Singular Indefinite Sturm-Liouville Operators with a Spectral Gap

Jussi Behrndt¹, Roland Möws^{2,*}, and Carsten Trunk²

¹ Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

² Institut für Mathematik, Technische Universität Ilmenau, PF 10056, 98684 Ilmenau, Germany

Singular Sturm-Liouville operators with the indefinite weight $sgn(\cdot)$ and a symmetric potential which has a positive limit at ∞ have a gap in the essential spectrum. Under an additional condition it is shown that in this gap are no eigenvalues.

Copyright line will be provided by the publisher

1 Introduction and main result

In this note we consider the maximal differential operator in $L^2(\mathbb{R})$ associated to the indefinite Sturm-Liouville differential expression

$$\tau = \operatorname{sgn}(\cdot) \left(-\frac{d^2}{dx^2} + q \right),\tag{1}$$

where $q \in L^1_{loc}(\mathbb{R})$ is real-valued, symmetric with respect to 0, i.e., q(x) = q(-x), $x \in \mathbb{R}$, and $\lim_{x \to \pm \infty} q(x) = q_{\infty}$ exists and is positive, $q_{\infty} > 0$. Note that the differential expression τ is not formally symmetric with respect to the scalar product in $L^2(\mathbb{R})$. The maximal differential operator A associated to τ is defined as

$$(Af)(x) = \operatorname{sgn}(x) \left(-f''(x) + q(x)f(x) \right), \quad x \in \mathbb{R}, \qquad f \in \operatorname{dom} A = \mathcal{D},$$

where \mathcal{D} denotes the usual maximal domain given by $\mathcal{D} = \{f \in L^2(\mathbb{R}) : f, f' \text{ absolutely continuous}, \tau f \in L^2(\mathbb{R})\}.$

Spectral properties of indefinite Sturm-Liouville operators play an important role in various applications and have attracted a lot of attention in the recent past, we refer the reader to [2, 4–6, 8, 10] for more details and further references. The following theorem summarizes some facts on the spectrum $\sigma(A)$ and the essential spectrum $\sigma_{ess}(A)$ of A. A proof can be found in, e.g., [1,4,7]. We emphasize that the assumption $\lim_{x\to\infty} q(x) = q_{\infty} > 0$ is essential for this statement.

Theorem 1.1 $\sigma(A) \cap (\mathbb{C} \setminus \mathbb{R})$ consists of at most finitely many pairs $\{\mu, \bar{\mu}\}$ of eigenvalues and $\sigma_{ess}(A) = \mathbb{R} \setminus (-q_{\infty}, q_{\infty})$.

The main objective of this note is to study the spectrum of A in the gap $(-q_{\infty}, q_{\infty})$ of the essential spectrum. For this it is convenient to introduce the maximal operator B associated to the definite Sturm-Liouville expression $\ell = -d^2/dx^2 + q$,

$$(Bf)(x) = -f''(x) + q(x)f(x), \quad x \in \mathbb{R}, \qquad f \in \text{dom } B = \mathcal{D}.$$

It is well known that under the above assumptions on q the differential expression ℓ is in the limit point case at both endpoints $\pm \infty$ and therefore B is a selfadjoint operator in the Hilbert space $L^2(\mathbb{R})$, see, e.g., [3,9,10]. Furthermore, B is semibounded from below and the essential spectrum $\sigma_{ess}(B)$ is the whole interval $[q_{\infty}, \infty)$. The next well known statement is a refinement of Theorem 1.1. The set of eigenvalues of B is denoted by $\sigma_p(B)$.

Theorem 1.2 If $\sigma_p(B) \cap (-\infty, 0) = \emptyset$, then $\sigma(A) \subset \mathbb{R}$ and $\sigma_{ess}(A) = \mathbb{R} \setminus (-q_{\infty}, q_{\infty})$.

The following theorem is the main result of this note. Under slightly stronger assumptions on $\sigma_p(B)$ we get a precise description of the spectrum of A.

Theorem 1.3 If $\sigma_p(B) \cap (-\infty, q_\infty) = \emptyset$, then $\sigma_p(A) \cap (-q_\infty, q_\infty) = \emptyset$ and $\sigma(A) = \sigma_{ess}(A) = \mathbb{R} \setminus (-q_\infty, q_\infty)$.

2 Proof of Theorem 1.3

The statements in Theorem 1.3 follow from Theorem 1.2 if we show that A has no eigenvalues in the interval $(-q_{\infty}, q_{\infty})$. The proof of this is based on elementary facts on solutions of linear ordinary differential equations, see, e.g. [3,9]. Furthermore, the observations in Lemma 2.1 and Lemma 2.2 below are essential ingredients in the proof of Theorem 1.3.

We define \mathcal{D}_+ and \mathcal{D}_- in the same way as \mathcal{D} , where \mathbb{R} is replaced by \mathbb{R}^+ and \mathbb{R}^- , respectively, and τ is replaced by the restrictions $\tau_+ = -d^2/dx^2 + q$ and $\tau_- = d^2/dx^2 - q$ of τ onto \mathbb{R}^+ and \mathbb{R}^- , respectively. Since $\ell = -d^2/dx^2 + q$ is in the limit point case and $\sigma_{\text{ess}}(B) = [q_{\infty}, \infty)$ it follows that for each $\lambda \in \mathbb{C} \setminus [q_{\infty}, \infty)$ there exists (up to a constant multiple) exactly one solution $g_{\lambda} \in \mathcal{D}_+$ of $\tau_+ u = \lambda u$; cf. [9, Satz 13.22]. The same is true for each $\lambda \in \mathbb{C} \setminus (-\infty, -q_{\infty}]$ and the solutions $h_{\lambda} \in \mathcal{D}_-$ of $\tau_- v = \lambda v$.

^{*} Corresponding author E-mail: roland.moews@tu-ilmenau.de, Phone: +49 3677 69 3255 Fax: +49 3677 69 3270

Lemma 2.1 Let $\lambda \in (-q_{\infty}, q_{\infty})$ and let $g_{\lambda} \in \mathcal{D}_+$ and $h_{\lambda} \in \mathcal{D}_-$ be nontrivial solutions of $\tau_+ u = \lambda u$ and $\tau_- v = \lambda v$, respectively. Then each of the numbers $g_{\lambda}(0)$, $g'_{\lambda}(0)$, $h_{\lambda}(0)$, and $h'_{\lambda}(0)$ is nonzero.

Proof. Suppose $g_{\lambda} \in \mathcal{D}_+$ is a nontrivial solution of $\tau_+ u = \lambda u$ such that $g_{\lambda}(0) = 0$. Then the function

$$f_{\lambda}(x) = \begin{cases} g_{\lambda}(x), & x \in \mathbb{R}^+, \\ -g_{\lambda}(-x), & x \in \mathbb{R}^-, \end{cases}$$
(2)

and its derivative are continuous at 0 and hence $f_{\lambda} \in \mathcal{D}$. Furthermore, the equation $-f_{\lambda}'' + qf_{\lambda} = \lambda f_{\lambda}$ holds and hence $f_{\lambda} \in \ker(B - \lambda), f_{\lambda} \neq 0$; a contradiction to the assumption $\sigma_p(B) \cap (-\infty, q_{\infty}) = \emptyset$. The same argument with $-g_{\lambda}(-x)$, $x \in \mathbb{R}^-$, in (2) replaced by $g_{\lambda}(-x), x \in \mathbb{R}^-$, shows $g'_{\lambda}(0) \neq 0$. The claim for $h_{\lambda} \in \mathcal{D}_-$ can be proved analogously, but follows also by observing that the function $\mathbb{R}^+ \ni x \mapsto h_{\lambda}(-x)$ in \mathcal{D}_+ is a solution of $\tau_+ u = -\lambda u$ and $-\lambda \in (-q_{\infty}, q_{\infty})$. \Box

Lemma 2.2 For $\lambda \in (-q_{\infty}, q_{\infty})$ the following assertions are equivalent:

(i) λ is an eigenvalue of A;

(ii) there exist nontrivial solutions $g_{\lambda} \in \mathcal{D}_+$ and $h_{\lambda} \in \mathcal{D}_-$ of $\tau_+ u = \lambda u$ and $\tau_- v = \lambda v$, respectively, such that

$$\frac{g_{\lambda}'(0)}{g_{\lambda}(0)} - \frac{h_{\lambda}'(0)}{h_{\lambda}(0)} = 0.$$
(3)

Proof. (i) \Rightarrow (ii) Let $f_{\lambda} \in \ker(A - \lambda), f_{\lambda} \neq 0$, be an eigenfunction corresponding to $\lambda \in (-q_{\infty}, q_{\infty})$. Then the restrictions $g_{\lambda} = f_{\lambda}|_{\mathbb{R}^+} \in \mathcal{D}_+$ and $h_{\lambda} = f_{\lambda}|_{\mathbb{R}_-} \in \mathcal{D}_-$ are nontrivial solutions of the equations $\tau_+ u = \lambda u$ and $\tau_- v = \lambda v$, respectively. Furthermore, since $f_{\lambda} \in \text{dom } A$ it is clear that $h_{\lambda}(0) = g_{\lambda}(0)$ and $h'_{\lambda}(0) = g'_{\lambda}(0)$ holds. By Lemma 2.1 we also have $0 \neq g_{\lambda}(0) = h_{\lambda}(0)$. This implies (ii).

(ii) \Rightarrow (i) If $g_{\lambda} \in \mathcal{D}_+$ and $h_{\lambda} \in \mathcal{D}_-$ are nontrivial solutions of $\tau_+ u = \lambda u$ and $\tau_- v = \lambda v$, respectively, then by Lemma 2.1 $g_{\lambda}(0) \neq 0$ and $h_{\lambda}(0) \neq 0$. Since both terms in (3) do not depend on the particular choice of $g_{\lambda} \in \mathcal{D}_{+}$ and $h_{\lambda} \in \mathcal{D}_{-}$ it is no restriction to assume that $g_{\lambda}(0) = h_{\lambda}(0)$ holds. Then (3) implies $g'_{\lambda}(0) = h'_{\lambda}(0)$ and therefore the function

$$f_{\lambda}(x) = \begin{cases} g_{\lambda}(x), & x \in \mathbb{R}^+, \\ h_{\lambda}(x), & x \in \mathbb{R}^-, \end{cases}$$

belongs to \mathcal{D} and is a nontrivial solution of $\tau w = \lambda w$, i.e., $f_{\lambda} \in \ker(A - \lambda)$ and λ is an eigenvalue of A.

Remark 2.3 The statements in Lemma 2.1 and Lemma 2.2 hold also for $\lambda \in \mathbb{C} \setminus \mathbb{R}$ and Lemma 2.1 is also valid for g_{λ} (h_{λ}) if $\lambda \in (-\infty, -q_{\infty}]$ ($\lambda \in [q_{\infty}, \infty)$, respectively).

Proof of Theorem 1.3. Let $\lambda \in (-q_{\infty}, q_{\infty})$ and let $g_{\lambda} \in \mathcal{D}_+$ be a nontrivial solution of $\tau_+ u = \lambda u$. We consider the function m defined by

$$(-q_{\infty}, q_{\infty}) \ni \lambda \mapsto m(\lambda) = \frac{g_{\lambda}'(0)}{g_{\lambda}(0)}.$$
(4)

We mention that the function m is (a restriction) of the usual Titchmarsh-Weyl m-function associated to τ_+ ; cf. [3]. It follows from $\lambda \in \mathbb{R}$ that the values of m are real and by Lemma 2.1 the function m has no poles or zeros in $(-q_{\infty}, q_{\infty})$. Since $\lambda \mapsto g_{\lambda}(0)$ and $\lambda \mapsto g'_{\lambda}(0)$ are continuous also m is continuous. Therefore m does not change its sign in $(-q_{\infty}, q_{\infty})$.

Let $\lambda \in (-q_{\infty}, q_{\infty})$ and let $h_{\lambda} \in \mathcal{D}_{-}$ be a nontrivial solution of $\tau_{-}v = \lambda v$. Then the function $g_{-\lambda}(x) := h_{\lambda}(-x)$, $x \in \mathbb{R}^-$, in \mathcal{D}_+ is a nontrivial solution of $\tau_+ u = -\lambda u$ and we conclude

$$m(-\lambda) = \frac{g'_{-\lambda}(0)}{g_{-\lambda}(0)} = -\frac{h'_{\lambda}(0)}{h_{\lambda}(0)}, \qquad \lambda \in (-q_{\infty}, q_{\infty}).$$
(5)

By (4) and (5) the left hand side of (3) coincides with $m(\lambda) + m(-\lambda)$, and as m does not change its sign in $(-q_{\infty}, q_{\infty})$ the function $\lambda \mapsto m(\lambda) + m(-\lambda)$ has no zeros in $(-q_{\infty}, q_{\infty})$. Now Lemma 2.2 implies $\sigma_p(A) \cap (-q_{\infty}, q_{\infty}) = \emptyset$.

References

- J. Behrndt, J. Math. Anal. Appl. 334(2), 1439–1449 (2007).
 J. Behrndt and C. Trunk, J. Differential Equations 238(2), 491–519 (2007).
 E. A. Coddington and N. Levinson, Theory of ordinary differential equations (McGill-Hill, New York, Toronto, London, 1955).
- [4] B. Curgus and H. Langer, J. Differential Equations 79(1), 31–61 (1989)

- [8] C. van der Mee, Exponentially dichotomous operators and applications (Birkhäuser, Basel, 2008).
 [9] J. Weidmann, Lineare Operatoren in Hilberträumen. Teil II: Anwendungen (Teubner, Stuttgart, 2003).
- [10] A. Zettl, Sturm-Liouville theory (American Mathematical Society, Providence, RI, 2005).

I. Karabash, in: Operator Theory: Advances & Applications 188 edited by J. Behrndt et al. (Birkhäuser, Basel, 2009), pp. 175–195. I. Karabash, A. Kostenko, and M. Malamud, J. Differential Equations **246**, 964–997 (2009). Q. Kong, H. Wu, A. Zettl, and M. Möller, Proc. R. Soc. Edinb., Sect. A, Math. **133**(3), 639–652 (2003).