

)(
Θ −M(λ+ i0)

)−1
. (3.28)

Here the operator (ℑm(M(λ)))−1/2 is well defined in Hλ for a.e. λ ∈ R. It is worth noting that
the first (second) factor of S(·) admits a holomorphic continuation to the lower (resp. upper)
half-plane.

If the Weyl functionM(·) = m(·)IH is of scalar type and Θ ∈ [H], then we have SΘ(λ) = S(λ)
and relations (3.27) and (3.28) turn into (3.26). In this case SΘ(·) itself can be factorized such
that both factors can be continued holomorphically into C− and C+, respectively.

4. Spectral shift function

M.G. Krein’s spectral shift function introduced in [28] is an important tool in the spectral
and perturbation theory of selfadjoint operators, in particular scattering theory. A detailed
review on the spectral shift function can be found in e.g. [9, 10]. Furthermore we mention [20,
21, 22] as some recent papers on the spectral shift function and its various applications.

Recall that for any pair of selfadjoint operators H1, H0 in a separable Hilbert space H such
that the resolvents differ by a trace class operator,

(H1 − λ)−1 − (H0 − λ)−1 ∈ S1(H) (4.1)

for some (and hence for all) λ ∈ ρ(H1)∩ρ(H0), there exists a real valued function ξ(·) ∈ L1
loc(R)

which satisfies the conditions

tr
(
(H1 − λ)−1 − (H0 − λ)−1

)
= −

∫
R

1

(t− λ)2
ξ(t) dt, (4.2)
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λ ∈ ρ(H1) ∩ ρ(H0), and ∫
R

1

1 + t2
ξ(t) dt <∞, (4.3)

cf. [9, 10, 28]. Such a function ξ is called a spectral shift function of the pair {H1, H0}. We
emphasize that ξ is not unique, since simultaneously with ξ a function ξ + c, c ∈ R, also
satisfies both conditions (4.2) and (4.3). Note that the converse also holds, namely, any two
spectral shift functions for a pair of selfadjoint operators {H1, H0} satisfying (4.1) differ by a
real constant. We remark that (4.2) is a special case of the general formula

tr (φ(H1) − φ(H0)) =

∫
R

φ′(t) ξ(t) dt,

which is valid for a wide class of smooth functions φ(·). A very large class of such functions
has been described in terms of the Besov classes by V.V. Peller in [32].

In Theorem 4.1 below we find a representation for the spectral shift function ξΘ of a pair of
selfadjoint operators AΘ and A0 which are both assumed to be extensions of a densely defined
closed simple symmetric operator A with finite deficiency indices. For that purpose we use the
definition

log(T ) := −i
∫∞

0

(
(T + it)−1 − (1 + it)−1IH

)
dt (4.4)

for an operator T on a finite dimensional Hilbert space H satisfying ℑm(T ) ≥ 0 and 0 6∈ σ(T ),
see e.g. [20, 33]. A straightforward calculation shows that the relation

det(T ) = exp
(
tr (log(T ))

)
(4.5)

holds. Next we choose a special spectral shift function ξΘ for the pair {AΘ, A0} in terms of the
Weyl function M and the parameter Θ, see also [29] for the case of defect one. Making use
of Theorem 3.8 we give a simple proof of the Birman-Krein formula in our situation, cf. [8].
We note that in Theorem 4.1 Θ is assumed to be a selfadjoint matrix instead of a selfadjoint
relation.

Theorem 4.1. Let A be a densely defined closed simple symmetric operator in the separa-
ble Hilbert space H with finite deficiency indices n±(A) = n, let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ and let M(·) be the corresponding Weyl function. Further, let A0 = A∗ ↾ ker(Γ0)
and let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ [H], be a selfadjoint extension of A. Then the following holds:

(i) The limit limǫ→+0 log(M(λ+ iǫ) − Θ) exists for a.e. λ ∈ R and the function

ξΘ(λ) :=
1

π
ℑm

(
tr(log(M(λ+ i0) − Θ))

)
for a.e. λ ∈ R (4.6)

is a spectral shift function for the pair {AΘ, A0} with 0 ≤ ξΘ(λ) ≤ n.
(ii) The scattering matrix {SΘ(λ)}λ∈R of the pair {AΘ, A0} and the spectral shift function

ξΘ in (4.6) are connected via the Birman-Krein formula

detSΘ(λ) = exp
(
−2πiξΘ(λ)

)
(4.7)

for a.e. λ ∈ R (cf. Remark 3.9).

Proof. (i) Since the function λ 7→ M(λ) − Θ is a Nevanlinna function with values in [H]
and 0 ∈ ρ(ℑm(M(λ)) for all λ ∈ C+, it follows that log(M(λ) − Θ) is well-defined for all
λ ∈ C+ by (4.4). According to [20, Lemma 2.8] the function λ 7→ log(M(λ) − Θ), λ ∈ C+, is
an [H]-valued Nevanlinna function such that

0 ≤ ℑm
(
log(M(λ) − Θ)

)
≤ πIH
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holds for all λ ∈ C+. Hence the limit limǫ→+0 log(M(λ+ iǫ)−Θ) exists for a.e. λ ∈ R (see [16,
18] and Section 2.2) and λ 7→ tr(log(M(λ)−Θ)), λ ∈ C+, is a scalar Nevanlinna function with
the property

0 ≤ ℑm
(
tr(log(M(λ) − Θ))

)
≤ nπ, λ ∈ C+,

that is, the function ξΘ in (4.6) satisfies 0 ≤ ξΘ(λ) ≤ n for a.e. λ ∈ R.
In order to show that (4.2) holds with H1, H0 and ξ replaced by AΘ, A0 and ξΘ, respectively,

we first verify that the relation

d

dλ
tr
(
log(M(λ) − Θ)

)
= tr

(
(M(λ) − Θ)−1 d

dλ
M(λ)

)
(4.8)

is true for all λ ∈ C+. Indeed, for λ ∈ C+ we have

log(M(λ) − Θ) = −i
∫∞

0

(
(M(λ) − Θ + it)−1 − (1 + it)−1IH

)
dt

by (4.4) and this yields

d

dλ
log(M(λ) − Θ) = i

∫∞

0

(M(λ) − Θ + it)−1
(

d
dλM(λ)

)
(M(λ) − Θ + it)−1dt.

Hence we obtain

d

dλ
tr
(
log(M(λ) − Θ)

)
= i

∫∞

0

tr
(
(M(λ) − Θ + it)−2 d

dλM(λ)
)
dt

and since d
dt (M(λ) − Θ + it)−1 = −i(M(λ) − Θ + it)−2 for t ∈ (0,∞) we conclude

d

dλ
tr
(
log(M(λ) − Θ)

)
= −

∫∞

0

d

dt
tr
(
(M(λ) − Θ + it)−1 d

dλM(λ)
)
dt

for all λ ∈ C+, that is, relation (4.8) holds.
From (2.5) we find

γ(µ)∗γ(λ) =
M(λ) −M(µ)∗

λ− µ
, λ, µ ∈ C\R, λ 6= µ, (4.9)

and passing in (4.9) to the limit µ→ λ one gets

γ(λ)∗γ(λ) =
d

dλ
M(λ).

Making use of formula (2.6) for canonical resolvents together with (4.8) this implies

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −tr

(
(M(λ) − Θ)−1γ(λ)∗γ(λ)

)

= − d

dλ
tr
(
log(M(λ) − Θ)

) (4.10)

for all λ ∈ C+.
Further, by [20, Theorem 2.10] there exists an [H]-valued measurable function t 7→ ΞΘ(t),

t ∈ R, such that

ΞΘ(t) = ΞΘ(t)∗ and 0 ≤ ΞΘ(t) ≤ IH

for a.e. λ ∈ R and the representation

log(M(λ) − Θ) = C +

∫
R

ΞΘ(t)
(
(t− λ)−1 − t(1 + t2)−1

)
dt, λ ∈ C+,

holds with some bounded selfadjoint operator C. Hence

tr
(
log(M(λ) − Θ)

)
= tr(C) +

∫
R

tr (ΞΘ(t))
(
(t− λ)−1 − t(1 + t2)−1

)
dt



18 JUSSI BEHRNDT, MARK M. MALAMUD AND HAGEN NEIDHARDT

for λ ∈ C+ and we conclude from

ξΘ(λ) = lim
ǫ→+0

1

π
ℑm

(
tr(log(M(λ+ iǫ) − Θ))

)

= lim
ǫ→+0

1

π

∫
R

tr (ΞΘ(t)) ǫ
(
(t− λ)2 + ǫ2

)−1
dt

that ξΘ(λ) = tr(ΞΘ(λ)) is true for a.e. λ ∈ R. Therefore we have

d

dλ
tr
(
log(M(λ) − Θ)

)
=

∫
R

(t− λ)−2ξΘ(t) dt

and together with (4.10) we immediately get the trace formula

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −

∫
R

1

(t− λ)2
ξΘ(t) dt.

The integrability condition (4.3) holds because of [20, Theorem 2.10]. This completes the proof
of assertion (i).

(ii) To verify the Birman-Krein formula note that by (4.5)

exp
(
−2iℑm

(
tr(log(M(λ) − Θ))

))

= exp
(
−tr(log(M(λ) − Θ))

)
exp
(
tr(log(M(λ) − Θ))

)

=
det(M(λ) − Θ)

det(M(λ) − Θ)
=

det(M(λ)∗ − Θ)

det(M(λ) − Θ)

holds for all λ ∈ C+. Hence we find

exp
(
−2πiξΘ(λ)

)
=

det
(
M(λ+ i0)∗ − Θ

)

det
(
M(λ+ i0) − Θ

) (4.11)

for a.e. λ ∈ R, where M(λ+ i0) := limǫ→+0M(λ+ iǫ) exists for a.e. λ ∈ R. It follows from the
representation of the scattering matrix in (3.25) and the identity det(I +AB) = det(I +BA)
that

detS(λ) = det
(
IH + 2i

(
ℑm(M(λ+ i0))

)(
Θ −M(λ+ i0)

)−1
)

= det
(
IH +

(
M(λ+ i0) −M(λ+ i0)∗

)(
Θ −M(λ+ i0)

)−1
)

= det
((

Θ −M(λ+ i0)∗
)
·
(
Θ −M(λ+ i0)

)−1
)

=
det
(
Θ −M(λ+ i0)∗

)

det
(
Θ −M(λ+ i0)

) (4.12)

holds for a.e. λ ∈ R. Comparing (4.11) with (4.12) we obtain (4.7).

We note that for singular Sturm-Liouville operators a definition for the spectral shift function
similar to (4.6) was already used in [19].

5. Scattering systems of differential operators

In this section the results from Section 3 and Section 4 are illustrated for some classes of
differential operators. In Section 5.1 we consider a Sturm-Liouville differential expression, in
Section 5.2 we investigate Sturm-Liouville operators with matrix potentials satisfying certain
integrability conditions and Section 5.3 deals with scattering systems consisting of Dirac
operators. Finally, Section 5.4 is devoted to Schrödinger operators with point interactions.
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5.1. Sturm-Liouville operators

Let p, q and r be real valued functions on (a, b), −∞ < a < b ≤ ∞, such that p(x) 6= 0 and
r(x) > 0 for a.e. x ∈ (a, b) and p−1, q, r ∈ L1((a, c)) for all c ∈ (a, b). Moreover, we assume
that either b = ∞ or at least one of the functions p−1, q, r does not belong to L1((a, b)). The
Hilbert space of all equivalence classes of measurable functions f defined on (a, b) for which
|f |2r ∈ L1((a, b)) equipped with the usual inner product

(f, g) :=

∫ b

a

f(x)g(x)r(x) dx

will be denoted by L2
r((a, b)). By our assumptions the differential expression

1

r

(
− d

dx

(
p
d

dx

)
+ q

)
(5.1)

is regular at the left endpoint a and singular at the right endpoint b. In addition, we assume
that the limit point case prevails at b, that is, the equation

−(pf ′)′ + qf = λrf, λ ∈ C,

has a unique solution φ(·, λ) (up to scalar multiples) in L2
r((a, b)). We refer to [17, 35] for

sufficient conditions on the coefficients r, p, q such that (5.1) is limit point at b.
In L2

r((a, b)) we consider the operator

(Af)(x) =
1

r(x)

(
−(pf ′)′(x) + q(x)f(x)

)

dom (A) =
{
f ∈ Dmax : f(a) = (pf ′)(a) = 0

}
,

where Dmax denotes the set of all f ∈ L2
r((a, b)) such that f and pf ′ are locally absolutely

continuous and 1
r (−(pf ′)′ + qf) belongs to L2

r((a, b)). It is well known that A is a densely
defined closed simple symmetric operator with deficiency indices (1, 1), see e.g. [17, 35], and
[24] for the fact that A is simple. The adjoint operator A∗ is

(A∗f)(x) =
1

r(x)

(
−(pf ′)′(x) + q(x)f(x)

)
, dom (A∗) = Dmax.

If we choose Π = {C,Γ0,Γ1},
Γ0f := f(a) and Γ1f := (pf ′)(a), f ∈ dom (A∗),

then Π is a boundary triplet for A∗ such that the corresponding Weyl function coincides with
the classical Titchmarsh-Weyl coefficient m(·), cf. [34, 36, 37, 38]. In fact, if ϕ(·, λ) and ψ(·, λ)
denote the fundamental solutions of the differential equation −(pf ′)′ + qf = λrf satisfying

ϕ(a, λ) = 1, (pϕ′)(a, λ) = 0 and ψ(a, λ) = 0, (pψ′)(a, λ) = 1,

then sp {ϕ(·, λ) + m(λ)ψ(·, λ)} = ker(A∗ − λ), λ ∈ C\R, and by applying Γ0 and Γ1 to the
defect elements it follows that m(·) is the Weyl function corresponding to the boundary triplet
Π .

Let us consider the scattering system {AΘ, A0}, where A0 := A∗ ↾ ker(Γ0) and

AΘ = A∗ ↾ ker(Γ1 − ΘΓ0) = A∗ ↾
{
f ∈ dom (A∗) | (pf ′)(a) = Θf(a)

}

for some Θ ∈ R. By Corollary 3.11 the scattering matrix has the form

SΘ(λ) =
Θ −m(λ)

Θ −m(λ)

for a.e. λ ∈ R with ℑm(m(λ + i0)) 6= 0, where m(λ) := m(λ + i0), cf. (1.3). For the special
case r(x) = p(x) = 1 this can also be deduced from results by F. Gesztesy and B. Simon, see
e.g. [23].
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Observe that in the special case A∗ = −d2/dx2, dom (A∗) = W 2
2 (R+), i.e.

r(x) = p(x) = 1, q(x) = 0, a = 0 and b = ∞,

the defect subspaces ker(A∗ − λ), λ ∈ C\R, are spanned by x 7→ ei
√

λx, where the square root
is defined on C with a cut along [0,∞) and fixed by ℑm

√
λ > 0 for λ 6∈ [0,∞) and by

√
λ ≥ 0

for λ ∈ [0,∞). Therefore the Weyl function corresponding to Π is m(λ) = i
√
λ and hence the

scattering matrix of the scattering system {AΘ, A0} is

SΘ(λ) = 1 + 2i
√
λ
(
Θ − i

√
λ
)−1

=
Θ + i

√
λ

Θ − i
√
λ
, λ ∈ R+,

where Θ ∈ R, see [39, §3] and (1.4). In this case the spectral shift function ξΘ(·) of the pair
{AΘ, A0} is given by

ξΘ(λ) =





1 − χ[0,∞)(λ) 1
π arctan

(√
|λ|
Θ

)
, Θ > 0,

1 − 1
2χ[0,∞), Θ = 0,

χ(−∞,−Θ2)(λ) − χ[0,∞)(λ) 1
π arctan

(√
|λ|
Θ

)
, Θ < 0,

(5.2)

for a.e. λ ∈ R.

5.2. Sturm-Liouville operators with matrix potentials

Let Q ∈ L∞(R+, [C
n]) be a matrix valued function such that Q(·) = Q(·)∗ and the functions

x 7→ Q(x) and x 7→ xQ(x) belong to L1(R+, [C
n]). We consider the operator

A = − d2

dx2
+Q, dom (A) =

{
f ∈W 2

2 (R+,C
n) : f(0) = f ′(0) = 0

}
,

in L2(R+,C
n). Then A is a densely defined closed simple symmetric operator with deficiency

indices n±(A) both equal to n and we have A∗ = −d2/dx2 + Q, dom (A∗) = W 2
2 (R+,C

n).
Setting

Γ0f = f(0), Γ1f = f ′(0), f ∈ dom (A∗) = W 2
2 (R+,C

n), (5.3)

we obtain a boundary triplet Π = {Cn,Γ0,Γ1} for A∗. Note that the selfadjoint extension
A0 = A∗ ↾ ker(Γ0) corresponds to Dirichlet boundary conditions at 0,

A0 = − d2

dx2
+Q, dom (A0) =

{
f ∈W 2

2 (R+,C
n) : f(0) = 0

}
. (5.4)

Proposition 5.1. Let A = −d2/dx2 +Q and Π be as above and denote the corresponding
Weyl function by M(·). Then the following holds.

(i) The function M(·) has poles on (−∞, 0) with zero as the only possible accumulation
point. Moreover, M(·) admits a continuous continuation from C+ onto R+ and the
asymptotic relation

M(λ+ i0) = i
√
λ ICn + o(1) as λ = λ̄→ +∞ (5.5)

holds. Here the cut of the square root
√· is along the positive real axis as in Section 5.1.

(ii) If Θ ∈ [Cn] is self-adjoint, then the scattering matrix {SΘ(λ)} of the scattering system
{AΘ, A0} behaves asymptotically like

SΘ(λ) = −ICn + o(1) (5.6)

as λ→ +∞.
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Proof. (i) Since the spectrum of A0 (see (5.4)) is discrete in (−∞, 0) with zero as only
possible accumulation point (and purely absolutely continuous in (0,∞)) it follows that the
Weyl function M(·) has only poles in (−∞, 0) possibly accumulating to zero. To prove the
asymptotic properties of M(·) we recall that under the condition x 7→ xQ(x) ∈ L1(R+, [C

n])
the equation A∗y = λy has an n×n-matrix solution E(·, λ) which solves the integral equation

E(x, λ) = eix
√

λ ICn +

∫∞

x

sin(
√
λ(t− x))√
λ

Q(t)E(t, λ)dt, (5.7)

λ ∈ C+, x ∈ R+, see [5]. By [5, Theorem 1.3.1] the solution E(x, λ) is continuous and uniformly
bounded for λ ∈ C+ and x ∈ R+. Moreover, the derivative E′(x, λ) = d

dxE(x, λ) exists, is
continuous and uniformly bounded for λ ∈ C+ and x ∈ R+, too. From (5.7) we immediately
get the relation

E(0, λ) = ICn +
1√
λ
o(1) as ℜe (λ) → +∞, λ ∈ C+. (5.8)

Since

E′(x, λ) = i
√
λeix

√
λ ICn −

∫∞

x

cos(
√
λ(t− x))Q(t)E(t, λ)dt,

λ ∈ C+, x ∈ R+, we get

E′(0, λ) = i
√
λ In + o(1) as ℜe (λ) → +∞, λ ∈ C+. (5.9)

In particular, the asymptotic relations (5.8) and (5.9) hold as λ → +∞ along the real axis.
Since A∗E(x, λ)ξ = λE(x, λ)ξ, ξ ∈ Cn, one gets

Nλ = ker(A∗ − λ) = {E(·, λ)ξ : ξ ∈ C
n}, λ ∈ C+.

Therefore using expressions (5.3) for Γ0 and Γ1 we obtain

M(λ) = E′(0, λ) · E(0, λ)−1, λ ∈ C+, (5.10)

where the existence of E(0, λ)−1 for λ ∈ C+ ∪ (0,∞) follows from the surjectivity of the map
Γ0 and the fact that the operator A0 has no eigenvalues in (0,∞). Further, by continuity of
E(0, λ) and E′(0, λ) in λ ∈ C+ we conclude that the Weyl function M(·) admits a continuous
continuation to R+. Therefore combining (5.10) with (5.8) and (5.9) we arrive at the asymptotic
relation

M(λ+ i0) = E′(0, λ+ i0) · E(0, λ+ i0)−1 = i
√
λ ICn + o(1)

as λ = λ̄→ +∞ which proves (5.5)
(ii) Let now Θ = Θ∗ ∈ [Cn] and let AΘ = A∗ ↾ ker(Γ1−ΘΓ0) be the corresponding selfadjoint

extension of A,

AΘ = − d2

dx2
+Q, dom (AΘ) =

{
f ∈W 2

2 (R+,C
n) : Θf(0) = f ′(0)

}
,

and consider the scattering system {AΘ, A0}, where A0 is given by (5.4). Combining the formula
for the scattering matrix {SΘ(λ)},

SΘ(λ) = ICn + 2i
√

ℑm(M(λ))
(
Θ −M(λ)

)−1√ℑm(M(λ))

for a.e. λ ∈ R+, from Theorem 3.8 with the asymptotic behaviour (5.5) of the Weyl function
M(·) and a straightforward calculation imply relation (5.6) as λ→ +∞.

We note that with the help of the asymptotic behaviour (5.5) of the Weyl function M(·)
also the asymptotic behaviour of the spectral shift function ξΘ(·) of the pair {AΘ, A0} can be
calculated. The details are left to the reader.
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Remark 5.2. The high energy asymptotic (5.6) is quite different from the one for the
usually considered scattering system {A0, L0}, where A0 is as in (5.4),

L0 = − d2

dx2
, dom (L0) =

{
f ∈W 2

2 (R+,C
n) : f(0) = 0

}
,

and Q is rapidly decreasing. In this case the scattering matrix {S̃(λ)}λ∈R+
obeys the relation

limλ→∞ S̃(λ) = ICn , see [5], whereas by Proposition 5.1 the scattering matrix {SΘ(λ)} of the
scattering system {AΘ, A0}, Θ ∈ [Cn] selfadjoint, satisfies limλ→+∞ SΘ(λ) = −ICn .

Let us now consider the special case Q = 0. Instead of A and A∗ we denote the minimal and
maximal operator by L and L∗ and we choose the boundary triplet Π from (5.3). Then the
defect subspace is

Nλ =
{
x 7→ ei

√
λxξ : ξ ∈ C

n, x ∈ R+

}
, λ ∈ C+ ∪ C−,

and the Weyl function M(·) is given by

M(λ) = i
√
λ · ICn , λ 6∈ R+.

Let LΘ be the selfadjoint extension corresponding to Θ = Θ∗ ∈ C̃(Cn) and let L0 = L∗ ↾ ker Γ0.
By Corollary 3.11 the scattering matrix {SΘ(λ)}λ∈R+

of the scattering system {LΘ, L0} admits
the representation

SΘ(λ) = ICn + 2i
√
λ
(
Θ − i

√
λ · ICn

)−1
for a.e. λ ∈ R+. (5.11)

Moreover, if Θ ∈ [Cn] formula (5.11) directly yields the asymptotic relation

lim
λ→+∞

SΘ(λ) = −ICn .

If, in particular Θ = 0, then LΘ = L∗ ↾ ker(Γ1) is the operator −d2/dx2 subject to Neumann
boundary conditions f ′(0) = 0, and we have SΘ(λ) = −ICn , λ ∈ R+.

We note that the spectral shift function ξΘ(·) of the pair {LΘ, L0} is given by

ξΘ(λ) =

n∑

k=1

ξΘk
(λ) for a.e. λ ∈ R, (5.12)

where Θk, k = 1, 2, . . . , n, are the eigenvalues of Θ = Θ∗ ∈ [Cn] and the functions ξΘk
(·) are

defined by (5.2).

5.3. Dirac operator

Let a > 0 and let A be the symmetric Dirac operator on R defined by

Af =

(
0 −1
1 0

)
d

dx
f +

(
a 0
0 −a

)
f,

dom (A) =
{
f = (f1, f2)

⊤ ∈W 1
2 (R,C2) : f(0) = 0

}
.

The deficiency indices of A are (2, 2) and A∗ is given by

A∗f =

(
0 −1
1 0

)
d

dx
f +

(
a 0
0 −a

)
f,

dom (A∗) = W 1
2 (R−,C

2) ⊕W 1
2 (R+,C

2).

Moreover, setting

Γ0f =

(
f2(0−)
f1(0+)

)
, Γ1f =

(
f1(0−)
f2(0+)

)
, f =

(
f1
f2

)
,
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f1, f2 ∈W 1
2 (R−,C)⊕W 1

2 (R+,C), we obtain a boundary triplet Π = {C2,Γ0,Γ1} for A∗, cf. [11].
Let the square root

√· be defined as in the previous sections and let k(λ) :=
√
λ− a

√
λ+ a,

λ ∈ C. One verifies as in [11] that ker(A∗ − λ), λ ∈ C+, is spanned by the functions

fλ,±(x) :=

(
∓i

√
λ+a√
λ−a

e±ik(λ)x

e±ik(λ)x

)
χR±

(x), x ∈ R, λ ∈ C+,

and hence for λ ∈ C+ the Weyl function M corresponding to the boundary triplet Π is given
by

M(λ) =


i
√

λ+a
λ−a 0

0 i
√

λ−a
λ+a


 , λ ∈ C+. (5.13)

If Θ = Θ∗ is a selfadjoint relation in C2 and AΘ = A∗ ↾ Γ−1Θ is the corresponding extension,

AΘf =

(
0 −1
1 0

)
d

dx
f +

(
a 0
0 −a

)
f,

dom (AΘ) =

{
f =

(
f1
f2

)
∈ dom (A∗) :

(
(f2(0−), f1(0+))⊤

(f1(0−), f2(0+))⊤

)
∈ Θ

}
,

then, according to Theorem 3.8, the scattering matrix {SΘ(λ)}λ∈Ωa
, Ωa := (−∞,−a)∪ (a,∞),

of the Dirac scattering system {AΘ, A0}, A0 = A∗ ↾ ker(Γ0), is given by

SΘ(λ) = IC2 + 2i
√
ℑm(M(λ))

(
Θ −M(λ)

)−1√ℑm(M(λ)) (5.14)

for a.e. λ ∈ Ωa, where

ℑm(M(λ)) =



√
|λ+a
λ−a | 0

0
√
|λ−a
λ+a |


 , λ ∈ Ωa. (5.15)

Note that for λ ∈ (−a, a) we have ℑm(M(λ)) = 0.

Remark 5.3. We note that in the case Θ = Θ∗ ∈ [C2] the parameter Θ, i.e. the boundary
conditions of the perturbed Dirac operator AΘ, can be recovered from the limit of the scattering
matrix SΘ(λ), |λ| → +∞, corresponding to the scattering system {AΘ, A0}. In fact, it follows
from (5.14), (5.15) and (5.13) that

SΘ(∞) := lim
|λ|→+∞

SΘ(λ) = IC2 + 2i
(
Θ − i

)−1

holds. Therefore the extension parameter Θ is given by

Θ = i
(
SΘ(∞) + IC2

)(
SΘ(∞) − IC2

)−1
.

Assume now that Θ =
(

θ1 0
0 θ2

)
, θ1, θ2 ∈ R. Then

dom (AΘ) =

{
f =

(
f1
f2

)
∈ dom (A∗) :

θ1f2(0−) = f1(0−)
θ2f1(0+) = f2(0+)

}

and the scattering matrix {SΘ(λ)}λ∈Ωa
has the form

SΘ(λ) =




θ1+i
q

| λ+a
λ−a

|

θ1−i
q

λ+a
λ−a

0

0
θ2+i

q
|λ−a

λ+a
|

θ2−i
q

λ−a
λ+a


 , λ ∈ Ωa.

In this case the spectral shift function ξΘ of the pair {AΘ, A0} is given by

ξΘ(λ) = ηθ1
(λ) + ηθ2

(λ) for a.e. λ ∈ R,
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where

ηθi
(λ) :=





1 − χΩa
(λ) 1

π arctan

(
1
θi

√∣∣∣λ+a
λ−a

∣∣∣
)
, θi > 0,

1 − 1
2χΩa

(λ), θi = 0,

χ(ϑi,a)(λ) − χΩa
(λ) 1

π arctan

(
1
θi

√∣∣∣λ+a
λ−a

∣∣∣
)
, θi < 0,

i = 1, 2, and the real constants ϑ1, ϑ2 ∈ (−a, a) are given by

ϑ1 = a
θ2
1 − 1

θ2
1 + 1

and ϑ2 = a
1 − θ2

2

1 + θ2
2

.

5.4. Schrödinger operators with point interactions

As a further example we consider the matrix Schrödinger differential expression −∆ +Q in
L2(R3,Cn) with a bounded selfadjoint matrix potential Q(x) = Q(x)∗, x ∈ R3. This expression
determines a minimal symmetric operator

H := −∆ +Q, dom (H) :=
{
f ∈W 2

2 (R3,Cn) : f(0) = 0
}
, (5.16)

in L2(R3,Cn). Observe thatH is closed, since for any x ∈ R3 the linear functional lx : f → f(x)
is bounded in W 2

2 (R3,Cn) due to the Sobolev embedding theorem. Moreover, it is easily seen
that the deficiency indices ofH are n±(H) = n. We note that if Q = 0 the selfadjoint extensions
of H in L2(R3,Cn) are used to model so-called point interactions or singular potentials, see
e.g. [3, 4, 7].

In the next proposition we define a boundary triplet for the adjoint operator H∗. Here for
x = (x1, x2, x3)

⊤ ∈ R
3 we agree to write r := |x| = (x2

1 + x2
2 + x2

3)
1/2.

Proposition 5.4. Let H be the minimal Schrödinger operator (5.16) with a matrix
potential Q = Q∗ ∈ L∞(R3, [Cn]). Then the following assertions hold:

(i) The domain of H∗ = −∆ +Q is given by

dom (H∗) =

{
f ∈ L2(R3,Cn) :

f = ξ0
e−r

r + ξ1 e
−r + fH ,

ξ0, ξ1 ∈ Cn, fH ∈ dom (H)

}
. (5.17)

(ii) A boundary triplet Π = {Cn,Γ0,Γ1} for H∗ is defined by

Γjf := 2
√
π ξj , f = ξ0

e−r

r
+ ξ1 e

−r + fH ∈ dom (H∗), j = 0, 1. (5.18)

(iii) The operator H0 = H∗ ↾ ker(Γ0) is the usual selfadjoint Schrödinger operator −∆ +Q
with domain W 2

2 (R3,Cn).

Proof. (i) Since Q ∈ L∞(R3, [Cn]) the domain of H∗ does not depend on Q. Therefore it
suffices to consider the case Q = 0. Here it is well-known, that

dom (H∗) =
{
f ∈ L2(R3,Cn) ∩W 2

2,loc(R
3\{0},Cn) : ∆f ∈ L2(R3,Cn)

}

holds, see e.g. [3, 4], and this implies that the functions x 7→ e−r/r and x 7→ e−r, where
r = |x| = (x2

1 + x2
2 + x2

3)
1/2, belong to dom (H∗). The linear span of the functions

x 7→ ξ0
e−r

r
+ ξ1e

−r ξ0, ξ1 ∈ C
n,

is a 2n-dimensional subspace in dom (H∗) and the intersection with dom (H) is trivial. Since
dim(dom (H∗)/dom(H)) = 2n it follows that dom (H∗) has the form (5.17).
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(ii) Let f, g ∈ dom (H∗). By assertion (i) we have

f = h+ fH , h = ξ0
e−r

r
+ ξ1 e

−r, and g = k + gH , k = η0
e−r

r
+ η1 e

−r,

with some functions fH , gH ∈ dom (H) and vectors ξ0, ξ1, η0, η1 ∈ Cn. Using polar coordinates
we obtain

(H∗f, g) − (f,H∗g) = (H∗h, k) − (h,H∗k)

= 4π

∫∞

0

(
h(r),

∂

∂r
r2
∂

∂r
k(r)

)

Cn

dr − 4π

∫∞

0

(
∂

∂r
r2
∂

∂r
h(r), k(r)

)

Cn

dr

= 4π

[(
h(r), r2

∂

∂r
k(r)

)

Cn

−
(
r2
∂

∂r
h(r), k(r)

)

Cn

]∞

0

and with the help of the relations

r2
∂

∂r
k(r) = −e−r

{
(1 + r)η0 + r2η1

}

and

r2
∂

∂r
h(r) = −e−r

{
(1 + r)ξ0 + r2ξ1

}

this implies

(H∗f, g) − (f,H∗g) = 4π

[(
e−2r

(
ξ0 + rξ0 + r2ξ1

)
,
η0
r

+ η1

)

Cn

−
(
e−2r

(
ξ0
r

+ ξ1

)
, η0 + rη0 + r2η1

)

Cn

]∞

0

.

This leads to

(H∗f, g) − (f,H∗g) = 4π(ξ1, η0) − 4π(ξ0, η1) = (Γ1f,Γ0g) − (Γ1f,Γ0g)

and therefore Green’s identity is satisfied. If follows from (5.17) that the mapping Γ = (Γ0,Γ1)
⊤

is surjective and hence assertion (ii) is proved.
(iii) Combining (5.16) and (5.17) we see that any f ∈ W 2

2 (R3,Cn) admits a representation
f = ξ1e

−r + fH with ξ1 := f(0) and fH = f − ξ1e
−r ∈ dom (H) which proves (iii).

It is important to note that the symmetric operator H in (5.16) is in general not simple
(see e.g. [3]), hence H admits a decomposition into a simple part Ĥ and a selfadjoint part Hs,
that is, H = Ĥ ⊕Hs, cf. Section 2.2. It is not difficult to see that the boundary triplet from
Proposition 5.4 is also a boundary triplet for Ĥ∗. Then obviously the Schrödinger operator H0

from Proposition 5.4 (iii) can be written as H0 = Ĥ0 ⊕Hs, where Ĥ0 = Ĥ∗ ↾ ker(Γ0).
Let us now consider the case where the potentialQ is spherically symmetric, i.e.Q(x) = Q(r),

r = (x2
1 + x2

2 + x2
3)

1/2. In this case the simple part Ĥ of H becomes unitarily equivalent to the
symmetric Sturm-Liouville operator

A = − d2

dr2
+Q, dom (A) =

{
f ∈W 2

2 (R+,C
n) : f(0) = f ′(0) = 0

}
,

cf. Section 5.2, and the extension Ĥ0 becomes unitarily equivalent to the selfadjoint extension
A0 of A subject to Dirichlet boundary conditions at 0.

Proposition 5.5. Let H be the minimal Schrödinger operator with a spherically sym-
metric matrix potential Q = Q∗ ∈ L∞(R3, [Cn]) from (5.16) and assume that r 7→ Q(r) and
r 7→ rQ(r) belong to L1(R+, [C

n]). Let ΠH and ΠA be the boundary triplets for H∗ and A∗

defined by (5.18) and (5.3), respectively. Then the corresponding Weyl functions MH(·) and



26 JUSSI BEHRNDT, MARK M. MALAMUD AND HAGEN NEIDHARDT

MA(·) are connected via

MH(λ) = ICn +MA(λ), λ ∈ C\R, (5.19)

and the pairs {Ĥ, Ĥ0} and {A,A0} are unitarily equivalent. If, in particular, Q = 0, then
MH(λ) = (i

√
λ+ 1) · ICn .

Proof. Let E(·, λ), λ ∈ C+, be the n × n-matrix solution of the differential equation
A∗E(r, λ) = λE(r, λ) from Section 5.2. Since E(·, λ)ξ ∈ L2(R+, [C

n]), ξ ∈ C
n, we see that

U(x, λ) :=
1

r
E(r, λ), r = (x2

1 + x2
2 + x2

3)
1/2 6= 0,

satisfies U(x, λ)ξ ∈ L2(R3, [Cn]), ξ ∈ Cn, λ ∈ C+, and

H∗U(x, λ)ξ = −∆U(x, λ)ξ +Q(r)U(x, λ)ξ

=
1

r

(
−E′′(λ, r) +Q(r)E(r, λ)

)
ξ =

1

r
A∗E(r, λ)ξ = λU(x, λ)ξ.

Therefore ker(H∗ − λ) = {U(·, λ)ξ : ξ ∈ C
n}, λ ∈ C+. It follows from (5.18) that U(·, λ)ξ can

be decomposed in the form

U(x, λ)ξ =
1

r
E(r, λ)ξ = Ξ0(λ)ξ

e−r

r
+ Ξ1(λ)ξ e−r + UH(x, λ)ξ, (5.20)

where

Ξ0(λ) = E(0, λ), Ξ1(λ) = E(0, λ) + E′(0, λ), (5.21)

and UH(·, λ) ∈ domH.
Note that according to (5.10) the Weyl function MA(·) corresponding to ΠA is given by

MA(λ) = E′(0, λ) · E(0, λ)−1, λ ∈ C+ On the other hand, (5.20) and (5.21) imply

MH(λ) = Ξ1(λ) · Ξ0(λ)−1 =
(
E(0, λ) + E′(0, λ)

)
· E(0, λ)−1 = ICn +MA(λ).

The unitary equivalence of the simple operators Ĥ and A as well as of the selfadjoint
extensions Ĥ0 and A0 is a consequence of Corollary 1 and Lemma 2 of [13].

Let now H = Ĥ ⊕ Hs and Q be as in Proposition 5.5 and consider the scattering system
{HΘ, H0}, where HΘ = H∗ ↾ Γ−1Θ for some selfadjoint Θ ∈ C̃(Cn). Then in fact one considers
the scattering system {ĤΘ, Ĥ0},HΘ = ĤΘ⊕Hs. In accordance with Theorem 3.8 the scattering
matrix {ŜΘ(λ)}λ∈R+

of the scattering system {ĤΘ, Ĥ0} is given by

ŜΘ(λ) = ICn + 2i
√
ℑm(MA(λ))

(
Θ − (MA(λ) + ICn)

)−1√ℑm(MA(λ))

for a.e. λ ∈ R+, where MA(·) is the Weyl function of the boundary triplet ΠA, cf. (5.10). If, in
particular Q = 0, then ŜΘ(λ) takes the form

ŜΘ(λ) = ICn + 2i
√
λ
(
Θ − (i

√
λ+ 1) · ICn

)−1
.

In this case the spectral shift function ξ̂Θ(·) of the scattering system {ĤΘ, Ĥ0} is given by

ξ̂Θ(λ) = ξΘ−I(λ) for a.e. λ ∈ R,

where ξΘ−I(·) is the spectral shift function of the scattering system {LΘ−I , L0} (see the end
of Section 5.2) defined by (5.12).

Appendix A. Direct integrals and spectral representations

Following the lines of [6] we give a short introduction to direct integrals of Hilbert spaces
and to spectral representations of selfadjoint operators.
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Let Λ be a Borel subset of R and let µ be a Borel measure on R. Further, let {Hλ, (·, ·)Hλ
}λ∈Λ

be a family of separable Hilbert spaces. A subset S of the Cartesian product Xλ∈ΛHλ is called
an admissible system if the following conditions are satisfied (see [6]):

(1) The set S is linear and S is closed with respect to multiplication by functions from
L∞(Λ, µ).

(2) For every element f ∈ S the function λ 7→ ‖f(λ)‖Hλ
is Borel measurable and the integral∫

Λ
‖f(λ)‖2

Hλ
dµ(λ) is finite.

(3) span{f(λ) | f ∈ S} is dense in Hλ for µ-a.e. λ ∈ Λ.
(4) If for a Borel subset ∆ ⊆ Λ one has

∫
∆
‖f(λ)‖2

Hλ
dµ(λ) = 0 for all f ∈ S, then µ(∆) = 0.

A function f ∈ Xλ∈ΛHλ is strongly measurable with respect to S if there exists a sequence
tn ∈ S such that limn→∞ ‖f(λ) − tn(λ)‖Hλ

= 0 is valid for µ-a.e. λ ∈ Λ. On the set of all
strongly measurable functions f, g ∈ Xλ∈ΛHλ with the property∫

Λ

‖f(λ)‖2
Hλ
dµ(λ) <∞ and

∫
Λ

‖g(λ)‖2
Hλ
dµ(λ) <∞

we introduce the semi-scalar product

(f, g) :=

∫
Λ

(
f(λ), g(λ)

)
Hλ
dµ(λ).

By completion of the corresponding factor space one obtains the Hilbert space L2(Λ, µ,Hλ,S)
which is called the direct integral of the family Hλ with respect to Λ, µ and S.

Let in the following A0 be a selfadjoint operator in the separable Hilbert space H, let E0

be the orthogonal spectral measure of A0, denote the absolutely continuous subspace of A0 by
Hac(A0) and let µL be the Lebesgue measure.

Definition A.1. A Borel set Λ ⊆ σac(A0) is called a spectral core of the selfadjoint
operator Aac

0 := A0 ↾ dom (A0) ∩ Hac(A0) if E0(Λ)Hac(A0) = Hac(A0) and µL(Λ) is minimal.
A linear manifold M ⊆ Hac(A0) is said to be a spectral manifold if there exists a spectral core
Λ of Aac

0 such that the derivative d
dλ (E0(λ)f, f) exists for all f ∈ M and all λ ∈ Λ.

Note that every finite dimensional linear manifold M in Hac(A0) is a spectral manifold. Let
us assume that M ⊆ Hac(A0) is a spectral manifold which is generating with respect to Aac

0 ,
that is,

Hac(A0) = clospan
{
E0(∆)f : ∆ ∈ B(R), f ∈ M

}
(A.1)

holds and let Λ be a corresponding spectral core of Aac
0 . We define a family of semi-scalar

products (·, ·)E0,λ by

(f, g)E0,λ :=
d

dλ
(E0(λ)f, g), λ ∈ Λ, f, g ∈ M,

and denote the corresponding semi-norms by ‖ · ‖E0,λ. We note, that the family of semi-scalar
products {(·, ·)E0,λ}λ∈Λ is an example of a so-called spectral form with respect to the spectral

measure Eac
0 := E0 ↾ Hac(A0) of Aac

0 (see [6, Section 4.5.1]). By M̂λ, λ ∈ Λ, we denote the
completion of the factor space

M
/

ker(‖ · ‖E0,λ)

with respect to ‖ ·‖E0,λ. The canonical embedding operator mapping M into the Hilbert space

M̂λ, λ ∈ Λ, is denoted by Jλ,

Jλ : M → M̂λ, k 7→ Jλk.
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Lemma A.2. The set

SM :=

{
n∑

l=1

αl(λ)Jλfl : fl ∈ M, αl ∈ L∞(Λ, µ), n ∈ N

}
⊆ Xλ∈ΛM̂λ

is an admissible system.

Proof. Obviously SM is linear and closed with respect to multiplication by functions from
L∞(Λ, µ). For f(λ) = Jλf , f ∈ M, λ ∈ Λ, we obtain from

‖f(λ)‖2
cMλ

= ‖f‖2
E0,λ =

d

dλ
(E0(λ)f, f)

that λ 7→ ‖f(λ)‖ cMλ
is Borel measurable and that∫

Λ

‖f(λ)‖2
cMλ

dµL(λ) = (E0(Λ)f, f) = (f, f) <∞

holds. Hence it follows that condition (2) is satisfied. For each λ ∈ Λ the set {Jλf : f ∈ M} is

dense in M̂λ, thus (3) holds. Finally, if for some ∆ ∈ B(Λ) and all f ∈ SM

0 =

∫
∆

‖f(λ)‖2
cMλ

dµL(λ) = (E0(∆)f, f) = ‖E0(∆)f‖2

holds, the assumption that M is generating implies E0(∆)g = 0 for every g ∈ Hac(A0), hence
E0(∆) = 0. As Λ is a spectral core we conclude µL(∆) = 0.

Then the direct integral L2(Λ, µL,M̂λ,SM) of the family M̂λ with respect to the spectral
core Λ, the Lebesgue measure and the admissible system SM in Lemma A.2 can be defined. By
[6, Proposition 4.21] there exists an isometric operator from Hac(A0) onto L2(Λ, µL,M̂λ,SM)
such that E0(∆) corresponds to the multiplication operator induced by the characteristic

function χ∆ for any ∆ ∈ B(Λ), that is, the direct integral L2(Λ, µL,M̂λ,SM) performs a
spectral representation of the spectral measure Eac

0 of Aac
0 .

According to [6, Section 3.5.5] we introduce the semi-norm [·]E0,λ,

[f ]2E0,λ := lim sup
h→0

1

h

(
E0([λ, λ+ h))f, f

)
, λ ∈ R, f ∈ Hac(A0),

and we set

Dλ :=
{
f ∈ H

ac(A0) : [f ]E0,λ <∞
}
, λ ∈ R. (A.2)

If M is a spectral manifold and Λ is an associated spectral core, then M ⊆ Dλ holds for all
λ ∈ Λ. Moreover, we have

(f, f)E0,λ = [f ]2E0,λ, f ∈ M, λ ∈ Λ.

By D̂λ we denote the Banach space which is obtained from Dλ by factorization and completion
with respect to the semi-norm [·]E0,λ, i.e.

D̂λ := clo[·]E0,λ

(
Dλ

/
ker([·]E0,λ)

)
.

For λ ∈ Λ we will regard M̂λ as a subspace of D̂λ. By Dλ we denote the canonical embedding
operator from Dλ into D̂λ. Note that cloDλM = M̂λ, λ ∈ Λ, where the closure is taken with
respect to the topology of D̂λ.

Lemma A.3. For a continuous function ϕ on σ(A0) the relation

Dλϕ(A0)f = ϕ(λ)Dλf

holds for all λ ∈ R and all f ∈ Dλ.
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Proof. We have to check that

0 = [ϕ(A0)f − ϕ(λ)f ]2E0,λ

holds for λ ∈ R and f ∈ Dλ. The right-hand side is equal to

lim sup
h→0

1

h

(
E0

(
[λ, λ+ h)

)(
ϕ(A0) − ϕ(λ)

)
f,
(
ϕ(A0) − ϕ(λ)

)
f
)

= lim sup
h→0

1

h

∫λ+h

λ

d
(
E0(t)

(
ϕ(A0) − ϕ(λ)

)
f,
(
ϕ(A0) − ϕ(λ)

)
f
)
.

From
(
E0(t)

(
ϕ(A0) − ϕ(λ)

)
f,
(
ϕ(A0) − ϕ(λ)

)
f
)

=

∫ t

−∞
|ϕ(s) − ϕ(λ)|2d(E0(s)f, f)

we find

[ϕ(A0)f − ϕ(λ)f ]2E0,λ = lim sup
h→0

1

h

∫λ+h

λ

|ϕ(t) − ϕ(λ)|2d(E0(t)f, f).

As f belongs to Dλ and ϕ is continuous on σ(A0) we obtain that this expression is zero.
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