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1. Introduction

Let A and B be self-adjoint operators in a Hilbert space H and assume that the 
resolvent difference

(B − λ)−1 − (A− λ)−1, λ ∈ ρ(A) ∩ ρ(B), (1.1)

belongs to the ideal S1(H) of trace class operators. It is well known that in this situa-
tion the wave operators W±(A, B) of the pair {A, B} exist and are complete, and the 
scattering operator S(A, B) = W+(A, B)∗W−(A, B) is unitarily equivalent to a multipli-
cation operator induced by a family {S(A, B; λ)}λ∈R of unitary operators S(A, B; λ) in 
the spectral representation of the absolutely continuous part of A. This family is called 
the scattering matrix of the scattering system {A, B} and is one of the most important 
quantities in the analysis of scattering processes; we refer the reader to the monographs 
[12,59,79,81,82] for more details.

The main objective of this paper is to express the scattering matrix of {A, B} in terms 
of an abstract operator valued Titchmarsh–Weyl m-function, and to apply this result 
to scattering problems for Schrödinger operators. In order to explain our main abstract 
result Theorem 3.1 consider the closed symmetric operator S = A ∩ B and note that 
S has infinite defect numbers whenever the resolvent difference of A and B in (1.1) is 
infinite dimensional. The closure of the operator T = A +̂B, where +̂ denotes the sum 
of subspaces in H ×H, coincides with S∗ and clearly A and B are self-adjoint restrictions 
of T . This setting can be fitted in the framework of (B-)generalized boundary triples 
or quasi boundary triples and their Weyl functions from [38] or [13,14], respectively, 
and allows to introduce boundary maps Γ0 and Γ1 on dom(T ), which can be viewed as 
abstract analogs of the Dirichlet and Neumann trace operators (see also [34,35]). For 
λ ∈ C \ R one defines the Weyl function M via

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ),

see Section 2 for the details. In PDE applications M(λ) is usually the Dirichlet-to-
Neumann map (or its inverse, the Neumann-to-Dirichlet map) acting in some boundary 
space. Roughly speaking our main abstract result states that the scattering matrix of 
{A, B} is of the form

S(A,B;λ) = I − 2i
√

ImM(λ + i0)M(λ + i0)−1
√

ImM(λ + i0)

for a.e. λ ∈ R. This representation is a highly nontrivial generalization of a similar result 
from [19], where the special case that the resolvent difference in (1.1) is a finite rank 
operator was treated in the context of ordinary boundary triples and their Weyl functions 
from [37,38], see also [2], [8, Chapter 4], [82, Chapter 3, §1], and [20] for related results 
and simple examples. In contrast to the earlier results in the finite rank case the present 
representation formula is applicable to scattering problems for Schrödinger operators (or 
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more general elliptic second order differential operators) on unbounded domains, which 
we shall explain in more detail next.

In fact, our main motivation for establishing the general representation formula for 
the scattering matrix in Section 3 in an abstract extension theory framework is the 
applicability to scattering problems for Schrödinger operators with Dirichlet, Neumann, 
and Robin boundary conditions on exterior domains in R2 and R3 in Section 4, and 
orthogonal couplings of Schrödinger operators, and Schrödinger operators with singular 
potentials supported on curves and hypersurfaces in R2 and R3 in Section 5. Let us 
first explain the situation for a scattering system consisting of a Neumann and a Robin 
realization; for more details and a slightly more general situation see Section 4.4. Denote 
the Dirichlet and Neumann trace operators by γD and γN , respectively, and consider the 
self-adjoint operators

Af = −Δf + V f, dom(A) =
{
f ∈ H2(Ω) : γNf = 0

}
,

and

Bf = −Δf + V f, dom(B) =
{
f ∈ H2(Ω) : αγDf = γNf

}
,

where α ∈ C2(∂Ω) is real, the potential V is real and bounded, and the domain Ω is the 
complement of a bounded set with a C∞-smooth boundary in R2 or R3. In this situation 
it is known from [15,58] that the resolvent difference of A and B satisfies the trace class 
condition (1.1). If N (λ), λ ∈ C \ R, denotes the Neumann-to-Dirichlet map, that is,

N (λ)γNfλ = γDfλ, −Δfλ + V fλ = λfλ,

we obtain in Theorem 4.7 that the scattering matrix of the scattering system {A, B}
admits the form

S(A,B;λ) = IGλ
+ 2i

√
ImN (λ + i0)

(
I − αN (λ + i0)

)−1
α
√

ImN (λ + i0)

for a.e. λ ∈ R. Here the space L2(R, dλ, Gλ), where Gλ = ran(ImN (λ + i0)) for a.e. 
λ ∈ R, forms a spectral representation of the absolutely continuous part of the Neumann 
operator AN and the limits ImN (λ + i0) and (I−αN (λ + i0))−1 have to be interpreted 
in suitable operator topologies; cf. Theorem 4.7 for details. A similar result is proved in 
Theorem 4.3 for the pair consisting of the Dirichlet realization of −Δ +V and the Robin 
operator B in L2(R2); here the trace class property (1.1) for n = 2 is due to Birman [24]. 
For some recent work on related spectral problems for Schrödinger operators we refer 
the reader to [9,22,30,46–50,64,67,74,77] and for more general partial elliptic differential 
operators to [1,13,14,17,18,21,29,55–58,63,65,66,75,76].

Our second set of examples in Section 5 is a bit more involved. Here scattering systems 
consisting of the free Schrödinger operator
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Af = −Δf + V f, dom(A) = H2(Rn), (1.2)

and orthogonal couplings of Schrödinger operators with Dirichlet and Neumann bound-
ary conditions, or Schrödinger operators with singular δ-potentials of strength α ∈ L∞(C)
supported on hypersurfaces C which split R2 or R3 into a bounded smooth domain Ω+
and a smooth exterior domain Ω− are studied. The latter operator is of the form

Bf = −Δf + V f,

dom(B) =
{
f =

(
f+
f−

)
∈ H

3/2
Δ (Rn \ C) :

γ+
Df+ = γ−

Df−,

αγ±
Df± = γ+

Nf+ + γ−
Nf−

}
;

(1.3)

here H3/2
Δ (Rn \ C) is a subspace of H3/2(Ω+) × H3/2(Ω−) and γ±

D and γ±
N denote the 

Dirichlet and Neumann trace operators on the interior and exterior domain; cf. Sec-
tion 5.4 for the details. Schrödinger operators with δ-potentials play an important role 
in various physically relevant problems and have therefore attracted a lot of attention. 
We refer the interested reader to the review paper [39], to e.g. [7,10,16,27,40–43] and 
the monographs [6,8] for more details and further references. We shall briefly discuss the 
scattering matrix for the pair of operators in (1.2)–(1.3); for the pairs consisting of A in 
(1.2) and the orthogonal sum of the Dirichlet or the Neumann realizations of −Δ + V

on Ω+ and Ω− see Theorem 5.1 and Theorem 5.4, respectively. It follows from [16] that 
the above choice of A and B satisfies the trace class condition (1.1) in dimensions n = 2
and n = 3 and we show in this situation in Theorem 5.6 that the scattering matrix is 
given by

S(A,B;λ) = IGλ
+ 2i

√
Im E(λ + i0)

(
I − αE(λ + i0)

)−1
α
√

Im E(λ + i0),

where the function E is defined as

E(λ) =
(
D+(λ)−1 + D−(λ)−1)−1

, λ ∈ C \ R,

and D±(λ) denote the Dirichlet-to-Neumann maps corresponding to −Δ + V on the 
domains Ω±. In this context we also refer the reader to related work by Pavlov and 
coauthors in [11,69,72], where scattering problems for certain couplings of Schrödinger 
operators were considered.

1.1. Notation

Throughout the paper H and H denote separable Hilbert spaces with scalar product 
(·, ·). The linear space of bounded linear operators defined from H to H is denoted by 
B(H, H). For brevity we write B(H) instead of B(H, H). The ideal of compact operators 
is denoted by S∞(H, H) and S∞(H). For p > 0 the Schatten–von Neumann ideals 
are denoted by Sp(H, H) and Sp(H); they consist of all compact operators T with 
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p-summable singular values sj(T ) (i.e. eigenvalues of (T ∗T )1/2). We shall also work with 
the operator ideals

Sp(H,H) =
{
T ∈ S∞(H,H) | sj(T ) = O(j−1/p) as j → ∞

}
, p > 0,

and we recall that

Sp(H,H) · Sq(H,H) = Sr(H), where 1
p

+ 1
q

= 1
r
. (1.4)

The resolvent set and the spectrum of a linear operator A is denoted by ρ(A) and 
σ(A), respectively. The domain, kernel and range of a linear operator A are denoted by 
dom(A), ker(A), and ran(A), respectively. By B(R) we denote the Borel sets of R. The 
Lebesgue measure on B(R) is denoted by dλ.

A holomorphic function M(·) : C+ −→ B(H) is a Nevanlinna (or Herglotz or 
R-function) if its imaginary part Im(M(z)) := 1

2i (M(z) − M(z)∗), z ∈ C+, is a non-
negative operator. Nevanlinna functions are extended to C− by M(z) := M(z̄)∗, z ∈ C−. 
The class of B(H)-valued Nevanlinna functions is denoted by R[H]. A Nevanlinna func-
tion satisfying ker(Im(M(z)) = {0} (0 ∈ ρ(Im(M(z))) for some, and hence for all, 
z ∈ C+, is said to be strict (uniformly strict, respectively). These subclasses are denoted 
by Rs[H] and Ru[H], respectively.

2. Self-adjoint extensions of symmetric operators and abstract Titchmarsh–Weyl 
m-functions

In the preparatory Section 2.1 we recall the notion of boundary triples and their Weyl 
functions from extension theory of symmetric operators, and we introduce the concept 
of Sp-regular Weyl functions in Section 2.2. This notion is important and useful for our 
purposes since it is directly related (and in some situations equivalent) to the Sp-property 
of the resolvent difference of certain self-adjoint extensions.

2.1. B-generalized boundary triples and their Weyl functions

In this subsection we review the notion of generalized (or B-generalized) and ordinary 
boundary triples from extension theory of symmetric operators, and we introduce a new 
concept, the so-called double B-generalized boundary triples in Definition 2.1 below. We 
refer the reader to [28,31,34,37,38,51,80] for more details on ordinary and B-generalized 
boundary triples, see also [13,14,32] for related notions.

In the following S denotes a densely defined, closed, symmetric operator in a separable 
Hilbert space H.

Definition 2.1 ([38]). A triple Π = {H, Γ0, Γ1} is called a B-generalized boundary triple
for S∗ if H is a Hilbert space and for some operator T in H such that T = S∗, the linear 
mappings Γ0, Γ1 : dom(T ) −→ H satisfy the abstract Green’s identity
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(Tf, g) − (f, Tg) = (Γ1f,Γ0g) − (Γ0f,Γ1g), f, g ∈ dom(T ), (2.1)

the operator A0 := T � ker(Γ0) is self-adjoint in H, and ran(Γ0) = H holds.
If, in addition, the operator A1 := T � ker(Γ1) is self-adjoint in H and ran(Γ1) = H, 

then the triple Π = {H, Γ0, Γ1} is called a double B-generalized boundary triple for S∗.

We note that a B-generalized boundary triple for S∗ exists if and only if S admits 
self-adjoint extensions in H, that is, the deficiency indices of S coincide. Furthermore, if 
Π = {H, Γ0, Γ1} is a B-generalized boundary triple for S∗ then

dom(S) = ker(Γ0) ∩ ker(Γ1)

holds, the mappings Γ0, Γ1 : dom(T ) −→ H are closable when viewed as linear operators 
from domS∗ equipped with the graph norm to H, and ran(Γ1) turns out to be dense 
in H; cf. [38, Section 6].

The notion of double B-generalized boundary triples is inspired by the fact that the 
mappings in the so-called transposed triple Π� := {H, Γ1, −Γ0} satisfy the abstract
Green’s identity but since in general neither A1 = T � ker(Γ1) is self-adjoint nor 
ran(Γ1) = H holds the transposed triple Π� is not a B-generalized boundary triple 
in general. In fact, a B-generalized boundary triple Π = {H, Γ0, Γ1} for S∗ is a dou-
ble B-generalized boundary triple for S∗ if and only if the transposed triple Π� =
{H, Γ1, −Γ0} is also a B-generalized boundary triple for S∗.

In some of the proofs of the results in Section 2.2 we shall also make use of the notion 
of ordinary boundary triples, which we recall here for the convenience of the reader.

Definition 2.2. A triple Π = {H, Γ0, Γ1} is called an ordinary boundary triple for S∗ if 
H is a Hilbert space, the linear mappings Γ0, Γ1 : dom(S∗) −→ H satisfy the abstract 
Green’s identity

(S∗f, g) − (f, S∗g) = (Γ1f,Γ0g) − (Γ0f,Γ1g), f, g ∈ dom(S∗), (2.2)

and the mapping Γ = (Γ0, Γ1)� : dom(S∗) → H×H is surjective.

Observe that any ordinary boundary triple is automatically a double B-generalized 
boundary triple; the converse is not true in general. Ordinary boundary triples are an 
efficient tool in extension theory of symmetric operators. In particular, if Π = {H, Γ0, Γ1}
is an ordinary boundary triple for S∗, then all closed proper extensions S̃ ⊂ S∗ of S in 
H can be parametrized by means of the set of closed linear relations in H via

S̃ �→ Θ :=
{
{Γ0f,Γ1f} : f ∈ dom(S̃)

}
⊂ H×H. (2.3)

We write S̃ = SΘ. If Θ is an operator then (2.3) takes the form

SΘ = S∗ � ker(Γ1 − ΘΓ0)
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One verifies (SΘ)∗ = SΘ∗ and hence the self-adjoint extensions of S in H correspond to 
the self-adjoint relations Θ in H. We shall use that Θ in (2.3) is an operator (and not a 
multivalued linear relation) if and only if the extension SΘ and A0 = S∗ � ker(Γ0) are 
disjoint, that is, A0 ∩ SΘ = S.

Next we recall the notions and some important properties of γ-fields and Weyl func-
tions. For an ordinary boundary triple they go back to [36,37], for B-generalized bound-
ary triples we refer the reader to [38]. In the following let {H, Γ0, Γ1} be a B-generalized 
boundary triple for S∗; the special case of an ordinary boundary triple is then covered 
as well. Observe first that for each z ∈ ρ(A0), A0 = T � ker(Γ0), the following direct sum 
decomposition holds

dom(T ) = dom(A0) +̇ ker(T − z) = ker(Γ0) +̇ ker(T − z). (2.4)

Hence the restriction of the mapping Γ0 to ker(T − z) is injective for all z ∈ ρ(A0).

Definition 2.3 ([38]). Let Π = {H, Γ0, Γ1} be a B-generalized boundary triple. The γ-field
γ(·) and Weyl function M(·) corresponding to Π are defined by

γ(z) :=
(
Γ0 � ker(T − z)

)−1 and M(z) := Γ1γ(z), z ∈ ρ(A0),

respectively.

It follows from (2.4) that for z ∈ ρ(A0) the values γ(z) of the γ-field and the values 
M(z) of the Weyl function are both well defined linear operators on ran(Γ0) = H. 
Moreover, γ(z) ∈ B(H, H) maps onto ker(T−z) ⊂ ker(S∗−z) ⊂ H and for all z, ξ ∈ ρ(A0)
the relations

γ(z) =
(
I + (z − ξ)(A0 − z)−1)γ(ξ) = (A0 − ξ)(A0 − z)−1γ(ξ) (2.5)

and

γ(z)∗ = Γ1(A0 − z̄)−1 ∈ B(H,H) (2.6)

hold. In particular, ran(γ(z)∗) = ran(Γ1 � dom(A0)) does not depend on the point 
z ∈ ρ(A0) and (

ran γ(z)∗
)⊥ = ker γ(z) = {0}

shows that ran(γ(z)∗) is dense in H for all z ∈ ρ(A0). Furthermore, it follows from (2.5)
that γ(·) is holomorphic on ρ(A0).

The values of the Weyl function M(·) are operators in B(H) and M(z) maps H into the 
dense subspace ran(Γ1) ⊂ H. The Weyl function and γ-field are related by the identity

M(z) −M(ξ)∗ = (z − ξ̄)γ(ξ)∗γ(z), z, ξ ∈ ρ(A0), (2.7)
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and, in particular, M(z̄) = M(z)∗ for all z ∈ ρ(A0). It follows from (2.5) and (2.7) that 
M(·) is holomorphic on ρ(A0). Setting ξ = z in (2.7) one gets

ImM(z) = 1
2i

(M(z) −M(z)∗) = (Im z) γ(z)∗γ(z) (2.8)

and hence ImM(z) ≥ 0 for z ∈ C+. This identity also yields

ker(ImM(z)) = ker(γ(z)) = {0}, z ∈ C±,

and together with the holomorphy of M(·) on ρ(A0) we conclude that M(·) is a so-called 
strict Nevanlinna function with values in B(H) (in symbols M(·) ∈ Rs[H]). If Π is 
a double B-generalized boundary triple then the Weyl function corresponding to the 
transposed B-generalized boundary triple Π� = {H, Γ1, −Γ0} is given by −M(·)−1 and 
also belongs to the class Rs[H], in particular, for z ∈ ρ(A0) ∩ ρ(A1) the values M(z) of 
the Weyl function of a double B-generalized boundary triple are bounded and boundedly 
invertible operators.

If Π is an ordinary boundary triple then the operators γ(z) are boundedly invertible 
when viewed as operators from H onto ker(S∗ − z). In this case it follows from (2.8)
that ImM(z) is a uniformly positive operator for z ∈ C+, and hence the Weyl function 
corresponding to an ordinary boundary triple belongs to the class Ru[H] of the so-called 
uniformly strict Nevanlinna functions with values in B(H); cf. [34].

2.2. Resolvent comparability and Sp-regular Weyl functions

Let Π = {H, Γ0, Γ1} be a B-generalized boundary triple for S∗ with the corresponding 
Weyl function M(·), and let A0 = S∗ � ker(Γ0) and A1 = S∗ � ker(Γ1). It is important 
to characterize the property of the resolvent comparability of the operators A0 and A1
in terms of the Weyl function M(·). To this end we introduce the notion of Sp-regular 
Nevanlinna functions in the next definition.

Definition 2.4. A Nevanlinna function M(·) ∈ R[H] is called Sp-regular for some p ∈
(0, ∞] if it admits a representation

M(z) = C + K(z), K(·) : C+ −→ Sp(H), z ∈ C+, (2.9)

where C ∈ B(H) is a self-adjoint operator such that 0 ∈ ρ(C) and K(·) is a strict 
Nevanlinna function with values in B(H), that is, K(·) ∈ Rs[H]. The class of Sp-regular 
Nevanlinna functions is denoted by Rreg

Sp
[H].

In other words, a Nevanlinna function is Sp-regular if it differs from a strict Nevanlinna 
function with values in Sp by a bounded and boundedly invertible self-adjoint constant.

Lemma 2.5. If M(·) ∈ Rreg
S

[H] for some p ∈ (0, ∞], then −M(·)−1 ∈ Rreg
S

[H].

p p
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Proof. Since M(·) ∈ Rreg
Sp

[H] for some p ∈ (0, ∞], there exists a boundedly invertible 
self-adjoint operator C and a strict Nevanlinna function K(·) ∈ Rs[H] such that

M(z) = C + K(z), z ∈ C+. (2.10)

Observe first that ker(M(z)) = {0} holds for all z ∈ C+. In fact, M(z)ϕ = 0 yields 
((C + ReK(z))ϕ, ϕ) = 0 and (ImK(z)ϕ, ϕ) = 0, and as K(·) is strict we conclude 
ϕ = 0 from the latter. Furthermore, as 0 ∈ ρ(C) and K(z) ∈ Sp(H) it follows from the 
Fredholm alternative (see, e.g. [78, Corollary to Theorem VI.14]) that 0 ∈ ρ(M(z)) for 
all z ∈ C+. It is clear that

−M(z)−1 = D + L(z), z ∈ C+, (2.11)

holds with L(z) := C−1 − M(z)−1, z ∈ C+ and the boundedly invertible self-adjoint 
operator D := −C−1. Since

L(z) = C−1 −M(z)−1 = C−1K(z)M(z)−1, z ∈ C+,

and K(z) ∈ Sp(H), we conclude L(z) ∈ Sp(H), z ∈ C+. Moreover, as C−1 is a bounded 
self-adjoint operator one gets

ImL(z) = Im
(
−M(z)−1) = (M(z)∗)−1(ImK(z)

)
M(z)−1, z ∈ C+,

where in the last equality we have used (2.10). As K(·) ∈ Rs[H] by assumption we have 
ker(ImK(z)) = {0} and this yields ker(ImL(z)) = {0} for all z ∈ C+. We have shown 
that L(·) : C+ −→ Sp(H) is a strict Nevanlinna function, L(·) ∈ Rs[H], and hence it 
follows from (2.11) that −M−1(·) ∈ Rreg

Sp
[H]. �

The assertions in the next lemma on the boundary values of S1-regular Nevanlinna 
functions follow from well-known results due to Birman and Èntina [25], de Branges [26], 
and Naboko [70]; cf. [44, Theorem 2.2].

Lemma 2.6. Let M(·) be an S1-regular Nevanlinna function, M(·) ∈ Rreg
S1

[H]. Then the 
following assertions hold.

(i) M(λ + i0) = limε→+0 M(λ + iε) exists for a.e. λ ∈ R in the norm of B(H);
(ii) M(λ + i0) is boundedly invertible in H for a.e. λ ∈ R;
(iii) M(λ + iε) −M(λ + i0) ∈ Sp(H) for p ∈ (1, ∞], ε > 0 and a.e. λ ∈ R, and

lim
ε→+0

‖M(λ + iε) −M(λ + i0)‖Sp(H) = 0;

(iv) ImM(λ + i0) = limε→+0 ImM(λ + iε) exists for a.e. λ ∈ R in the S1-norm.
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Proof. By assumption there exists a Nevanlinna function K(·) with values in S1(H)
such that M(z) = C+K(z), z ∈ C+, holds with some bounded and boundedly invertible 
self-adjoint operator C. It follows from [25,26,70] (see, e.g. [44, Theorem 2.2]) that the 
limit K(λ + i0) exists for a.e. λ ∈ R in the Sp-norm for all p > 1, and that the limit 
ImK(λ + i0) exists for a.e. λ ∈ R in the S1-norm. This yields assertions (i), (iii), 
and (iv).

In order to prove (ii) we recall that −M(·)−1 is S1-regular by Lemma 2.5 and hence 
the boundary values M(λ + i0)−1 exist for a.e. λ ∈ R in the operator norm. Hence (ii) 
follows from the identity

M(λ + iε)M(λ + iε)−1 = M(λ + iε)−1M(λ + iε) = IH, λ ∈ R,

after passing to the limit ε → +0 in the operator norm. �
In the next lemma we investigate B-generalized boundary triples with Sp-regular Weyl 

functions. In particular, it turns out that the symmetric extension A1 = T � ker(Γ1) is 
self-adjoint and a Krein type resolvent formula is obtained; cf. [14,17,37,38].

Proposition 2.7. Let Π = {H, Γ0, Γ1} be a B-generalized boundary triple for S∗ such 
that the corresponding Weyl function M(·) is Sp-regular for some p ∈ (0, ∞]. Then the 
following assertions hold.

(i) Π is a double B-generalized boundary triple for S∗;
(ii) The Weyl function corresponding to the transposed B-generalized boundary triple 

Π� = {H, Γ1, −Γ0} is Sp-regular;
(iii) The operators A0 and A1 are Sp-resolvent comparable and

(A1 − z)−1 − (A0 − z)−1 = −γ(z)M(z)−1γ(z̄)∗ ∈ Sp(H) (2.12)

holds for all z ∈ ρ(A0) ∩ ρ(A1).

Proof. (i) Since the Weyl function M(·) is Sp-regular by assumption, Lemma 2.5 implies, 
in particular, that M(z)−1 ∈ B(H) for all z ∈ C \ R. This yields

ran(Γ1) = ran(M(z)) = H.

Next we check that A1 = T � ker(Γ1) is self-adjoint in H. First of all it follows from 
the abstract Green’s identity (2.1) that A1 is symmetric. Let z ∈ C \ R, fix f ∈ H and 
consider

h := (A0 − z)−1f − γ(z)M(z)−1γ(z̄)∗f.

From Definition 2.3 and (2.6) we obtain



1980 J. Behrndt et al. / Journal of Functional Analysis 273 (2017) 1970–2025
Γ1h = Γ1(A0 − z)−1f − Γ1γ(z)M(z)−1γ(z̄)∗f = 0

and hence h ∈ dom(A1). Since ran γ(z) ⊂ ker(T − z)) one gets

(A1 − z)h = (T − z)
(
(A0 − z)−1f − γ(z)M(z)−1γ(z̄)∗f

)
= f

and we conclude the Krein type resolvent formula (2.12) in (iii) and ran(A1 − z) = H
for z ∈ C \ R. Hence the symmetric operator A1 is self-adjoint in H and it follows that 
Π is a double B-generalized boundary triple for S∗.

(ii) The Weyl function corresponding to the transposed B-generalized boundary triple 
Π� = {H, Γ1, −Γ0} is given by

M�(z) = −M(z)−1, z ∈ ρ(A0) ∩ ρ(A1), (2.13)

which is Sp-regular by Lemma 2.5.
(iii) Since M(·) is Sp-regular it follows that ImM(z) ∈ Sp(H) for z ∈ C \R and hence 

γ(z)∗γ(z) ∈ Sp(H) by (2.8). This implies γ(z) ∈ S2p(H, H) and γ(z)∗ ∈ S2p(H, H) for 
z ∈ C \ R, and the resolvent formula in (2.12) together with 0 ∈ ρ(M(z)), z ∈ C \ R, 
yields the Sp-property of the resolvent difference in (2.12) for z ∈ C \ R, and hence for 
all z ∈ ρ(A0) ∩ ρ(A1). �

Proposition 2.7 (iii) admits the following useful improvement.

Corollary 2.8. Let Π = {H, Γ0, Γ1} be a B-generalized boundary triple for S∗ such that 
the corresponding Weyl function M(·) is S∞-regular and assume that ImM(z) ∈ Sp(H)
for some p ∈ (0, ∞) and z ∈ C+. Then

(A1 − z)−1 − (A0 − z)−1 ∈ Sp(H), z ∈ ρ(A0) ∩ ρ(A1). (2.14)

Proof. The assumption ImM(z) ∈ Sp(H) for some p ∈ (0, ∞) and z ∈ C+ together with 
(2.8) yields γ(z)∗γ(z) ∈ Sp(H), and hence γ(z) ∈ S2p(H, H). The Krein type formula 
in (2.12) implies (2.14) for z ∈ C+, and hence also for all z ∈ ρ(A0) ∩ ρ(A1). �

Next we show that the p-resolvent comparability condition (2.12) guarantees the ex-
istence of a B-generalized boundary triple such that the corresponding Weyl function is 
Sp-regular.

Proposition 2.9. Let A and B be self-adjoint operators in H and assume that the closed 
symmetric operator S = A ∩B is densely defined. Then

dom(A) + dom(B)

is dense in dom(S∗) with respect to the graph norm and the following assertions hold.
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(i) There is a B-generalized boundary triple Π = {H, Γ0, Γ1} for S∗ such that

A = T � ker(Γ0) = A0 and B = T � ker(Γ1) = A1. (2.15)

(ii) If for some z ∈ C \ R and some p ∈ (0, ∞] the condition

(B − z)−1 − (A− z)−1 ∈ Sp(H) (2.16)

is satisfied, then there exists a double B-generalized boundary triple Π = {H, Γ0, Γ1}
such that (2.15) holds and the corresponding Weyl function M(·) is Sp-regular.

Proof. In order to see that dom(A) + dom(B) is dense in dom(S∗) with respect to the 
graph norm assume that h ∈ dom(S∗) is such that

(fA + fB , h) +
(
S∗(fA + fB), S∗h

)
= 0 for all fA ∈ dom(A), fB ∈ dom(B).

Then (AfA, S∗h) = (fA, −h) and (BfB , S∗h) = (fB , −h) for all fA ∈ dom(A) and 
fB ∈ dom(B) yield S∗h ∈ dom(A) ∩ dom(B) = dom(S) and (I + SS∗)h = 0. Since the 
operator I+SS∗ is uniformly positive one gets h = 0, that is, dom(A) +dom(B) is dense 
in dom(S∗) with respect to the graph norm.

(i) Observe first that S = A ∩B is a densely defined, closed, symmetric operator with 
equal deficiency indices. Hence there exists an ordinary boundary triple Π′ = {H, Γ′

0, Γ′
1}

for S∗ such that B = S∗ � ker(Γ′
0); cf. [36,38]. Furthermore, as A and B are disjoint 

self-adjoint extensions of S there exists a self-adjoint operator Θ = Θ∗ ∈ C(H) such that

A = S∗ � dom(A), dom(A) = ker(Γ′
1 − ΘΓ′

0),

see e.g. [38, Proposition 1.4]. We consider the mappings

Γ0 := Γ′
1 − ΘΓ′

0 and Γ1 := −Γ′
0

defined on

dom(Γ0) = dom(Γ1) := dom(A) + dom(B)

and set

T := S∗ � dom(T ), dom(T ) := dom(A) + dom(B).

We claim that Π = {H, Γ0, Γ1} is a B-generalized boundary triple for S∗ such that (2.15)
holds. Note first that A = T � ker(Γ0) = A0, B = T � ker(Γ1) = A1, and that A and B
are disjoint self-adjoint extensions of S by construction. Therefore the argument in the 
beginning of the proof implies that dom(T ) = dom(A) + dom(B) is dense in dom(S∗)
equipped with the graph norm and hence T = S∗. Moreover, since Θ = Θ∗ and the 
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abstract Green’s identity (2.2) holds for the ordinary boundary triple Π′ we obtain for 
f, g ∈ dom(T )

(Γ1f,Γ0g) − (Γ0f,Γ1g) =
(
−Γ′

0f, (Γ′
1 − ΘΓ′

0)g
)
−
(
(Γ′

1 − ΘΓ′
0)f,−Γ′

0g
)

= (Γ′
1f,Γ′

0g) − (Γ′
0f,Γ′

1g) = (Tf, g) − (f, Tg),

that is, the abstract Green’s identity (2.1) holds. In order to verify ran(Γ0) = H fix 
h ∈ H. Since Π′ is an ordinary boundary triple there exists f0 ∈ dom(B) = ker(Γ′

0) such 
that Γ′

1f0 = h. We then obtain

Γ0f0 = (Γ′
1 − ΘΓ′

0)f0 = Γ′
1f0 = h

and hence ran(Γ0) = H. Summing up, we have shown that Π is a B-generalized boundary 
triple such that (2.15) holds.

(ii) Now we choose an ordinary boundary triple Π′′ = {H, Γ′′
0 , Γ′′

1} for S∗ such that 
A = S∗ � ker(Γ′′

0). Since A and B are disjoint extensions of S there exists an operator 
Θ = Θ∗ ∈ C(H) such that

B = S∗ � dom(B), dom(B) = ker(Γ′′
1 − ΘΓ′′

0). (2.17)

It follows from [37, Theorem 2] that the condition (2.16) is equivalent to the condition 
(Θ − ξ)−1 ∈ Sp(H) for all ξ ∈ ρ(Θ). In particular, ρ(Θ) ∩ R 
= ∅, and in the following 
we assume without loss of generality that 0 ∈ ρ(Θ). Denote the spectral function of 
the self-adjoint operator Θ by EΘ(·), let sgn(Θ) =

∫
R

sgn(t)dEΘ(t) and recall the polar 
decomposition

Θ = |Θ|1/2 sgn(Θ)|Θ|1/2 = sgn(Θ)|Θ| = |Θ| sgn(Θ).

As Θ−1 ∈ Sp(H) we have |Θ|−1/2 ∈ S2p(H) and ker(|Θ|−1/2) = {0}. We consider the 
mappings

Γ0 := |Θ|1/2Γ′′
0 and Γ1 := |Θ|−1/2(Γ′′

1 − ΘΓ′′
0) (2.18)

defined on

dom(Γ0) = dom(Γ1) :=
{
f ∈ dom(S∗) : Γ′′

0f ∈ dom(|Θ|1/2)
}
. (2.19)

We set

T := S∗ � dom(T ), dom(T ) := dom(Γ0) = dom(Γ1),

and we claim that Π = {H, Γ0, Γ1} is a double B-generalized boundary triple for S∗. 
First of all we have for f, g ∈ dom(T )
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(Γ1f,Γ0g) − (Γ0f,Γ1g)

=
(
|Θ|−1/2(Γ′′

1 − ΘΓ′′
0)f, |Θ|1/2Γ′′

0g
)
−

(
|Θ|1/2Γ′′

0f, |Θ|−1/2(Γ′′
1 − ΘΓ′′

0)g
)

=
(
(Γ′′

1 − ΘΓ′′
0)f,Γ′′

0g
)
−

(
Γ′′

0f, (Γ′′
1 − ΘΓ′′

0)g
)

= (Γ′′
1f,Γ′′

0g) − (Γ′′
0f,Γ′′

1g)

and since Π′′ is an ordinary boundary triple the abstract Green’s identity (2.1) follows. 
The condition ran(Γ0) = H is satisfied since 0 ∈ ρ(Θ), and thus also 0 ∈ ρ(|Θ|1/2). It is 
also clear from the definition of Γ0 in (2.18)–(2.19) that

ker(Γ0) = ker(Γ′′
0) = dom(A). (2.20)

Next it will be shown that

ker(Γ1) = dom(B) (2.21)

holds. In fact, the inclusion ker(Γ1) ⊂ dom(B) in (2.21) follows from the definition of 
Γ1 in (2.18)–(2.19) and ker(|Θ|−1/2) = {0}. For the remaining inclusion let f ∈ dom(B). 
Then Γ′′

1f = ΘΓ′′
0f by (2.17) and, in particular,

Γ′′
0f ∈ dom(Θ) ⊂ dom(|Θ|1/2).

Hence dom(B) ⊂ dom(T ) and Γ1f = 0 is clear, that is, dom(B) ⊂ ker(Γ1) and thus 
(2.21) is shown. Combining (2.20) with (2.21) yields (2.15). Moreover, we have T = S∗

since

dom(A) + dom(B) = ker(Γ0) + ker(Γ1) ⊂ dom(T )

and dom(A) +dom(B) is dense in dom(S∗) equipped with the graph norm (as A and B are 
disjoint self-adjoint extensions of S). Summing up, we have shown that Π = {H, Γ0, Γ1}
is a B-generalized boundary triple for S∗ such that (2.15) holds.

It remains to verify that the Weyl function corresponding to Π is Sp-regular; Propo-
sition 2.7 (i) then implies that Π is a double B-generalized boundary triple. For this 
denote the Weyl function corresponding to the ordinary boundary triple Π′′ by M ′′(·)
and recall that M ′′(z)Γ′′

0fz = Γ′′
1fz for fz ∈ ker(S∗− z) and z ∈ ρ(A). We claim that the 

Weyl function corresponding to Π is given by

M(z) = |Θ|−1/2M ′′(z)|Θ|−1/2 − sgn(Θ), z ∈ ρ(A). (2.22)

In fact, for fz ∈ ker(T − z) we compute
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(
|Θ|−1/2M ′′(z)|Θ|−1/2 − sgn(Θ)

)
Γ0fz

= |Θ|−1/2M ′′(z)Γ′′
0fz − sgn(Θ)|Θ|1/2Γ′′

0fz

= |Θ|−1/2(Γ′′
1fz − |Θ|1/2 sgn(Θ)|Θ|1/2Γ′′

0fz
)

= |Θ|−1/2(Γ′′
1fz − ΘΓ′′

0fz
)

= Γ1fz

and hence (2.22) follows by Definition 2.3. Let K(z) := |Θ|−1/2M ′′(z)|Θ|−1/2, z ∈ C+
and let C := − sgn(Θ). Note that C is a boundedly invertible self-adjoint operator and 
that |Θ|−1/2 ∈ S2p(H) and M ′′(z) ∈ B(H) yield K(z) ∈ Sp(H), z ∈ C+. Moreover, 
as M ′′(·) ∈ Ru[H] it follows that K(·) ∈ Rs[H], and hence the Weyl function M(·) is 
Sp-regular. �

In applications to scattering problems it is important to know whether the resolvent 
p-comparability condition (2.12), (2.16) yields the Sp-regularity of the Weyl function. A 
converse statement to Proposition 2.7 is false for arbitrary double B-generalized bound-
ary triples, while Proposition 2.9 ensures the existence of such a double B-generalized 
boundary triple. However in the following proposition we present an affirmative answer 
to this question under certain additional explicit assumptions.

Proposition 2.10. Let A and B be self-adjoint operators in H such that

RB,A(z) := (B − z)−1 − (A− z)−1 ∈ Sp(H) (2.23)

for some z ∈ C \R and some p ∈ (0, ∞], and assume that the closed symmetric operator 
S = A ∩B is densely defined. Assume, in addition, that there exists λ0 ∈ ρ(A) ∩ρ(B) ∩R

such that

±RB,A(λ0) � 0. (2.24)

If Π = {H, Γ0, Γ1} is a double B-generalized boundary triple for S∗ such that condition 
(2.15) holds then the corresponding Weyl function M(·) is Sp-regular.

Proof. Since Π is a double B-generalized boundary triple, the values of the Weyl function 
M(·) and the function −M(·)−1 are in B(H). Moreover, the assumption λ0 ∈ ρ(A) ∩
ρ(B) ∩ R ensures that −M(λ0)−1 ∈ B(H) is a self-adjoint operator and we have

RB,A(λ0) = (B − λ0)−1 − (A− λ0)−1 = −γ(λ0)M(λ0)−1γ(λ0)∗ (2.25)

by Proposition 2.7 (iii). Assume that RA,B(λ0) ≥ 0 in (2.24). Then by (2.25)

(RA,B(λ0)f, f) =
(
−M(λ0)−1γ(λ0)∗f, γ(λ0)∗f

)
≥ 0, f ∈ H,

and since ran(γ(λ0)∗) is dense in H (see Section 2.1) we have −M(λ0)−1 ≥ 0. Setting 
T (λ0) := γ(λ0)(−M(λ0))−1/2 ∈ B(H, H) and using the assumption (2.23) for some, and 
hence for all, z ∈ ρ(A) ∩ ρ(B) we conclude from (2.25) that
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RB,A(λ0) = T (λ0)T (λ0)∗ ∈ Sp(H).

This relation yields T (λ0)∗ ∈ S2p(H, H) and T (λ0) ∈ S2p(H, H), and hence γ(λ0) =
T (λ0)(−M(λ0))1/2 ∈ S2p(H, H). It then follows from (2.5) that

γ(z) ∈ S2p(H,H) and γ(ξ)∗ ∈ S2p(H,H), z, ξ ∈ ρ(A).

Combining this with (2.7) it follows that M(z) − M(λ0) ∈ Sp(H). Therefore, setting 
C := M(λ0) and K(z) := M(z) −M(λ0), z ∈ C+, we arrive at the representation (2.9). 
Note that C = M(λ0) is a boundedly invertible self-adjoint operator. Furthermore, since 
ImK(z) = ImM(z) and M(·) ∈ Rs[H] we conclude K(·) ∈ Rs[H], that is, the Weyl 
function M(·) is Sp-regular. �
Remark 2.11. Condition (2.24) is satisfied if the symmetric operator S = A ∩ B is 
semibounded from below and A is chosen to be its Friedrichs extension. In this case 
(2.23) yields the semiboundedness of the operator B and the inequality (2.24) holds for 
any λ0 smaller than the lower bound of B.

Remark 2.12. The density of dom(A) + dom(B) in H under the conditions of Proposi-
tion 2.9 is well known (see for instance [36]). The simple proof presented here and which 
does not exploit the second Neumann formula seems to be new.

Remark 2.13. Proposition 2.7 (i) can also be viewed as an immediate consequence from 
the fact that the values of M−1(·) are in B(H); cf. [34,38]. For the convenience of the 
reader we have presented a simple direct proof.

In the proofs of the results in Sections 4 and 5 we shall occasionally make use of the 
following lemma.

Lemma 2.14. Let Π = {H, Γ0, Γ1} be a B-generalized boundary triple for T = S∗ and 
let M(·) be the corresponding Weyl function. Assume that A1 = A∗

1 and that ξ ∈ ρ(A0). 
Then the following equivalence holds:

ξ ∈ σp(A1) ⇔ 0 ∈ σp(M(ξ)).

Proof. Assume first that 0 ∈ σp(M(ξ)). Then there exists ψ ∈ H, ψ 
= 0, such that 
M(ξ)ψ = 0. Since ran(Γ0) = H one finds fξ ∈ ker(T − ξ), fξ 
= 0, with ψ = Γ0fξ. Then 
Γ1fξ = M(ξ)ψ = 0 and fξ ∈ dom(A1). This shows fξ ∈ ker(A1 − ξ) and ξ ∈ σp(A1).

Conversely, assume that fξ ∈ ker(A1 − ξ), fξ 
= 0. Then Γ1fξ = 0 and ψ := Γ0fξ 
= 0
since otherwise ξ ∈ σp(A0). Then M(ξ)ψ = M(ξ)Γ0fξ = Γ1fξ = 0 and hence it follows 
that 0 ∈ σp(M(ξ)). �
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3. A representation of the scattering matrix

Let A and B be self-adjoint operators in a Hilbert space H and assume that they are 
resolvent comparable, i.e. their resolvent difference is a trace class operator,

(B − i)−1 − (A− i)−1 ∈ S1(H). (3.1)

Denote by Hac(A) the absolutely continuous subspace of A and let P ac(A) be the or-
thogonal projection in H onto Hac(A). In accordance with the Birman–Krein theorem, 
under the assumption (3.1) the wave operators

W+(A,B) := s− lim
t→+∞

eitBe−itAP ac(A)

and

W−(A,B) := s− lim
t→−∞

eitBe−itAP ac(A)

exist and are complete, i.e. the ranges of W+(A, B) and W−(A, B) coincide with the 
absolutely continuous subspace Hac(B) of B; cf. [12,59,79,81,82]. The scattering operator
S(A, B) of the scattering system is defined by

S(A,B) = W+(A,B)∗W−(A,B).

The operator S(A, B) commutes with A and is unitary in Hac(A), hence it is unitarily 
equivalent to a multiplication operator induced by a family {S(A, B; λ)}λ∈R of unitary 
operators in a spectral representation of the absolutely continuous part Aac of A,

Aac := A � dom(A) ∩ Hac(A).

The family {S(A, B; λ)}λ∈R is called the scattering matrix of the scattering system 
{A, B}.

In Theorem 3.1 and Corollary 3.3 below we shall provide a representation of the 
scattering matrix {S(A, B; λ)}λ∈R of the system {A, B} in an extension theory framework 
using B-generalized boundary triples and their Weyl functions. It is assumed that the 
closed symmetric operator S = A ∩B is densely defined; in the more general framework 
of non-densely defined symmetric operators this assumption can be dropped. First we 
discuss the case that S = A ∩B is simple, i.e. S does not contain a self-adjoint part or, 
equivalently, the condition

H = clsp
{
ker(S∗ − z) : z ∈ C \ R

}
is satisfied; cf. [60]. In the sequel the abbreviation a.e. means “almost everywhere with 
respect to the Lebesgue measure”.
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Theorem 3.1. Let A and B be self-adjoint operators in a Hilbert space H, assume that 
the closed symmetric operator S = A ∩ B is densely defined and simple, and let Π =
{H, Γ0, Γ1} be a B-generalized boundary triple for S∗ such that A = T � ker(Γ0) and 
B = T � ker(Γ1). Assume, in addition, that the Weyl function M(·) corresponding to Π
is S1-regular.

Then {A, B} is a complete scattering system and

L2(R, dλ,Hλ), Hλ := ran(ImM(λ + i0)),

forms a spectral representation of Aac such that for a.e. λ ∈ R the scattering matrix 
{S(A, B; λ)}λ∈R of the scattering system {A, B} admits the representation

S(A,B;λ) = IHλ
− 2i

√
ImM(λ + i0)M(λ + i0)−1

√
ImM(λ + i0).

Proof. The proof of Theorem 3.1 consists of three separate steps and is essentially based 
on Theorem A.2. Parts of the proof follow the lines in [20, Proof of Theorem 3.1], where 
the special case of a symmetric operator S with finite deficiency indices was treated.

First of all we note that the S1-regularity assumption on M(·) together with Propo-
sition 2.7 (iii) ensures that the resolvent difference of A and B is a trace class operator. 
Hence the wave operators W±(A, B) exist and are complete and {A, B} is a complete 
scattering system, see, e.g. [82, Theorem VI.5.1].

Step 1. According to Proposition 2.7 (iii) the resolvent difference of A and B in (3.1) can 
be written in a Krein type resolvent formula of the form

(B − z)−1 − (A− z)−1 = −γ(z)M(z)−1γ(z̄)∗, z ∈ ρ(A) ∩ ρ(B). (3.2)

In particular, from (3.2) and (2.5) we get

(B − i)−1 − (A− i)−1 = −γ(i)M(i)−1γ(−i)∗

= −(A + i)(A− i)−1γ(−i)M(i)−1γ(−i)∗ = φ(A)CGC∗

where

φ(t) := t + i

t− i
, t ∈ R, C := γ(−i) and G := −M(i)−1. (3.3)

We claim that the condition

Hac(A) = clsp
{
Eac

A (δ) ranC : δ ∈ B(R)
}

(3.4)

in Theorem A.2 is satisfied. In fact, since S is assumed to be simple we have

H = clsp
{
ker(S∗ − z) : z ∈ C \ R

}
.
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Furthermore, using ker(S∗ − z) = ker(T − z), z ∈ C \ R, which follows from (2.4), and 
ran(γ(z)) = ker(T − z), z ∈ C \ R, it follows that

H = clsp
{
ker(T − z) : z ∈ C \ R

}
= clsp

{
γ(z)h : z ∈ C \ R, h ∈ H

}
= clsp

{
(A + i)(A− z)−1γ(−i)h : z ∈ C \ R, h ∈ H

}
= clsp

{
(A + i)(A− z)−1Ch : z ∈ C \ R, h ∈ H

}
= clsp

{
EA(δ)Ch : h ∈ H, δ ∈ B(R)

}
and hence

Hac(A) = clsp
{
P ac(A)EA(δ)Ch : h ∈ H, δ ∈ B(R)

}
.

Since Eac
A (δ) = P ac(A)EA(δ) this implies (3.4).

Step 2. Now we apply Theorem A.2 to obtain a preliminary form of the scattering matrix 
{S(A, B; λ)}λ∈R. Since M(·) is S1-regular by assumption we have

ImM(i) = γ(i)∗γ(i) ∈ S1(H)

(see (2.8)) and hence γ(i) ∈ S2(H, H) and

C = γ(−i) =
(
I − 2i(A + i)−1)γ(i) ∈ S2(H,H).

Therefore the function λ �→ C∗EA((−∞, λ))C is S1(H)-valued and in accordance with 
[25, Lemma 2.2] this function is S1(H)-differentiable for a.e. λ ∈ R. We compute its 
derivative

λ �→ K(λ) = d

dλ
C∗EA((−∞, λ))C

and the square root λ �→
√
K(λ) for a.e. λ ∈ R. First we note that by the S1(H)-gen-

eralization of the Fatou theorem (see [25, Lemma 2.4])

K(λ) = lim
ε→0+

1
2πiC

∗((A− λ− iε)−1 − (A− λ + iε)−1)C
= lim

ε→0+

ε

π
C∗((A− λ− iε)−1(A− λ + iε)−1)C (3.5)

for a.e. λ ∈ R. On the other hand, inserting the formula

γ(λ + iε) = (A + i)(A− λ− iε)−1γ(−i) = (A + i)(A− λ− iε)−1C

(see (2.5)) into (2.8) leads to
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ImM(λ + iε) = εγ(λ + iε)∗γ(λ + iε)

= εC∗(I + A2)
(
A− λ + iε

)−1(
A− λ− iε

)−1
C.

Combining this relation with (3.5) we conclude

ImM(λ + i0) = lim
ε→0+

ImM(λ + iε) = π(1 + λ2)K(λ)

for a.e. λ ∈ R. In particular, ran(ImM(λ + i0)) = ran(K(λ)) for a.e. λ ∈ R and hence

Hλ = ran
(
ImM(λ + i0)

)
= ran(K(λ)) for a.e. λ ∈ R.

Therefore L2(R, dλ, Hλ) is a spectral representation of Aac and in accordance with The-
orem A.2 the scattering matrix {S(A, B; λ)}λ∈R is given by

S(A,B;λ) = IHλ
+ 2πi(1 + λ2)2

√
K(λ)Z(λ)

√
K(λ)

= IHλ
+ 2i(1 + λ2)

√
ImM(λ + i0)Z(λ)

√
ImM(λ + i0)

(3.6)

for a.e. λ ∈ R, where Z(·) is given by (A.6),

Z(λ) = 1
λ + i

Q∗Q + 1
(λ + i)2φ(λ)G + lim

ε→0+
Q∗(B − (λ + iε)

)−1
Q, (3.7)

and

Q = φ(A)CG = −(A + i)(A− i)−1γ(−i)M(i)−1 = −γ(i)M(i)−1 ∈ S2(H,H).

Observe that due to the last inclusion the limit in (3.7) exists for a.e. λ ∈ R in every 
Sp-norm with p > 1 and the operator-valued function Z(·) in (3.7) is well defined a.e. 
on R; cf. Lemma 2.6.

Step 3. In the third and final step we prove that

Z(λ) = − 1
1 + λ2M(λ + i0)−1 (3.8)

for a.e. λ ∈ R. Then inserting this expression in (3.6) one arrives at the asserted form of 
the scattering matrix.

Applying the mapping Γ0 to (3.2) and using ker(Γ0) = dom(A) and Definition 2.3
one gets

Γ0(B − z)−1 = Γ0(A− z)−1 − Γ0γ(z)M(z)−1γ(z̄)∗ = −M(z)−1γ(z̄)∗ (3.9)

for z ∈ ρ(A) ∩ ρ(B) and hence

Γ0(B + i)−1 = −M(−i)−1γ(i)∗ =
(
−γ(i)M(i)−1)∗ = Q∗.
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This yields

Q∗(B − z)−1Q = Γ0(B + i)−1(B − z)−1Q

= Γ0
(
Q∗(B − z̄)−1(B − i)−1)∗

= Γ0
(
Γ0(B + i)−1(B − z̄)−1(B − i)−1)∗. (3.10)

In order to compute this expression we note that

(B + i)−1(B − z̄)−1(B − i)−1

= −1
1 + z̄2

(
(B + i)−1 − (B − z̄)−1) + 1

2i(z̄ − i)
(
(B + i)−1 − (B − i)−1)

and hence (3.9) implies

Γ0(B + i)−1(B−z̄)−1(B − i)−1 = 1
1 + z̄2

(
M(−i)−1γ(i)∗ −M(z̄)−1γ(z)∗

)
− 1

2i(z̄ − i)
(
M(−i)−1γ(i)∗ −M(i)−1γ(−i)∗

)
.

Taking into account that (M(μ̄)−1)∗ = M(μ)−1 for μ ∈ ρ(A) ∩ ρ(B) we obtain for the 
adjoint

(
Γ0(B + i)−1(B − z̄)−1(B − i)−1)∗ = 1

1 + z2

(
γ(i)M(i)−1 − γ(z)M(z)−1)

+ 1
2i(z + i)

(
γ(i)M(i)−1 − γ(−i)M(−i)−1).

In turn, combining this identity with (3.10) yields

Q∗(B − z)−1Qh = Γ0
(
Γ0(B + i)−1(B − z̄)−1(B − i)−1)∗

= 1
1 + z2

(
M(i)−1 −M(z)−1) + 1

2i(z + i)
(
M(i)−1 −M(−i)−1)

for z ∈ ρ(A) ∩ ρ(B). Setting here z = λ + iε ∈ C+ and passing to the limit as ε → 0 one 
derives

lim
ε→0+

Q∗(B − (λ + iε)
)−1

Q = 1
1 + λ2

(
M(i)−1 −M(λ + i0)−1)

+ 1
2i(λ + i)

(
M(i)−1 −M(−i)−1) (3.11)

for a.e. λ ∈ R; note that by Lemma 2.6 the limit M(λ + i0)−1 ∈ B(H) exists for a.e. 
λ ∈ R.
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Moreover, we have

Q∗Q =
(
γ(i)M(i)−1)∗γ(i)M(i)−1 = M(−i)−1γ(i)∗γ(i)M(i)−1

= 1
2iM(−i)−1(M(i) −M(−i)

)
M(i)−1 = 1

2i
(
M(−i)−1 −M(i)−1).

Inserting this relation and (3.11) into (3.7) and taking notations (3.3) into account we 
obtain for a.e. λ ∈ R

Z(λ) = 1
λ + i

Q∗Q + 1
(λ + i)2φ(λ)G + Q∗(B − (λ + i0)

)−1
Q

= 1
2i(λ + i)

(
M(−i)−1 −M(i)−1)− 1

1 + λ2M(i)−1

+ 1
1 + λ2

(
M(i)−1 −M(λ + i0)−1) + 1

2i(λ + i)
(
M(i)−1 −M(−i)−1)

= − 1
1 + λ2M(λ + i0)−1,

that is, (3.8) holds. �
Remark 3.2. Instead of the assumption that the Weyl function is S1-regular one may 
assume in Theorem 3.1 that RB,A(z) = (B − z)−1 − (A − z)−1 ∈ S1(H) holds for some 
z ∈ ρ(A) ∩ ρ(B) and RB,A(λ0) ≥ 0 for some λ0 ∈ R ∩ ρ(A) ∩ ρ(B); cf. Proposition 2.10.

Our next task is to drop the assumption of the simplicity of S in Theorem 3.1. If 
S = A ∩ B is not simple then the Hilbert space H admits an orthogonal decomposition 
H = H0 ⊕ H′ with H0 
= {0} such that

S = S0 ⊕ S′, (3.12)

where S0 is a self-adjoint operator in the Hilbert space H0 and S′ is a simple symmetric 
operator in the Hilbert space H′; cf. [60]. It follows that there exist self-adjoint extensions 
A′ and B′ of S′ in H′ such that

A = S0 ⊕A′ and B = S0 ⊕B′.

By restricting the boundary maps of a B-generalized boundary triple for S∗ one obtains 
a B-generalized boundary triple for the operator (S′)∗ with the same Weyl function. 
Applying Theorem 3.1 to the pair {A′, B′} yields the following variant of Theorem 3.1; 
cf. [20, Proof of Theorem 3.2] for the same argument in the special case of finite rank 
perturbations.

Corollary 3.3. Let A and B be self-adjoint operators in a Hilbert space H, assume that the 
closed symmetric operator S = A ∩B is densely defined and decomposed in S = S0⊕S′ as 
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in (3.12), and let L2(R, dλ, Gλ) be a spectral representation of Sac
0 . Let Π = {H, Γ0, Γ1}

be a B-generalized boundary triple for S∗ as in Theorem 3.1 such that the corresponding 
Weyl function M(·) is S1-regular.

Then {A, B} is a complete scattering system and

L2(R, dλ,Hλ ⊕ Gλ), Hλ := ran(ImM(λ + i0)),

forms a spectral representation of Aac such that for a.e. λ ∈ R the scattering matrix 
{S(A, B; λ)}λ∈R of the scattering system {A, B} admits the representation

S(A,B;λ) =
(
S(A′, B′;λ) 0

0 IGλ

)
,

where

S(A′, B′;λ) = IHλ
− 2i

√
ImM(λ + i0) M(λ + i0)−1

√
ImM(λ + i0).

4. Scattering matrices for Schrödinger operators on exterior domains

Our main objective in this section is to derive representations of the scattering ma-
trices for pairs of self-adjoint Schrödinger operators with Dirichlet, Neumann and Robin 
boundary conditions on unbounded domains with smooth compact boundaries in terms 
of Dirichlet-to-Neumann and Neumann-to-Dirichlet maps. After some necessary prelim-
inaries in Sections 4.1 and 4.2 we formulate and prove our main results Theorem 4.3
and Theorem 4.7 in Sections 4.3 and 4.4, respectively. Both theorems follow in a similar 
way from our general result Theorem 3.1 by fixing a suitable B-generalized boundary 
triple and verifying that the corresponding Weyl function is S1-regular. We also mention 
that along the way we obtain classical results on singular value estimates of resolvent 
differences due to Birman, Grubb and others without any extra efforts; cf. Remarks 4.4
and 4.8.

4.1. Preliminaries on Sobolev spaces, trace maps, and Green’s second identity

Let Ω ⊂ R
n be an exterior domain, that is, Rn \Ω is bounded and closed, and assume 

that the boundary ∂Ω of Ω is C∞-smooth. We denote by Hs(Ω), s ∈ R, the usual 
L2-based Sobolev spaces on the unbounded exterior domain Ω, and by Hr(∂Ω), r ∈ R, 
the corresponding Sobolev spaces on the compact C∞-boundary ∂Ω. The corresponding 
scalar products will be denoted by (·, ·), and sometimes the space is used as an index.

Recall that the Dirichlet and Neumann trace operators γD and γN , originally defined 
as linear mappings from C∞

0 (Ω) to C∞(∂Ω), admit continuous extensions onto H2(Ω)
such that the mapping (

γD
γ

)
: H2(Ω) → H3/2(∂Ω) ×H1/2(∂Ω) (4.1)
N
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is surjective. The spaces

Hs
Δ(Ω) =

{
f ∈ Hs(Ω) : Δf ∈ L2(Ω)

}
, s ∈ [0, 2], (4.2)

equipped with the Hilbert scalar products

(f, g)Hs
Δ(Ω) = (f, g)Hs(Ω) + (Δf,Δg)L2(Ω), f, g ∈ Hs

Δ(Ω), (4.3)

will play an important role. In particular, we will use that the Dirichlet trace operator 
can be extended by continuity to surjective mappings

γD : H3/2
Δ (Ω) → H1(∂Ω) and γD : H1

Δ(Ω) → H1/2(∂Ω), (4.4)

and the Neumann trace operator can be extended by continuity to surjective mappings

γN : H3/2
Δ (Ω) → L2(∂Ω) and γN : H1

Δ(Ω) → H−1/2(∂Ω); (4.5)

cf. [62, Theorems 7.3 and 7.4, Chapter 2] for the case of a bounded smooth domain and, 
e.g. [49, Lemma 3.1 and Lemma 3.2]. At the same time the second Green’s identity

(−Δf, g)L2(Ω) − (f,−Δg)L2(Ω) = (γDf, γNg)L2(∂Ω) − (γNf, γDg)L2(∂Ω), (4.6)

well known for f, g ∈ H2(Ω), remains valid for f, g ∈ H
3/2
Δ (Ω) and extends further to 

functions f, g ∈ H1
Δ(Ω)

(−Δf, g)L2(Ω) − (f,−Δg)L2(Ω) = 〈γDf, γNg〉 − 〈γNf, γDg〉, (4.7)

where 〈·, ·〉 denotes the extension of the L2(∂Ω)-inner product onto the dual pair 
H1/2(∂Ω) ×H−1/2(∂Ω) and H−1/2(∂Ω) ×H1/2(∂Ω), respectively. As usual, here

H1/2(∂Ω) ↪→ L2(∂Ω) ↪→ H−1/2(∂Ω) (4.8)

is viewed as a rigging of Hilbert spaces, that is, some uniformly positive self-adjoint 
operator j in L2(∂Ω) with dom(j) = H1/2(∂Ω) is fixed and viewed as an isomorphism

j : H1/2(∂Ω) −→ L2(∂Ω). (4.9)

As scalar product on H1/2(∂Ω) we choose (ϕ, ψ)H1/2(∂Ω) := (jϕ, jψ)L2(∂Ω); it follows that 
H−1/2(∂Ω) coincides with the completion of L2(∂Ω) with respect to (j−1·, j−1·)L2(∂Ω), 
and j−1 admits an extension to an isomorphism

j̃−1 : H−1/2(∂Ω) −→ L2(∂Ω).

The inner product 〈·, ·〉 on the right hand side of (4.7) is
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〈ϕ,ψ〉 :=
(
jϕ, j̃−1ψ

)
L2(∂Ω), ϕ ∈ H1/2(∂Ω), ψ ∈ H−1/2(∂Ω), (4.10)

and extends the L2(∂Ω) scalar product in the sense that 〈ϕ, ψ〉 = (ϕ, ψ)L2(∂Ω) for ϕ ∈
H1/2(∂Ω) and ψ ∈ L2(∂Ω). A standard and convenient choice for j in (4.9) in many 
situations is

jΔ := (−Δ∂Ω + I)1/4 : H1/2(∂Ω) −→ L2(∂Ω), (4.11)

where −Δ∂Ω denotes the Laplace–Beltrami operator in L2(∂Ω). In this case

j̃−1
Δ = (−Δ∂Ω + I)−1/4 : H−1/2(∂Ω) −→ L2(∂Ω);

cf. Remark 4.5 for other natural choices of j. Note in this connection that jΔ maps 
Hs(∂Ω) isomorphically onto Hs−1/2(∂Ω) for any s ∈ R.

In this context we also recall the following lemma, which is essentially a consequence 
of the asymptotics of the eigenvalues of the Laplace–Beltrami operator on compact man-
ifolds; cf. [4, Proof of Proposition 5.4.1], [5, Theorem 2.1.2], and [17, Lemma 4.7].

Lemma 4.1. Let K be a Hilbert space and assume that X ∈ B(K, Hs(∂Ω)) has the property 
ranX ⊂ Hr(∂Ω) for some r > s ≥ 0. Then

X ∈ Sn−1
r−s

(
K, Hs(∂Ω)

)
and hence X ∈ Sp(K, Hs(∂Ω)) for p > n−1

r−s .

As a useful consequence of Lemma 4.1 we note that for r > 0 the canonical embeddings 
ιr : Hr(∂Ω) −→ L2(∂Ω) and ι−r : L2(∂Ω) −→ H−r(∂Ω) satisfy

ιr ∈ Sn−1
r

(
Hr(∂Ω), L2(∂Ω)

)
and ι−r ∈ Sn−1

r

(
L2(∂Ω), H−r(∂Ω)

)
,

respectively. In fact, the assertion for the embedding ιr follows after fixing a unitary 
operator U : L2(∂Ω) −→ Hr(∂Ω), applying Lemma 4.1 to the operator X = ιrU

and noting that the singular values of X and ιr are the same. Since the dual opera-
tor ι′r : L2(∂Ω) −→ H−r(∂Ω) coincides with the canonical embedding ι−r of L2(∂Ω)
into H−r(∂Ω) the second assertion follows. By composition and (1.4) we also conclude

ι−r ◦ ιr ∈ Sn−1
2r

(
Hr(∂Ω), H−r(∂Ω)

)
. (4.12)

4.2. Schrödinger operators with Dirichlet, Neumann, and Robin boundary conditions

Let Ω ⊂ R
n be an exterior domain as in Section 4.1. In the following we consider a 

Schrödinger differential expression with a bounded, measurable, real valued potential V ,
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L = −Δ + V, V ∈ L∞(Ω). (4.13)

With the expression in (4.13) one naturally associates the minimal operator

Sminf = L f,

dom(Smin) = H2
0 (Ω) =

{
f ∈ H2(Ω) : γDf = γNf = 0

}
,

(4.14)

and the maximal operator

Smaxf = L f,

dom(Smax) =
{
f ∈ L2(Ω) : −Δf + V f ∈ L2(Ω)

}
,

in L2(Ω); the expression Δf in dom(Smax) is understood in the sense of distributions. We 
note that dom(Smax) equipped with the graph norm coincides with the Hilbert space 
H0

Δ(Ω) introduced above. In the next lemma we collect some well-known properties 
of Smin and Smax; for the simplicity of S we refer to [22, Proposition 2.2] and we 
mention that another proof of this fact can be obtained following the reasoning in [28, 
Example 5.3]. The density of Hs

Δ(Ω) in dom(S∗) equipped with the graph norm is shown 
(for the case of a bounded domain) in [62, Chapter 2, Theorem 6.4].

Lemma 4.2. The operator S := Smin is a densely defined, closed, simple, symmetric 
operator in L2(Ω). The deficiency indices of S coincide and are both infinite,

dim
(
ran(S − i)⊥

)
= dim

(
ran(S + i)⊥

)
= ∞.

The adjoint of the minimal operator is the maximal operator,

S∗ = S∗
min = Smax and S = Smin = S∗

max,

and the spaces Hs
Δ(Ω), s ∈ [0, 2], are dense in dom(S∗) equipped with the graph norm.

In Sections 4.3 and 4.4 we are interested in scattering systems consisting of different 
self-adjoint realizations of L in L2(Ω). The self-adjoint Dirichlet and Neumann operators 
associated to the densely defined, semibounded, closed quadratic forms

aD[f, g] = (∇f,∇g)(L2(Ω))n + (V f, g)L2(Ω), dom(aD) = H1
0 (Ω),

aN [f, g] = (∇f,∇g)(L2(Ω))n + (V f, g)L2(Ω), dom(aN ) = H1(Ω),

are given by

ADf = L f, dom(AD) =
{
f ∈ H2(Ω) : γDf = 0

}
,{ 2 } (4.15)
ANf = L f, dom(AN ) = f ∈ H (Ω) : γNf = 0 ,
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and for a real valued function α ∈ L∞(∂Ω) the quadratic form

aα[f, g] = aN [f, g] − (αγDf, γDg)L2(∂Ω), dom(aα) = H1(Ω),

is also densely defined, closed and semibounded from below, and hence gives rise to a 
semibounded self-adjoint operator in L2(Ω), which has the form

Aαf = L f, dom(Aα) =
{
f ∈ H

3/2
Δ (Ω) : αγDf = γNf

}
. (4.16)

We remark that the H2-regularity of the functions in dom(AD) and dom(AN ) is a clas-
sical fact (see the monographs [3,61,62]) and the H3/2-regularity of the functions in 
dom(Aα) can be found in, e.g. [14, Corollary 6.25]; in the case that the coefficient α in 
the Robin boundary condition is continuously differentiable also dom(Aα) is contained 
in H2(Ω); cf. [68, Theorem 4.18].

4.3. Scattering matrix for the Dirichlet and Robin realization

In this subsection we consider the pair {AD, Aα} consisting of the self-adjoint Dirichlet 
and Robin operator associated to L in (4.15) and (4.16) on an exterior domain Ω ⊂ R

2; 
here we restrict ourselves to the two dimensional situation in order to ensure that the 
trace class condition (3.1) for the resolvent difference is satisfied; cf. Remark 4.4.

Before formulating and proving our main result on the system {AD, Aα} we recall the 
definition and some useful properties of the Dirichlet-to-Neumann map. First we note 
that for any ψ ∈ H1/2(∂Ω) and z ∈ ρ(AD) there exists a unique solution fz ∈ H1

Δ(Ω) of 
the boundary value problem

−Δfz + V fz = zfz, γDfz = ψ ∈ H1/2(∂Ω). (4.17)

The corresponding solution operator is given by

PD(z) : H1/2(∂Ω) −→ H1
Δ(Ω) ⊂ L2(Ω), ψ �→ fz. (4.18)

For z ∈ ρ(AD) the Dirichlet-to-Neumann map Λ1/2(z) is defined by

Λ1/2(z) : H1/2(∂Ω) −→ H−1/2(∂Ω), ψ �→ γNPD(z)ψ, (4.19)

and takes Dirichlet boundary values γDfz of the solution fz ∈ H1
Δ(Ω) of (4.17) to their 

Neumann boundary values γNfz ∈ H−1/2(∂Ω).
Now we are ready to formulate and prove a representation of the scattering matrix 

for the pair {AD, Aα}.

Theorem 4.3. Let Ω ⊂ R
2 be an exterior domain with a C∞-smooth boundary, let 

V ∈ L∞(Ω) and α ∈ L∞(∂Ω) be real valued functions, and let AD and Aα be the 
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self-adjoint Dirichlet and Robin realizations of L = −Δ + V in L2(Ω) in (4.15) and 
(4.16), respectively. Moreover, let Λ1/2(·) be the Dirichlet-to-Neumann map defined in 
(4.19) and let

MD
α (z) := j̃−1(α− Λ1/2(z))j−1, z ∈ ρ(AD), (4.20)

where j : H1/2(∂Ω) −→ L2(∂Ω) denotes some uniformly positive self-adjoint operator in 
L2(∂Ω) with dom(j) = H1/2(∂Ω) as in (4.8)–(4.9).

Then {AD, Aα} is a complete scattering system and

L2(R, dλ,Hλ), Hλ := ran(ImMD
α (λ + i0)),

forms a spectral representation of Aac
D such that for a.e. λ ∈ R the scattering matrix 

{S(AD, Aα; λ)}λ∈R of the scattering system {AD, Aα} admits the representation

S(AD, Aα;λ) = IHλ
− 2i

√
ImMD

α (λ + i0)MD
α (λ + i0)−1

√
ImMD

α (λ + i0).

Proof. It follows from (4.15) and (4.16) that the operator Aα ∩ AD coincides with the 
minimal operator S = Smin associated with L in (4.14), which is closed, densely defined 
and simple by Lemma 4.2. Define the operator T as a restriction of S∗ to the domain 
H1

Δ(Ω),

Tf = −Δf + V f, dom(T ) = H1
Δ(Ω),

and let

Γ0f := j γDf and Γ1f := j̃−1(αγD − γN )f, f ∈ dom(T ). (4.21)

We claim that ΠD
α = {L2(∂Ω), Γ0, Γ1} is a B-generalized boundary triple for S∗ with 

the S1-regular Weyl function MD
α (·) given by (4.20) such that

AD = T � ker(Γ0) and Aα = T � ker(Γ1). (4.22)

In fact, for f, g ∈ dom(T ) we use (4.7) and the fact that α is real valued, and compute

(Γ1f,Γ0g) − (Γ0f,Γ1g)

=
(
j̃−1(αγD − γN )f, j γDg

)
−

(
j γDf, j̃−1(αγD − γN )g

)
=

〈
αγDf − γNf, γDg

〉
−
〈
γDf, αγDg − γNg〉

= 〈γDf, γNg〉 − 〈γNf, γDg〉
= (Tf, g) − (f, Tg)

and hence Green’s identity (2.1) is satisfied. Moreover, γD : dom(T ) → H1/2(∂Ω) is 
well defined and surjective according to (4.4), and since j : H1/2(∂Ω) → L2(∂Ω) is an 
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isomorphism we conclude ran(Γ0) = L2(∂Ω), i.e., Γ0 is surjective. From Lemma 4.2 we 
directly obtain that dom(T ) = H1

Δ(Ω) is dense in dom(S∗) equipped with the graph 
norm (which is equal to the space H0

Δ(Ω)) and hence we have T = S∗. Moreover, it 
follows from Green’s identity (2.1) that the restrictions T � ker(Γ0) and T � ker(Γ1) are 
both symmetric operators in L2(Ω) and from the definition of the boundary maps it is 
clear that the self-adjoint operators AD and Aα are contained in the symmetric operators 
T � ker(Γ0) and T � ker(Γ1), and hence they coincide. Therefore, ΠD

α = {L2(∂Ω), Γ0, Γ1}
is a B-generalized boundary triple for S∗ such that (4.22) holds.

In order to see that the Weyl function is given by (4.20) recall that Λ1/2(z)γDfz =
γNfz for fz ∈ ker(T − z), z ∈ ρ(AD), according to the definition of the Dirichlet-to-
Neumann map Λ1/2(·) in (4.19). Hence we obtain

j̃−1
(
α− Λ1/2(z)

)
j−1Γ0fz = j̃−1

(
αγDfz − Λ1/2(z)γDfz

)
= Γ1fz

for fz ∈ ker(T − z) and z ∈ ρ(AD), and this yields (4.20).
It remains to verify that MD

α (·) is S1-regular. For this we denote the γ-field associated 
to ΠD

α by γD
α (·) and use the relation (2.7) with some ξ ∈ ρ(AD) ∩ ρ(Aα) ∩ ρ(AN ) ∩ R

and all z ∈ ρ(AD). Observe that (2.6), ξ = ξ̄, and the choice of Γ1 in (4.21) yield

γD
α (ξ)∗h = Γ1(AD − ξ)−1h = −j̃−1γN (AD − ξ)−1h (4.23)

for all h ∈ L2(Ω). Since dom(AD) ⊂ H2(Ω) we conclude from (4.1) that the range of 
the mapping γN (AD − ξ)−1 is contained in H1/2(∂Ω). As γN maps H2(Ω) continuously 
onto H1/2(∂Ω) (cf. (4.1)) this operator is defined on the whole space L2(Ω) and

γN (AD − ξ)−1 ∈ B
(
L2(Ω), H1/2(∂Ω)

)
.

Now we use that the canonical embedding operator ι−1/2 ◦ ι1/2 : H1/2(∂Ω) −→
H−1/2(∂Ω) is compact and belongs to S1(H1/2(∂Ω), H−1/2(∂Ω)) by (4.12). Thus we 
have

γN (AD − ξ)−1 ∈ S1
(
L2(Ω), H−1/2(∂Ω)

)
and hence (4.23) yields γD

α (ξ)∗ ∈ S1(L2(Ω), L2(∂Ω)). It follows that also γD
α (ξ) ∈

S1(L2(∂Ω), L2(Ω)) and hence by (2.5) for all z ∈ ρ(AD)

γD
α (z) =

(
I + (z − ξ)(AD − z)−1)γD

α (ξ) ∈ S1
(
L2(∂Ω), L2(Ω)

)
. (4.24)

Therefore

(z − ξ)γD
α (ξ)∗γD

α (z) ∈ S1/2
(
L2(∂Ω)

)
, z ∈ ρ(AD). (4.25)

Since S1/2(L2(∂Ω)) ⊂ S1(L2(∂Ω)) and MD
α (ξ) = MD

α (ξ)∗ we conclude from (2.7) and 
(4.25) that
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K(z) := MD
α (z) −MD

α (ξ) = (z − ξ)γD
α (ξ)∗γD

α (z) ∈ S1
(
L2(∂Ω)

)
, z ∈ C+.

Since MD
α (·) is a strict Nevanlinna function, K(·) is a strict Nevanlinna function too. It 

remains to show that

C := MD
α (ξ) = j̃−1αj−1 − j̃−1Λ1/2(ξ)j−1

is boundedly invertible. Using that the maps (4.4) and (4.5) are surjective and ξ ∈
ρ(AD) ∩ρ(AN ) ∩R we find that the self-adjoint operator j̃−1Λ1/2(ξ)j−1 is surjective, and 

hence boundedly invertible in L2(∂Ω). From ran(αj−1) ⊆ L2(∂Ω) we obtain that j̃−1αj−1

is compact and therefore MD
α (ξ) is a Fredholm operator. Furthermore, ker(MD

α (ξ)) 
= {0}
by Lemma 2.14 and hence C = MD

α (ξ) is boundedly invertible. Therefore MD
α (·) is 

an S1-regular Weyl function. Now the assertions in Theorem 4.3 follow from Theo-
rem 3.1. �
Remark 4.4. For n = 2, 3, 4, . . . one obtains in the same way as in the proof of Theo-
rem 4.3 using (4.12) that

γD
α (z) ∈ Sn−1

(
L2(∂Ω), L2(Ω)

)
and γD

α (z)∗ ∈ Sn−1
(
L2(Ω), L2(∂Ω)

)
for all z ∈ ρ(AD) and since MD

α (z)−1 ∈ B(L2(∂Ω)), z ∈ ρ(AD) ∩ ρ(Aα), we conclude 
from Krein’s formula in Proposition 2.7 (iii) that

(Aα − z)−1 − (AD − z)−1 = −γD
α (z)MD

α (z)−1γD
α (z̄)∗ ∈ Sn−1

2
(L2(Ω)) (4.26)

for all z ∈ ρ(AD) ∩ ρ(Aα) by Proposition 2.7 (iii). In particular, for n = 2 one gets the 
S1-resolvent comparability of Aα and AD. This well known result goes back to Birman 
[24] (see also [17,45,53,54,63] for more details on singular value estimates in this context).

Remark 4.5. There are several possibilities to choose the operator j in (4.9) used for the 
extension (4.10) of the L2(∂Ω) scalar product in the rigging (4.8). Besides the choice 
jΔ = (−Δ∂Ω + I)1/4 in (4.11) the following choice is very convenient for the scattering 
matrix, since it allows to express it completely in terms of the Dirichlet-to-Neumann 
map: Fix some λ0 < min{σ(AD), σ(AN )} and note that the restriction Λ1(λ0) (see also 
the beginning of Section 5.4) of the Dirichlet-to-Neumann map Λ1/2(λ0) onto H1(∂Ω)
is a non-negative self-adjoint operator in L2(∂Ω) with a bounded everywhere defined 
inverse Λ1(λ0)−1 in L2(∂Ω); the Neumann-to-Dirichlet map. Then also the square root √

Λ1(λ0) is a non-negative self-adjoint operator in L2(∂Ω) which is boundedly invertible, 
and we have dom(

√
Λ1(λ0)) = H1/2(∂Ω) (see, e.g., [18, Proposition 3.2 (iii)]). Hence

j =
√

Λ1(λ0) : H1/2(∂Ω) −→ L2(∂Ω)

is a possible choice for the definition of the scalar product 〈·, ·〉 in (4.10).
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Following [23, Section 1] one defines the adjoint X+ of an operator

X ∈ B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
in the rigging H1/2(∂Ω) ↪→ L2(∂Ω) ↪→ H−1/2(∂Ω) via

〈Xϕ,ψ〉 = 〈ϕ,X+ψ〉, ϕ, ψ ∈ H1/2(∂Ω).

The imaginary part of the operator X is defined by ImX = 1
2i (X −X+). The operator 

X is self-adjoint if X = X+ and X is non-negative if 〈Xϕ, ϕ〉 ≥ 0 for all ϕ ∈ H1/2(∂Ω).
From the fact that the function MD

α (·) in (4.20) is S1-regular with values in B(L2(∂Ω))
we conclude

Λ1/2(z) ∈ B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
, z ∈ C+.

Together with Lemma 2.6 this yields the following corollary.

Corollary 4.6. Let Ω ⊂ R
2 be an exterior domain with a C∞-smooth boundary and let 

Λ1/2(·) be the Dirichlet-to-Neumann map defined in (4.19). Then the following holds.

(i) The limit Λ1/2(λ + i0) = limε→+0 Λ1/2(λ + iε) exists for a.e. λ ∈ R in the norm of 
B(H1/2(∂Ω), H−1/2(∂Ω));

(ii) Λ1/2(λ + i0) ∈ B(H1/2(∂Ω), H−1/2(∂Ω)) is boundedly invertible for a.e. λ ∈ R;
(iii) Λ1/2(λ + iε) − Λ1/2(λ + i0) ∈ Sp(H1/2(∂Ω), H−1/2(∂Ω)) for p ∈ (1, ∞], ε > 0 and 

a.e. λ ∈ R, and

lim
ε→+0

∥∥Λ1/2(λ + iε) − Λ1/2(λ + i0)
∥∥
Sp(H1/2(∂Ω),H−1/2(∂Ω)) = 0;

(iv) Im Λ1/2(λ +i0) = limε→+0 Im Λ1/2(λ +iε) exists for a.e. λ ∈ R in the S1(H1/2(∂Ω),
H−1/2(∂Ω))-norm and − Im Λ1/2(λ + i0) � 0.

4.4. Scattering matrix for the Neumann and Robin realization

In this subsection we discuss a representation of the scattering matrix for the pair 
{AN , Aα} consisting of the self-adjoint Neumann and Robin operator associated to L
in (4.15) and (4.16). Here Ω is an exterior domain in R2 or R3; it is known from [24]
(for R2) and [15,58] (for R2 and R3) that the trace class condition (3.1) for the resolvent 
difference is satisfied; cf. Remark 4.8.

In a similar way as in the previous subsection we first define the Neumann-to-Dirichlet 
map N (z) as an operator in L2(∂Ω) for all z ∈ ρ(AN ). Recall first that for ϕ ∈ L2(∂Ω)
and z ∈ ρ(AN ) the boundary value problem

−Δfz + V fz = zfz, γNfz = ϕ, (4.27)
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admits a unique solution fz ∈ H
3/2
Δ (Ω). The corresponding solution operator is given by

PN (z) : L2(∂Ω) −→ H
3/2
Δ (Ω) ⊂ L2(Ω), ϕ �→ fz. (4.28)

For z ∈ ρ(AN ) the Neumann-to-Dirichlet map is defined by

N (z) : L2(∂Ω) −→ L2(∂Ω), ϕ �→ γDPN (z)ϕ. (4.29)

It is clear that N (z) maps Neumann boundary values γNfz of the solutions fz ∈ H
3/2
Δ (Ω)

of (4.27) onto their Dirichlet boundary values γDfz; here γN and γD denote the exten-
sions of the Dirichlet and Neumann trace operators onto H3/2

Δ (Ω) from (4.4) and (4.5), 
respectively. Since (4.27) admits a unique solution for each ϕ ∈ L2(∂Ω) it is clear that 
the operators PN (z) and N (z) are well defined on L2(∂Ω).

In the next theorem the scattering matrix of the pair {AN , Aα} is expressed in terms 
of the limit values of the Neumann-to-Dirichlet map N (z) and the parameter α in the 
boundary condition of the Robin realization Aα. In contrast to Theorem 4.3 here it is 
also assumed that α−1 ∈ L∞(∂Ω).

Theorem 4.7. Let Ω ⊂ R
n, n = 2, 3, be an exterior domain with a C∞-smooth boundary, 

let V ∈ L∞(Ω) and α ∈ L∞(∂Ω) be real valued functions such that α−1 ∈ L∞(∂Ω), and 
let AN and Aα be the self-adjoint Neumann and Robin realizations of L = −Δ + V in 
L2(Ω) in (4.15) and (4.16), respectively. Moreover, let N (·) be the Neumann-to-Dirichlet 
map defined in (4.29).

Then {AN , Aα} is a complete scattering system and

L2(R, dλ,Hλ), Hλ := ran(ImN (λ + i0)),

forms a spectral representation of Aac
N such that for a.e. λ ∈ R the scattering matrix 

{S(AN , Aα; λ)}λ∈R of the scattering system {AN , Aα} admits the representation

S(AN , Aα;λ) = IHλ
+ 2i

√
ImN (λ + i0)

(
I − αN (λ + i0)

)−1
α
√

ImN (λ + i0).

Proof. First we note that the assumption α−1 ∈ L∞(∂Ω) implies AN ∩ Aα = S, where 
S is the minimal operator associated to L in (4.14). Recall that S is closed, densely 
defined and simple by Lemma 4.2. Define the operator T as a restriction of S∗ by

Tf = −Δf + V f, dom(T ) = H
3/2
Δ (Ω),

and let

Γ0f := γNf and Γ1f := γDf − 1
α
γNf, f ∈ dom(T ). (4.30)

We claim that ΠN
α = {L2(∂Ω), Γ0, Γ1} is a B-generalized boundary triple for S∗ with 

the S1-regular Weyl function
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MN
α (z) = N (z) − 1

α
, z ∈ ρ(AN ), (4.31)

such that

AN = T � ker(Γ0) and Aα = T � ker(Γ1). (4.32)

In fact, Green’s identity (2.1) is an immediate consequence of the definition of the 
boundary mappings and (4.6), and ran Γ0 = L2(∂Ω) holds by (4.5). Moreover, dom(T )
is dense in dom(S∗) with respect to the graph norm by Lemma 4.2 and Aα = T � ker(Γ1)
is clear from (4.16). Furthermore, the self-adjoint operator AN in (4.15) is contained in 
T � ker(Γ0) and since the latter is symmetric (a consequence of Green’s identity (2.1)) 
both operators coincide, that is, (4.32) holds, and ΠN

α is a B-generalized boundary triple. 
For fz ∈ ker(T − z), z ∈ ρ(AN ), we have(

N (z) − 1
α

)
Γ0fz = N (z)γNfz −

1
α
γNfz = γDfz −

1
α
γNfz = Γ1fz

and hence the Weyl function MN
α (·) corresponding to ΠN

α is given by (4.31).
It remains to check that the Weyl function MN

α (·) is S1-regular. This is done in a 
similar way as in Theorem 4.3. Denote the γ-field associated to ΠN

α by γN
α (·) and use 

(cf. (2.7))

MN
α (z) = MN

α (ξ)∗ + (z − ξ̄)γN
α (ξ)∗γN

α (z) (4.33)

with some fixed ξ ∈ ρ(AN ) ∩ρ(Aα) ∩R and all z ∈ ρ(AN ). From (4.30), (4.15), and (4.1)
we obtain for any f ∈ L2(Ω)

γN
α (ξ)∗f = Γ1(AN − ξ)−1f = γD(AN − ξ)−1f ∈ H3/2(∂Ω)

and hence Lemma 4.1 yields

γN
α (ξ)∗ ∈ S 2(n−1)

3

(
L2(Ω), L2(∂Ω)

)
(4.34)

and

γN
α (z) ∈ S 2(n−1)

3

(
L2(∂Ω), L2(Ω)

)
(4.35)

for all z ∈ ρ(AN ). Now combining (1.4) with (4.33) yields

K(z) := MN
α (z) −MN

α (ξ) = (z − ξ)γN
α (ξ)∗γN

α (z) ∈ Sn−1
3

(
L2(∂Ω)

)
for z ∈ ρ(AN ). Since S(n−1)/3(L2(∂Ω)) is contained in S1(L2(∂Ω)) for n = 2, 3, and 
MN

α (ξ) = MN
α (ξ)∗ we conclude that K(z) ∈ S1(L2(∂Ω)), z ∈ C+. Because MN

α (·) is a 
strict Nevanlinna function K(·) is also strict. Let us show that
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C := MN
α (ξ) = N (ξ) − 1

α

is invertible. In fact, since 1
α is a boundedly invertible operator and N (ξ) is a compact 

operator it follows that MN
α (ξ) is a Fredholm operator. Furthermore, ker(MN

α (ξ)) is 
trivial by Lemma 2.14 and hence C is boundedly invertible. Therefore, the Weyl function 
MN

α (·) is S1-regular. Now the assertions in Theorem 4.7 follow from Theorem 3.1,

ImMN
α (z) = ImN (z), MN

α (z)−1 = −
(
I − αN (z)

)−1
α, z ∈ C+,

and

ImMN
α (λ + i0) = ImN (λ + i0), MN

α (λ + i0)−1 = −
(
I − αN (λ + i0)

)−1
α

for a.e. λ ∈ R. �
Remark 4.8. From (4.34) and (4.35) one concludes in the same way as in Remark 4.4
that Krein’s formula in Proposition 2.7 (iii) and the property (1.4) leads to

(Aα − z)−1 − (AN − z)−1 = −γN
α (z)MN

α (z)−1γN
α (z̄)∗ ∈ Sn−1

3
(L2(Ω)) (4.36)

for all z ∈ ρ(Aα) ∩ ρ(AN ); cf. [15,58]. Note that a weaker estimate with Sn−1
2

instead 
of Sn−1

3
is immediate from (4.26) first established by Birman [24] (see Remark 4.4). It 

yields the S1-resolvent comparability for n = 2.

Remark 4.9. The definition of the boundary triples ΠD
α and ΠN

α in Theorems 4.3 and 4.7
given for an exterior domain Ω, and the form and properties of the corresponding Weyl 
functions remain the same in the case of a bounded domain Ω with smooth boundary. 
The constructions and properties are only based on the compactness and smoothness of 
∂Ω.

5. Schrödinger operators with interactions supported on hypersurfaces

In this section we investigate scattering systems consisting of Schrödinger operators 
in Rn. Here the Euclidean space is decomposed into a smooth bounded domain and 
its complement, and the usual self-adjoint Schrödinger operator on the whole space is 
compared with the orthogonal sum of the Dirichlet or Neumann operators on the subdo-
mains in Section 5.2 and 5.3, and with a Schrödinger operator with a singular δ-potential 
supported on the interface in Section 5.4. In our main results Theorem 5.1, 5.4, and 5.6
we obtain explicit forms of the scattering matrices in terms of Dirichlet-to-Neumann or 
Neumann-to-Dirichlet maps. As in Section 4 the strategy in the proofs is to apply the 
general result Theorem 3.1 to suitable B-generalized boundary triples. Here we shall 
assume for convenience that a simplicity condition for the underlying symmetric oper-
ator is satisfied; this condition can be dropped in which case Corollary 3.3 would yield 
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a slightly more involved representation of the scattering matrix. We also refer the inter-
ested reader to Remarks 5.2, 5.5, and 5.7, where singular value estimates due to Birman, 
Grubb and others are revisited.

5.1. Preliminaries on orthogonal sums and couplings of Schrödinger operators

Let Ω− ⊂ R
n be a bounded domain with C∞-smooth boundary ∂Ω− and let 

Ω+ := R
n \ Ω− be the corresponding C∞-smooth exterior domain. Denote the com-

mon boundary of Ω+ and Ω− by C := ∂Ω±. Throughout this section we consider a 
Schrödinger differential expression with a bounded, measurable, real valued potential V
on Rn,

L = −Δ + V, V ∈ L∞(Rn). (5.1)

In the following we shall adapt the notation from Section 4.1 in an obvious way, e.g. 
Hs(Ω±) and Hr(C) denote the Sobolev spaces on Ω± and the common boundary (or 
interface) C, respectively, the spaces Hs

Δ(Ω±), s ∈ [0, 2], are defined and equipped with 
scalar products as in (4.2)–(4.3), and we shall use the notation

Hs
Δ(Rn \ C) := Hs

Δ(Ω+) ×Hs
Δ(Ω−), s ∈ [0, 2].

A function f : Rn → C is often written in a two component form f = {f+, f−}, where 
f± : Ω± → C denote the restrictions of f onto Ω±. The Dirichlet and Neumann trace 
operators will be denoted by γ±

D and γ±
N , and we emphasize that the Neumann trace 

is taken with respect to the outer normal of Ω±. In particular, γ+
Nf+ + γ−

Nf− = 0 for 
a function f = {f+, f−} ∈ H2(Rn). We also note that the mapping properties of the 
Dirichlet and Neumann trace operators in (4.4) and (4.5) are valid for both domains Ω+
and Ω−, and the same is true for the extensions of Green’s identity in (4.6) and (4.7), 
respectively. Furthermore, we shall use in the proofs in Section 5.2 and Section 5.3 that 
γ±
D and γ±

N admit continuous extensions

γ±
D : H0

Δ(Ω±) → H−1/2(C) and γ±
N : H0

Δ(Ω±) → H−3/2(C)

and that Green’s identity extends to f± ∈ H2(Ω±) and g± ∈ H0
Δ(Ω±) in the form

(−Δf±, g±)L2(Ω±) − (f±,−Δg±)L2(Ω±) = 〈γ±
Df±, γ

±
Ng±〉 − 〈γ±

Nf±, γ
±
Dg±〉; (5.2)

cf. [62] and [52, Chapter I, Theorem 3.3 and Corollary 3.3]. In (5.2) the inner products 
〈·, ·〉 on the right hand side denote the continuations of the L2(C) inner product onto 
H3/2(C) ×H−3/2(C) and H1/2(C) ×H−1/2(C), respectively, and in the following it will 
always be clear from the context which duality is used; cf. (4.8)–(4.10).

The differential expression (5.1) induces self-adjoint operators in L2(Rn). The natural 
self-adjoint realization is the free Schrödinger operator,
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Afreef = L f, dom(Afree) = H2(Rn), (5.3)

which is semibounded from below. Clearly the functions in dom(Afree) do not reflect the 
decomposition of Rn into the domains Ω+ and Ω−. Furthermore, we will make use of 
the self-adjoint orthogonal sum

AD = A+
D ⊕A−

D,

dom(AD) =
{
f = {f+, f−} ∈ H2(Ω+) ⊕H2(Ω−) : γ+

Df+ = γ−
Df− = 0

}
,

(5.4)

of the self-adjoint Dirichlet operators A±
D in L2(Ω±) in (4.15), and of the self-adjoint 

orthogonal sum

AN = A+
N ⊕A−

N ,

dom(AN ) =
{
f = {f+, f−} ∈ H2(Ω+) ⊕H2(Ω−) : γ+

Nf+ = γ−
Nf− = 0

}
,

(5.5)

of the self-adjoint Neumann operators A±
N in L2(Ω±) in (4.15). We shall sometimes refer 

to AD as Dirichlet realization of L with respect to C and to AN as Neumann realization 
of L with respect to C. The properties of A±

D and A±
N extend in a natural way to 

their orthogonal sums AD and AN in (5.4) and (5.5), respectively. In particular, the 
Dirichlet realization AD and the Neumann realization AN of L with respect to C are 
both semibounded from below.

5.2. Scattering matrix for the free Schrödinger operator and the Dirichlet realization 
with respect to C

We shall derive a representation for the scattering matrix of the scattering system 
{AD, Afree} in R2. Let Λ±

1/2(z) : H
1/2(C) �→ H−1/2(C) be the Dirichlet-to-Neumann map 

defined in (4.19) with respect to Ω±, that is,

Λ±
1/2(z)γ

±
Df±

z = γ±
Nf±

z (5.6)

holds for any solution f±
z ∈ H1(Ω±) of the equation −Δf±

z + V±f
±
z = zf±

z and z ∈
ρ(A±

D). Furthermore, define the operator-valued function Λ1/2(·) by

Λ1/2(z) := Λ+
1/2(z) + Λ−

1/2(z) : H1/2(C) −→ H−1/2(C), z ∈ ρ(AD). (5.7)

Theorem 5.1. Let Ω± ⊂ R
2 be as above, let V ∈ L∞(R2) be a real valued function, and 

let Afree and AD be the self-adjoint Schrödinger operators in L2(R2) in (5.3) and (5.4), 
respectively. Moreover, let Λ1/2(·) be given by (5.7) and let

MD
free(z) := −j̃−1Λ1/2(z)j−1, z ∈ C+, (5.8)
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where j : H1/2(C) −→ L2(C) denotes some uniformly positive self-adjoint operator in 
L2(C) with dom(j) = H1/2(C) as in (4.8)–(4.9).

Then {AD, Afree} is a complete scattering system. If the densely defined, closed, sym-
metric operator S := AD ∩Afree has no eigenvalues then

L2(R, dλ,Hλ), Hλ := ran
(
ImMD

free(λ + i0)
)
,

forms a spectral representation of Aac
D such that for a.e. λ ∈ R the scattering matrix 

{S(AD, Afree; λ)}λ∈R of the scattering system {AD, Afree} admits the representation

S(AD, Afree;λ) = IHλ
− 2i

√
ImMD

free(λ + i0)MD
free(λ + i0)−1

√
ImMD

free(λ + i0).

Proof. The closed symmetric operator S = AD ∩Afree in L2(R2) is given by

Sf = L f,

dom(S) =
{
f = {f+, f−} ∈ H2(R2) : γ+

Df+ = γ−
Df− = 0

}
.

(5.9)

It is clear that S is a closed extension of the orthogonal sum of the minimal operators 
S+⊕S− associated to the restriction of L onto Ω+ and Ω− as in (4.14) and Lemma 4.2. 
It follows that S is densely defined and since we have assumed that S has no eigenvalues 
it follows from [21, Corollary 4.4] that S is simple. We claim that the adjoint S∗ is given 
by

S∗f = L f,

dom(S∗) =
{
f = {f+, f−} ∈ H0

Δ(R2 \ C) : γ+
Df+ = γ−

Df−}.
In fact, since S∗ ⊂ (S+)∗ ⊕ (S−)∗ it follows that

dom(S∗) ⊂ H0
Δ(R2 \ C) = dom(S+)∗ × dom(S−)∗

and that S∗f = L f for f ∈ dom(S∗). Therefore, we only have to verify that f =
{f+, f−} ∈ dom(S∗) satisfies the interface condition

γ+
Df+ = γ−

Df−. (5.10)

Assume that for f = {f+, f−} ∈ dom(S∗) and all h = {h+, h−} ∈ dom(S) we have

(Sh, f)L2(R2) = (h, S∗f)L2(R2),

that is,

(−Δh+, f+)L2(Ω+) + (−Δh−, f−)L2(Ω−)

= (h+,−Δf+) 2 + (h−,−Δf−) 2 .
L (Ω+) L (Ω−)
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Then it follows from Green’s identity (5.2) and the conditions

γ±
Dh± = 0 and γ+

Nh+ + γ−
Nh− = 0

that

0 = (−Δh+, f+)L2(Ω+) − (h+,−Δf+)L2(Ω+)

+ (−Δh−, f−)L2(Ω−) − (h−,−Δf−)L2(Ω−)

= 〈γ+
Dh+, γ+

Nf+〉 − 〈γ+
Nh+, γ+

Df+〉 + 〈γ−
Dh−, γ−

Nf−〉 − 〈γ−
Nh−, γ−

Df−〉

= 〈γ−
Nh−, γ+

Df+ − γ−
Df−〉

holds for all h = {h+, h−} ∈ dom(S). This implies (5.10).
Now we proceed in a similar manner as in the proofs of Theorem 4.3 and Theorem 4.7

in the previous section. We consider the operator T defined as a restriction of S∗ by

Tf = L f,

dom(T ) =
{
f = {f+, f−} ∈ H1

Δ(R2 \ C) : γ+
Df+ = γ−

Df−},
and for f ∈ dom(T ) we agree on the notation

γDf := γ+
Df+ = γ−

Df−, f = {f+, f−} ∈ dom(T ). (5.11)

We claim that ΠD
free = {L2(C), Γ0, Γ1}, where

Γ0f := j γDf and Γ1f := −j̃−1
(
γ+
Nf+ + γ−

Nf−) , f ∈ dom(T ),

is a B-generalized boundary triple with an S1-regular Weyl function given by (5.8) such 
that

AD = T � ker(Γ0) and Afree = T � ker(Γ1). (5.12)

In fact, for f = {f+, f−}, g = {g+, g−} ∈ dom(T ) we compute with the help of Green’s 
identity (4.7) and (4.10) that

(Γ1f,Γ0g) − (Γ0f,Γ1g)

= 〈−γ+
Nf+ − γ−

Nf−, γDg〉 − 〈γDf,−γ+
Ng+ − γ−

Ng−〉

= 〈γ+
Df+, γ+

Ng+〉 − 〈γ+
Nf+, γ+

Dg+〉 + 〈γ−
Df−, γ−

Ng−〉 − 〈γ−
Nf−, γ−

Dg−〉

= (−Δf+, g+) − (f+,−Δg+) + (−Δf−, g−) − (f−,−Δg−)

= (Tf, g) − (f, Tg)
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and (4.4) implies ran(Γ0) = L2(C) in the present situation; cf. the proof of Theorem 4.3. 
Since T � ker(Γ0) and T � ker(Γ1) are both symmetric operators by (2.1), and contain 
the self-adjoint operators AD and Afree, respectively, it follows that (5.12) is satisfied. 
Furthermore, as S = AD ∩ Afree it is clear that the self-adjoint operators AD and Afree
are disjoint extensions of S. It follows from Proposition 2.9 that(

dom(AD) + dom(Afree)
)
⊂ dom(T ) (5.13)

is dense in dom(S∗) with respect to the graph norm. Hence T = S∗. Therefore ΠD
free is 

B-generalized boundary triple such that (5.12) holds.
Next we show that the Weyl function MD

free(·) corresponding to ΠD
free is S1-regular 

and has the form (5.8). Let fz = {f+
z , f−

z } ∈ ker(T − z), z ∈ ρ(AD), and use (5.6) and 
(5.7) to compute

−j̃−1Λ1/2(z)j−1Γ0fz = −j̃−1
(
Λ+

1/2(z) + Λ1/2(z)−
)
γDfz

= −j̃−1(γ+
Nf+

z + γ−
Nf−

z ) = Γ1fz.

Hence the Weyl function is MD
free(z) = −j̃−1Λ1/2(z)j−1. In order to see that MD

free(·) is 
S1-regular we proceed in the same way as in the proof of Theorem 4.3. Let γD

free(·) be 
the γ-field corresponding to the B-generalized boundary triple ΠD

free and use

MD
free(z) = MD

free(ξ)∗ + (z − ξ)γD
free(ξ)∗γD

free(z) (5.14)

(see (2.7)) with some ξ ∈ ρ(AD) ∩ ρ(Afree) ∩ (−∞, ess inf V ) and all z ∈ ρ(AD). For 
h = {h+, h−} ∈ L2(Rn) we have

γD
free(ξ)∗h = Γ1(AD − ξ)−1h

= −j̃−1
(
γ+
N (A+

D − ξ)−1h+ + γ−
N (A−

D − ξ)−1h−) (5.15)

and since dom(AD) ⊂ H2(Ω+) ×H2(Ω−) we conclude from (4.1) that

γ+
N (A+

D − ξ)−1h+ + γ−
N (A−

D − ξ)−1h− ∈ H1/2(C).

As in the proof of Theorem 4.3 it then follows from (5.15) and (4.12) with r = 1/2 and 
n = 2 that

γD
free(ξ)∗ ∈ S1

(
L2(R2), L2(C)

)
(5.16)

and γD
free(z) ∈ S1(L2(C), L2(R2)) for all z ∈ ρ(AD). Hence (5.14) yields that

K(z) := MD
free(z) −MD

free(ξ) ∈ S1
(
L2(C)

)
, z ∈ C+,
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where it was used that MD
free(ξ)∗ = MD

free(ξ). It follows that MD
free(ξ) is a Fredholm 

operator since 0 ∈ ρ(MD
free(z)) for z ∈ C+. On the other hand by Lemma 2.14 we 

have ker(MD
free(ξ)) = {0} for ξ ∈ ρ(AD) ∩ ρ(Afree) ∩ (−∞, ess inf V ). Thus MD

free(ξ) is 
boundedly invertible which shows that MD

free(·) is S1-regular. Now the assertions follow 
directly from Theorem 3.1. �
Remark 5.2. As in Remarks 4.4 and 4.8 it follows from (5.15) and (4.12) in the same 
way as in (5.16) that for n ≥ 2

γD
free(z)∗ ∈ Sn−1

(
L2(Rn), L2(C)

)
for z ∈ ρ(AD). This yields γD

free(z) ∈ Sn−1(L2(C), L2(Rn)) for z ∈ ρ(AD) and hence 
Krein’s formula in Proposition 2.7 (iii) implies

(Afree − z)−1 − (AD − z)−1 = −γD
free(z)MD

free(z)−1γD
free(z̄)∗ ∈ Sn−1

2
(L2(Rn))

for all z ∈ ρ(Afree) ∩ ρ(AD); cf. [24,54]. For further development with applications to the 
scattering theory we also refer the reader to [33] and [79].

Remark 5.3. As in Remark 4.5 there is a particularly convenient choice of the operator 
j in (4.8)–(4.9) in the present context. Namely, since for any z < min{σ(A±

D), σ(A±
N )}

the self-adjoint operators √
Λ+

1/2(z) and
√

Λ−
1/2(z)

defined on H1/2(C) are non-negative and boundedly invertible in L2(C) it follows that

j :=
√

Λ+
1/2(z) +

√
Λ−

1/2(z) : H1/2(C) −→ L2(C)

is a possible choice for the definition of the inner product 〈·, ·〉 in (4.10).

5.3. Scattering matrix for the free Schrödinger operator and the Neumann realization 
with respect to C

In this section we consider the pair {AN , Afree} consisting of the orthogonal sum 
AN = A+

N ⊕A−
N of the Neumann operators in (5.5) and the free Schrödinger operator in 

(5.3). We first define the Neumann-to-Dirichlet maps

N±
−1/2(z) : H−1/2(C) −→ H1/2(C), z ∈ ρ(AN ),

as extensions of the Neumann-to-Dirichlet maps on L2(C) defined in the beginning of Sec-
tion 4.4. More precisely, we recall that for φ± ∈ H−1/2(C) and z ∈ ρ(A±

N ) the boundary 
value problem
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−Δf± + V±f
± = zf±, γ±

Nf± = φ±, (5.17)

admits a unique solution f±
z ∈ H1

Δ(Ω±). The corresponding solution operator is denoted 
by

P±
N (z) : H−1/2(C) −→ H1

Δ(C) ⊂ L2(C), φ± �→ f±
z .

Note that the restriction of P±
N (z) onto L2(C) coincides with the solution operator defined 

in (4.28). For z ∈ ρ(A±
N ) the Neumann-to-Dirichlet map is defined by

N±
−1/2(z) : H−1/2(C) −→ H1/2(C), φ± �→ γ±

DP±
N (z)φ±. (5.18)

Clearly, N±
−1/2(z) is an extension of the Neumann-to-Dirichlet map defined in (4.29)

onto H−1/2(C), the operators in (5.18) map Neumann boundary values γ±
Nf±

z of solutions 
f±
z ∈ H1

Δ(Ω±) of (5.17) to the corresponding Dirichlet boundary values γ±
Df±

z ∈ H1/2(C).
In the next theorem we obtain an expression for the scattering matrix of the pair 

{AN , Afree} in terms of the sum

N−1/2(z) := N+
−1/2(z) + N−

−1/2(z) : H−1/2(C) −→ H1/2(C), z ∈ ρ(AN ), (5.19)

of the Neumann-to-Dirichlet maps in (5.18).

Theorem 5.4. Let Ω± ⊂ R
2 be as above, let V ∈ L∞(R2) be a real valued function, and 

let Afree and AN be the self-adjoint Schrödinger operators in L2(R2) in (5.3) and (5.5), 
respectively. Moreover, let N−1/2(·) be given by (5.19) and let

MN
free(z) := jN−1/2(z) j̃, z ∈ C+, (5.20)

where j : H1/2(C) −→ L2(C) denotes some uniformly positive self-adjoint operator in 
L2(C) with dom(j) = H1/2(C) as in (4.8)–(4.9).

Then {AN , Afree} is a complete scattering system. If the densely defined, closed, sym-
metric operator S := AN ∩Afree has no eigenvalues then

L2(R, dλ,Hλ), Hλ := ran
(
ImMN

free(λ + i0)
)
,

forms a spectral representation of Aac
N such that for a.e. λ ∈ R the scattering matrix 

{S(AN , Afree; λ)}λ∈R of the scattering system {AN , Afree} admits the representation

S(AN , Afree;λ) = IHλ
− 2i

√
ImMN

free(λ + i0)MN
free(λ + i0)−1

√
ImMN

free(λ + i0).

Proof. The proof of Theorem 5.4 is very similar to the proof of Theorem 5.1, and hence 
we present a sketch only. Consider the closed symmetric operator S = AN ∩ Afree in 
L2(R2) which is given by
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Sf = L f,

dom(S) =
{
f = {f+, f−} ∈ H2(R2) : γ+

Nf+ = γ−
Nf− = 0

}
.

It follows that S is densely defined, the assumption σp(S) = ∅ and same arguments as 
in [21, Proof of Lemma 4.3] ensure that S is simple, and a similar consideration as in 
the proof of Theorem 5.1 shows that the adjoint S∗ is given by

S∗f = L f,

dom(S∗) =
{
f = {f+, f−} ∈ H0

Δ(R2 \ C) : γ+
Nf+ = γ−

Nf−}.
Next we consider the operator T defined as a restriction of S∗ by

Tf = L f,

dom(T ) =
{
f = {f+, f−} ∈ H1

Δ(R2 \ C) : γ+
Nf+ = γ−

Nf−}.
As in the proof of Theorem 5.1 one verifies that ΠN

free = {L2(C),Γ0, Γ1}, where

Γ0f := j̃−1 γ+
Nf+ and Γ1f := j

(
γ+
Df+ − γ−

Df−) , f ∈ dom(T ),

is a B-generalized boundary triple with the Weyl function MN
free(·) given by (5.20) such 

that

AN = T � ker(Γ0) and Afree = T � ker(Γ1).

Let us show that the Weyl function MN
free(·) is S1-regular. Denote the γ-field correspond-

ing to the B-generalized boundary triple ΠN
free by γN

free(·) and use

MN
free(z) = MN

free(ξ)∗ + (z − ξ)γN
free(ξ)∗γN

free(z) (5.21)

with some fixed ξ ∈ ρ(AN ) ∩ ρ(Afree) ∩ (−∞, ess inf V ) and all z ∈ ρ(AN ). From (4.1)
and dom(AN ) ⊂ H2(Ω+) ×H2(Ω−) we conclude for h = {h+, h−} ∈ L2(Rn) that

j−1γN
free(ξ)∗h = j−1Γ1(AN − ξ)−1h

= γ+
D(A+

N − ξ)−1h+ − γ−
D(A−

N − ξ)−1h− ∈ H3/2(C).
(5.22)

Since j−1γN
free(ξ)∗ ∈ B(L2(R2), H1/2(C)), Lemma 4.1 applies with r = 3/2, s = 1/2 and 

gives

j−1γN
free(ξ)∗ ∈ S1

(
L2(R2), H1/2(C)

)
and since j is an isomorphism from H1/2(C) onto L2(C),

γN
free(ξ)∗ ∈ S1

(
L2(R2), L2(C)

)
. (5.23)
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Therefore γN
free(z) ∈ S1(L2(C), L2(R2)) for all z ∈ ρ(AN ). Now it follows from (5.21)

that

K(z) := MN
free(z) −MN

free(ξ) ∈ S1/2
(
L2(C)

)
⊂ S1

(
L2(C)

)
, z ∈ C+,

where we have used that MN
free(ξ) = MN

free(ξ)∗. It remains to show that MN
free(ξ) is invert-

ible, which follows from the same reasoning as in the end of the proof of Theorem 5.1. 
Hence MN

free(·) is S1-regular and the assertions of Theorem 5.4 follow directly from 
Theorem 3.1. �
Remark 5.5. As in Remark 5.2 the considerations in (5.22) and (5.23) together with 
Lemma 4.1 show that for n ≥ 2

γN
free(z)∗ ∈ Sn−1

(
L2(Rn), L2(C)

)
, γN

free(z) ∈ Sn−1
(
L2(C), L2(Rn)

)
for all z ∈ ρ(AN ). Hence

(Afree − z)−1 − (AN − z)−1 = −γN
free(z)MN

free(z)−1γN
free(z̄)∗ ∈ Sn−1

2
(L2(Rn))

for all z ∈ ρ(Afree) ∩ ρ(AN ). The latter gives another proof of a result of Grubb from 
[54].

5.4. Schrödinger operators with δ-potentials supported on hypersurfaces

In this third and last application on scattering matrices for coupled Schrödinger op-
erators we consider the pair {Afree, Aδ,α}, where α ∈ L∞(C) is a real valued function 
and Aδ,α is a Schrödinger operator with δ-potential of strength α supported on the 
hypersurface C defined by

Aδ,αf = −Δf + V f,

dom(Aδ,α) =
{
f =

(
f+

f−

)
∈ H

3/2
Δ (Rn \ C) :

γ+
Df+ = γ−

Df−,

αγ±
Df± = γ+

Nf+ + γ−
Nf−

}
.

(5.24)

Such type of Schrödinger operators with singular interactions have attracted a lot of 
attention in the past; cf. [39] for a survey and e.g. [16] for further references and an 
approach via boundary mappings closely related to the present considerations. According 
to [16, Theorem 3.5, Proposition 3.7, and Theorem 3.16] the operator Aδ,α in (5.24)
is self-adjoint in L2(Rn), semibounded from below and coincides with the self-adjoint 
operator associated to the closed sesquilinear form

aδ,α[f, g] = (∇f,∇g) + (V f, g) − (αγ±
Df, γ±

Dg)L2(C), f, g ∈ H1(Rn).

We define the Dirichlet-to-Neumann maps
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Λ±
1 (z) : H1(C) −→ L2(C), z ∈ ρ(A±

D),

as restrictions of the Dirichlet-to-Neumann maps on H1/2(C) in (4.19); cf. Remark 4.5. 
More precisely, for φ± ∈ H1(C) and z ∈ ρ(A±

D) the boundary value problem

−Δf± + V±f
± = zf±, γ±

Df± = φ±,

admits a unique solution f±
z ∈ H

3/2
Δ (Ω±). The corresponding solution operators are 

denoted by

P±
D(z) : H1(C) −→ H

3/2
Δ (C) ⊂ L2(C), φ± �→ f±

z ,

and it is clear that the restriction of P±
D (z) in (4.18) onto H1(C) coincides with P±

D(z). 
For z ∈ ρ(A±

D) the Dirichlet-to-Neumann maps Λ±
1 (·) on H1(C) are given by

Λ±
1 (z) : H1(C) −→ L2(C), φ± �→ γ±

NP±
D(z)φ±, (5.25)

and by construction Λ±
1 (z) are the restrictions of the Dirichlet-to-Neumann maps Λ±

1/2(z)
in (4.19) onto H1(C).

In the next theorem we obtain an expression for the scattering matrix of the pair 
{Afree, Aδ,α} in terms of the sum

Λ1(z) := Λ+
1 (z) + Λ−

1 (z) : H1(C) −→ L2(C), z ∈ ρ(AD), (5.26)

of the Dirichlet-to-Neumann maps in (5.25). Theorem 5.6 and its proof can be viewed 
as a variant of Theorem 4.7; in the same way as in Theorem 4.7 it is assumed that 
α−1 ∈ L∞(C).

Theorem 5.6. Let Ω± ⊂ R
n, n = 2, 3, be as above, let V ∈ L∞(Rn) and α ∈ L∞(C) be 

real valued functions such that α−1 ∈ L∞(C), and let Afree and Aδ,α be the self-adjoint re-
alizations of the Schrödinger expression given by (5.3) and (5.24), respectively. Moreover, 
let Λ1(·) be as in (5.26).

Then {Afree, Aδ,α} is a complete scattering system. If the densely defined, closed, sym-
metric operator S := Afree ∩Aδ,α has no eigenvalues then

L2(R, dλ,Hλ), Hλ := ran(Im(Λ1(λ + i0))−1),

forms a spectral representation of Aac
free such that for a.e. λ ∈ R the scattering matrix 

{S(Afree, Aδ,α; λ)}λ∈R of the scattering system {Afree, Aδ,α} admits the representation

S(Afree, Aδ,α;λ)

= IHλ
+ 2i

√
Im Λ1(λ + i0)−1

(
I − αΛ1(λ + i0)−1)−1

α
√

Im Λ1(λ + i0)−1.
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Proof. Note first that the assumptions α−1 ∈ L∞(C) implies that the closed symmetric 
operator S = Afree ∩Aδ,α is given by

Sf = L f,

dom(S) =
{
f = {f+, f−} ∈ H2(Rn) : γ+

Df+ = γ−
Df− = 0

}
and hence coincides with the one in (5.9) (in the case n = 2). It follows from [21, 
Corollary 4.4] that the operator S is simple and as in the proof of Theorem 5.1 one 
verifies that its adjoint S∗ is given by

S∗f = L f,

dom(S∗) =
{
f = {f+, f−} ∈ H0

Δ(Rn \ C) : γ+
Df+ = γ−

Df−}.
Next we define the operator T by

Tf = L f,

dom(T ) =
{
f = {f+, f−} ∈ H

3/2
Δ (Rn \ C) : γ+

Df+ = γ−
Df−} (5.27)

and for f = {f+, f−} ∈ dom(T ) we write γDf := γ+
Df+ = γ−

Df− as in (5.11). We will 
show that Πfree

δ,α = {L2(C), Γ0, Γ1}, where

Γ0f = γ+
Nf+ + γ−

Nf−, f ∈ dom(T ),

and

Γ1f = γDf − 1
α

(
γ+
Nf+ + γ−

Nf−), f ∈ dom(T ),

is a B-generalized boundary triple such that

Afree = T � ker(Γ0) and Aδ,α = T � ker(Γ1), (5.28)

and the corresponding Weyl function

M free
δ,α (z) := Λ1(z)−1 − 1

α
, z ∈ C+, (5.29)

is S1-regular.
In fact, for f = {f+, f−}, g = {g+, g−} ∈ dom(T ) we compute with the help of 

Green’s identity (4.6) and the interface conditions γ+
Df+ = γ−

Df− and γ+
Dg+ = γ−

Dg−

that
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(Γ1f,Γ0g) − (Γ0f,Γ1g)

=
(
γDf − α−1(γ+

Nf+ + γ−
Nf−), γ+

Ng+ + γ−
Ng−

)
−

(
γ+
Nf+ + γ−

Nf−, γDg − α−1(γ+
Ng+ + γ−

Ng−)
)

=
(
γDf, γ+

Ng+ + γ−
Ng−

)
−

(
γ+
Nf+ + γ−

Nf−, γDg
)

= (γ+
Df+, γ+

Ng+) − (γ+
Nf+, γ+

Dg+) + (γ−
Df−, γ−

Ng−) − (γ−
Nf−, γ−

Dg−)

= (−Δf+, g+) − (f+,−Δg+) + (−Δf−, g−) − (f−,−Δg−)

= (Tf, g) − (f, Tg),

which shows (2.1). In order to show that Γ0 is surjective we fix some λ0 ∈ R such that 
λ0 < min{σ(AD), σ(AN )} and note that the direct sum decomposition

dom(T ) = dom(AD) +̇ ker(T − λ0)

holds since λ0 ∈ ρ(AD). It follows from (5.27) and (4.4) that γD maps ker(T − λ0) onto 
H1(C). As Λ±

1 (λ0) = (N±(λ0))−1 (cf. (4.29)) are uniformly positive self-adjoint operators 
in L2(C), it follows that also Λ1(λ0) = Λ+

1 (λ0) +Λ−
1 (λ0) is a uniformly positive self-adjoint 

operator in L2(C). Let ψ ∈ L2(C), choose ϕ ∈ H1(C) and fλ0 = {f+
λ0
, f−

λ0
} ∈ ker(T − λ0)

such that Λ1(λ0)ϕ = ψ and γDfλ0 = ϕ. Then we have

Γ0fλ0 = γ+
Nf+

λ0
+ γ−

Nf−
λ0

= Λ1(λ0)γDfλ0 = Λ1(λ0)ϕ = ψ

and this implies ran(Γ0) = L2(C).
It is not difficult to check that dom(Afree) and dom(Aδ,α) are contained in ker(Γ0)

and ker(Γ1), respectively, and since Afree and Aδ,α are self-adjoint and T � ker(Γ0) and 
T � ker(Γ1) are symmetric by Green’s identity (2.1) it follows that (5.28) holds. Since 
S = Afree ∩Aδ,α and

(
dom(Afree) + dom(Aδ,α)

)
⊂ dom(T ) ⊂ dom(S∗),

Proposition 2.9 implies T = S∗. Hence Πfree
δ,α is a B-generalized boundary triple such that 

(5.28) is satisfied.
In order to show that the corresponding Weyl function is given by (5.29) let fz =

{f+
z , f−

z } ∈ ker(T − z) and z ∈ C+. Then we have

Λ1(z)γDfz = Λ+
1 (z)γ+

Df+
z + Λ−

1 (z)−γ−
Df−

z = γ+
Nf+

z + γ−
Nf−

z = Γ0fz

and since ker(Λ1(z)) = {0} we conclude

(
Λ1(z)−1 − 1

)
Γ0fz = γDfz −

1 (
γ+
Nf+

z − γ−
Nf−

z

)
= Γ1fz.
α α
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This proves the representation (5.29). In order to see that the Weyl function M free
δ,α (·)

is S1-regular we argue in the same way as in the previous proofs. Denote the γ-field 
corresponding to the B-generalized boundary triple Πfree

δ,α by γfree
δ,α (·) and use

M free
δ,α (z) = M free

δ,α (ξ)∗ + (z − ξ)γfree
δ,α (ξ)∗γfree

δ,α (z) (5.30)

with some ξ ∈ ρ(Afree) ∩ ρ(Aδ,α) ∩ R and all z ∈ ρ(Afree). For h = {h+, h−} ∈ L2(Rn)
we have

γfree
δ,α (ξ)∗h = Γ1(Afree − ξ)−1h = γD(Afree − ξ)−1h ∈ H3/2(C)

and hence Lemma 4.1 applied with r = 3/2 and s = 0 yields

γfree
δ,α (ξ)∗ ∈ S 2(n−1)

3

(
L2(Rn), L2(C)

)
. (5.31)

As before we conclude

γfree
δ,α (z) ∈ S 2(n−1)

3

(
L2(C), L2(Rn)

)
, z ∈ ρ(Afree). (5.32)

It follows from (5.30) that

K(z) := M free
δ,α (z) −M free

δ,α (ξ) ∈ Sn−1
3

(
L2(C)

)
⊂ S1

(
L2(C)

)
, z ∈ C+,

where M free
δ,α (ξ) = M free

δ,α (ξ)∗ was used. Since the operator 1
α is boundedly invertible 

and ran(Λ1(ξ)−1) ⊆ H1(C), the operator M free
δ,α (ξ) is a Fredholm operator. Furthermore, 

ker(M free
δ,α (ξ)) = {0} by Lemma 2.14 for ξ ∈ ρ(Afree) ∩ ρ(Aδ,α) ∩ R. Hence M free

δ,α (ξ) is 
boundedly invertible and it follows that M free

δ,α (·) is S1-regular for n = 2, 3.
The assertions in Theorem 5.6 follow from Theorem 3.1 and relations

ImM free
δ,α (z) = Im Λ1(z), M free

δ,α (z)−1 = −
(
I − αΛ1(z)−1)−1

α, z ∈ C+,

and

ImM free
δ,α (λ + i0) = Im Λ1(λ + i0),

M free
δ,α (λ + i0)−1 = −

(
I − αΛ1(λ + i0)−1)−1

α

for a.e. λ ∈ R. �
Remark 5.7. As in previous remarks it follows from (5.31)–(5.32) and Krein’s formula in 
Proposition 2.7 (iii) that

(Aδ,α − z)−1 − (Afree − z)−1 = −γfree
δ,α (z)M free

δ,α (z)−1γfree
δ,α (z̄)∗ ∈ Sn−1

3
(L2(Rn))

for all z ∈ ρ(Afree) ∩ ρ(Aδ,α); cf. [16].
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Appendix A. Spectral representation and scattering matrix

A.1. Spectral representations and operator spectral integrals

Let E(·) be a spectral measure in the separable Hilbert space H defined on the Borel 
sets B(R) of the real axis R. Further, let C be a Hilbert–Schmidt operator in H. Ob-
viously, Σ(δ) := C∗E(δ)C, δ ∈ B(R) defines a trace class valued measure on B(R) of 
finite variation; cf. [12, Lemma 3.11]. The measure admits a unique decomposition

Σ(·) = Σs(·) + Σac(·)

into a singular measure Σs(·) = C∗Es(·)C and an absolutely continuous measure 
Σac(·) = C∗Eac(·)C. From [12, Proposition 3.13] it follows that the trace class val-
ued function Σ(λ) := C∗E((−∞, λ))C admits a derivative K(λ) := d

dλΣ(λ) � 0 in the 
trace class norm for a.e. λ ∈ R with respect the Lebesgue measure dλ such that

Σac(δ) =
∫
δ

K(λ)dλ, δ ∈ B(R).

By Hλ := ran(K(λ)) ⊆ H we define a measurable family of subspaces in H. The orthog-
onal projection P (λ) from H onto Hλ form a measurable family of projections which 
defines by

(Pf)(λ) := P (λ)f(λ), f ∈ L2(R, dλ,H),

an orthogonal projection from L2(R, dλ, H) onto a subspace which is denoted by 
L2(R, dλ, Hλ). Let us assume that the closed linear span of the sets Eac(δ) ran(C), 
δ ∈ B(R), coincides with Hac = Eac(R)H. Let

(ΦEac(δ)Cf)(λ) := χδ(λ)
√

K(λ)f, δ ∈ B(R), f ∈ H,

where χδ(·) denotes the characteristic function of δ ∈ B(R). Obviously, we have
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∫
‖(ΦEac(δ)Cf)(λ)‖2

Hdλ =
∫
δ

‖
√
K(λ)f‖2

Hdλ = ‖Eac(δ)Cf‖2
H.

Hence Φ : Hac −→ L2(R, dλ, Hλ) defines an isometry from Hac into L2(R, dλ, Hλ). Let 
us show that Φ is onto L2(R, dλ, Hλ). Let g ∈ L2(R, dλ, Hλ) such that

0 = (ΦEac(δ)Cf, g) =
∫
δ

(
√

K(λ)f, g(λ))Hdλ

for f ∈ Hac, δ ∈ B(R). Since δ is arbitrary we find (
√
K(λ)f, g(λ))H = 0 for a.e. λ ∈ R. 

Hence g(λ) ⊥ Hλ for a.e. λ ∈ R which shows g(λ) = 0 for a.e. λ ∈ R. Hence Φ is an 
isometry form Hac onto the subspace L2(R, dλ, Hλ).

Obviously, we have

(ΦEac(δ)f)(λ) = χδ(λ)(Φf)(λ), δ ∈ B(R), f ∈ Hac.

Let A be a self-adjoint operator in H and let EA(·) be the corresponding spectral measure, 
i.e. A =

∫
R
λ dEA(λ). Then MΦ = ΦAac where M is the natural multiplication operator 

defined by

(Mf)(λ) := λf(λ),

f ∈ dom(M) := {f ∈ L2(R, dλ,Hλ : λf(λ) ∈ L2(R, dλ,Hλ}.

If ϕ(·) : R −→ R is a bounded Borel function then ϕ(M)Φ = Φϕ(Aac).

Lemma A.1. Let A, EA(·), C and K(λ) be as above and assume that the absolutely 
continuous subspace Hac(A) satisfies the condition

Hac(A) = clsp
{
Eac

A (δ) ran(C) : δ ∈ B(R)
}
.

Then the mapping

Eac(δ)Cf �→ χδ(λ)
√

K(λ)f for a.e. λ ∈ R, f ∈ H,

onto the dense subspace span {Eac
A (δ) ran(C) : δ ∈ B(R)} of Hac(A) admits a unique 

continuation to an isometric isomorphism from Φ : Hac(A) → L2(R, dλ, Hλ) such that

(ΦEac
A (δ)g)(λ) = χδ(λ)(Φg)(λ), g ∈ Hac(A),

holds for any δ ∈ B(R).

Let us consider operator spectral integrals of the form 
∫
R
dEac(μ)Cf(λ), which are 

defined whenever f(·) : R −→ H is a Borel measurable function, cf. [12, Section 5.2]. From 
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[12, Proposition 5.13] we find that this integral exists if and only if 
∫
R
‖
√

K(μ)f(μ)‖2
Hdμ

exists and is finite. One verifies that⎛⎝Φ
∫
R

dEac(μ)Cf(μ)

⎞⎠ (λ) =
√

K(λ)f(λ). (A.1)

A.2. Scattering

In the following let A and B be self-adjoint operators in H, let J ∈ L(H) be a bounded 
operator such that J domA ⊆ domB. If

V := BJ − JA, domV := domA,

is closable and its closure is a trace class operator then the wave operators

W±(A,B; J) := s− lim
t→±∞

eitBJe−itAP ac(A)

exist, see [12,71,73]. The scattering operator SJ is defined by

SJ(A,B) := W+(A,B; J)∗W−(A,B; J).

Usually the wave operators W±(A, B; J) and the scattering operator SJ are not the 
quantities of main interest. The objects one is more interested in are the wave operators 
W±(A, B) := W±(A, B; I) and S(A, B) := SI(A, B). However, if the resolvent difference 
of A and B is trace class, then the existence of W±(A, B; J) with J = −(B−i)−1(A −i)−1

yields the existence of W±(A, B) and both operators are related by

W±(A,B; J) = −W±(A,B)(A− i)−2.

In particular, this yields

SJ(A,B) = S(A,B)(I + A2)−2. (A.2)

The following theorem was announced in [20, Appendix A] but not proved there. Below 
the complete proof of this theorem is given.

Theorem A.2. Let A and B be self-adjoint operators in the separable Hilbert space H and 
suppose that the resolvent difference admits the factorization

S1(H) � (B − i)−1 − (A− i)−1 = φ(A)CGC∗ = QC∗, (A.3)

where C ∈ S2(H, H), G ∈ L(H), φ(·) : R → R is a bounded continuous function and 
Q = φ(A)CG. Assume that the condition
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Hac(A) = clsp
{
Eac

A (δ) ran(C) : δ ∈ B(R)
}

(A.4)

is satisfied and let K(λ) = d
dλC

∗EA((−∞, λ))C and Hλ = ran(K(λ)) for a.e. λ ∈ R. 
Then L2(R, dλ, Hλ) is a spectral representation of Aac and the scattering matrix 
{S(A, B; λ)}λ∈R of the scattering system {A, B} has the representation

S(A,B;λ) = IHλ
+ 2πi(1 + λ2)2

√
K(λ)Z(λ)

√
K(λ) (A.5)

for a.e. λ ∈ R, where

Z(λ) = 1
λ + i

Q∗Q + φ(λ)
(λ + i)2G + lim

ε→+0
Q∗(B − (λ + iε))−1Q (A.6)

and the limit of the last term on the right hand side exists in the Hilbert–Schmidt norm.

Proof. Consider the scattering operator

SJ(A,B) := W+(A,B; J)∗W−(A,B; J) : Hac(A) −→ Hac(A),

where J := −RB(i)RA(i) and

RB(ξ) := (B − ξ)−1, RA(ξ) := (A− ξ)−1.

One easily checks that

V := BJ − JA = (B − i)−1 − (A− i)−1 = φ(A)CGC∗

where we have used the assumption (A.3). We note that the scattering operator com-
mutes with A. From [12, Theorem 18.4] one gets the representation

SJ(A,B) −W+(A,B; J)∗W+(A,B; J) =

s− lim
ε→+0

w − lim
τ→+0

⎧⎨⎩−2πi
∫
R

dEac
A (λ)T (τ ;λ)δε(A;λ)P ac(A)

⎫⎬⎭ ,

where

T (τ ;λ) := J∗V − V ∗RB(λ + iτ)V

and

δε(A;λ) := 1
2πi (RA(λ + iε) −RA(λ− iε)) = 1

π

ε

(A− λ)2 + ε2
.

If condition (A.3) is satisfied, then
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RB(i) = RA(i) + φ(A)CGC∗ = RA(i) + QC∗

and we get

J∗V = −RA(−i)RB(−i)V

= −RA(−i)CQ∗V −RA(−i)2V

= −RA(−i)CQ∗V −RA(−i)2φ(A)CGC∗.

Hence we find

T (τ ;λ) = −
(
RA(−i)CQ∗Q + RA(−i)2φ(A)CG + CQ∗RB(λ + iτ)Q

)
C∗.

Using (A.1) we get

⎛⎝Φ
∫
R

dEac
A (μ)T (τ ;μ)δε(A;μ)P ac(A)Ch

⎞⎠ (λ) =

−
√

K(λ)Z(τ ;λ)C∗δε(A;λ)P ac(A)Ch,

where

Z(τ ;λ) := 1
λ + i

Q∗Q + φ(λ)
(λ + i)2G + Q∗RB(λ + iτ)Q.

We note that the limit Q∗RB(λ + i0)Q := limτ→+0 Q
∗RB(λ + iτ)Q exists in the Hilbert–

Schmidt norm. Hence the limit Z(λ) := limτ→+0 Z(τ ; λ) exists in the operator norm and 
is given by

Z(λ) = 1
λ + i

Q∗Q + φ(λ)
(λ + i)2G + Q∗RB(λ + i0)Q.

This gives(
Φ
{

s-lim
ε→+0

w-lim
τ→+0

∫
R

dEac
A (μ)T (τ ;μ)δε(A;μ)P ac(A)Ch

})
(λ) = −

√
K(λ)Z(λ)K(λ)h.

By the compactness of V we get that W+(A, B; J)∗W+(A, B; J) = (I+A2)−2. Therefore 
we have (

Φ(W+(A,B; J)∗W+(A,B; J)Φ∗f
)
(λ) = (1 + λ2)−2f(λ).

Hence ΦSJ(A, B)Φ∗ is equal to a multiplication operator with a measurable function 
SJ(A, B; λ) : Hλ −→ Hλ given by
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SJ(A,B;λ) := (1 + λ2)−2IHλ
+ 2πi

√
K(λ)Z(λ)

√
K(λ).

Using (A.2) we find that ΦS(A, B)Φ∗ is a multiplication operator induced by the mea-
surable function S(A, B; λ) : Hλ −→ Hλ. Both functions SJ(A, B; λ) and S(A, B; λ) are 
related by

SJ(A,B;λ) = S(A,B;λ)(1 + λ2)−2

which yields the representation (A.5). �
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