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Abstract. In this note a representation formula for the scattering matrix
of a pair of self-adjoint extensions of a non-densely defined symmetric
operator with infinite deficiency indices is proved with the help of quasi
boundary triples and their Weyl functions. This result is a generalization
of a classical formula by V.A. Adamyan and B.S. Pavlov.

1. Introduction

Mathematical scattering theory and its applications is a central theme in
the works of B.S. Pavlov. Among his numerous contributions in this area
we mention here the works [1, 3, 4, 5, 8, 26, 36, 37, 39, 40, 41, 42, 43] and
we point out the famous classical paper [2], which can also be viewed as the
origin of the present note on scattering matrices. In fact, in [2] V.A. Adamyan
and B.S. Pavlov proved a representation formula in terms of M.G. Krein’s
Q-function for the scattering matrix of a pair of self-adjoint extensions A and
B of a symmetric operator with finite deficiency indices (see also [6]). In this
situation the resolvents of A and B differ by a finite rank operator, that is,

dim
(
ran
(
(A− λ)−1 − (B − λ)−1

))
<∞ (1.1)

holds for some (and hence for all) λ ∈ ρ(A)∩ρ(B), and the S-matrix becomes
a matrix-valued function in a spectral representation of the absolutely con-
tinuous part of A. This important result was revisited and newly interpreted
in [15] using the concept of ordinary boundary triples and their Weyl func-
tions from extension theory of symmetric operators, see also [14, 16]. Only
very recently in [17] the finite rank condition (1.1) was relaxed and, roughly
speaking, replaced by the typical trace class assumption

(A− λ)−1 − (B − λ)−1 ∈ S1 (1.2)
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for some (and hence for all) λ ∈ ρ(A) ∩ ρ(B). In this more general situation
it is convenient to work with so-called generalized or quasi boundary triples,
instead of ordinary boundary triples, in particular, this allows to apply the
representation formula for the S-matrix to scattering problems involving dif-
ferent self-adjoint realizations of second order elliptic PDE’s on unbounded
domains. For related recent results we also refer the reader to [33, 34, 35].

The main objective of the present note on scattering matrices is to pro-
vide a slight generalization of the main representation formula for the scatter-
ing matrix in [17]. Here we shall extend [17, Theorem 3.1] in two directions.
Firstly, we formulate and prove the representation formula in the framework
of quasi boundary triples (instead of generalized boundary triples), which
allows a bit more flexibility in applications to differential operators (see also
[10, 17]), and secondly, we drop the assumption that the underlying symmet-
ric operator is densely defined. We also note that the trace class condition
(1.2) will follow automatically from our assumptions on the γ-field and Weyl
function M of the quasi boundary triple; instead of S1-regularity of the Weyl
function as in [17, Theorem 3.1] we shall impose a Hilbert-Schmidt condition
on the γ-field and require the values of M−1 to be bounded. The present
generalizations lead to some technical difficulties in the proof of the repre-
sentation formula for the S-matrix. More precisely, since the values of the
Weyl function of a quasi boundary triple may be non-closed and unbounded
operators, particular attention has to be paid in some of the main steps of
the proof. Furthermore, if the domain of the underlying symmetric opera-
tor is not dense the adjoint needs to be interpreted in the sense of linear
relations (multi-valued operators) and hence it is necessary to use boundary
triple techniques for linear relations here. However, these additional efforts
are worthwhile since problems in mathematical scattering theory naturally
lead to non-densely defined symmetric defined operators. As an example we
consider a scattering system consisting of one-dimensional Schrödinger op-
erators with a real-valued bounded integrable potential in L2(R). Here the
underlying symmetric operator is defined on all H2(R)-functions that vanish
on the support of the potential, and hence is non-densely defined. We shall
illustrate how a quasi boundary triple for the adjoint relation can be chosen
and derive a representation of the scattering matrix in this case from our
main result Theorem 3.1.
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2. Scattering systems and Weyl functions of quasi boundary
triples

Let A and B be self-adjoint operators in a separable Hilbert space H. The
pair {A,B} may be viewed as a scattering system, where A stands for the
unperturbed operator and B for the perturbed operator. In this preparatory
section we do not impose any conditions on the type of the perturbation.
We shall discuss in the following how (quasi) boundary triples may be used
to regard A and B as self-adjoint extensions of an underlying symmetric
operator and how the resolvent difference of A and B can be factorized in
a convenient Krein type formula. In the following operators will often be
identified with their graphs.

Let S = A ∩B be the intersection (of the graphs) of A and B. Then S
is given by

Sf := Af = Bf, domS =
{
f ∈ domA ∩ domB : Af = Bf

}
. (2.1)

In general the domain of S is not a dense subspace of H, and it may happen
that domS = {0}. However, S is a closed operator in H and since A and B
are self-adjoint extensions of S it is clear that S is a symmetric operator in
H. The adjoint S∗ of S is defined as the linear relation

S∗ =
{
{g, g′} : (Sf, g) = (f, g′) for all f ∈ domS

}
⊂ H× H;

here and in the following we write elements in linear relations (linear sub-
spaces) in a pair notation, e.g. {g, g′}. It is clear that S∗ is (the graph of) an
operator if and only if domS is dense in H, otherwise S∗ has a nontrivial mul-
tivalued part (that is, there exists elements of the form {0, g′} ∈ S∗, g′ 6= 0).
We shall view A and B as self-adjoint restrictions of the adjoint relation S∗

and use the techniques of (quasi) boundary triples from extension theory of
symmetric operators and relations. We refer the reader to [7, 24, 25, 27] for
more details on linear relations and to [11, 12, 20, 21, 22, 23, 29, 46] for the
notion of ordinary, generalized, and quasi boundary triples for linear opera-
tors and relations. In the following we repeat a few necessary definitions from
[11, 12] and provide a useful factorization of the difference of the resolvents
of A and B in Proposition 2.4.

Definition 2.1. Let T be a linear relation in the Hilbert space H such that
T = S∗. Then Π = {G,Γ0,Γ1} is said to be a quasi boundary triple for S∗

if G is a Hilbert space and Γ0,Γ1 : T → G are linear mappings such that the
following conditions (i)–(iii) are satisfied.

(i) The abstract Green’s identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ T ;
(ii) The range of the mapping (Γ0,Γ1)> : T → G × G is dense;
(iii) A0 := ker Γ0 is a self-adjoint relation in H.
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Assume that Π = {G,Γ0,Γ1} is a quasi boundary triple for T = S∗ and
let A0 = ker Γ0. For λ ∈ ρ(A0) one verifies the direct sum decomposition

T = A0 +̂ N̂λ(T ), N̂λ(T ) =
{
{fλ, λfλ} : fλ ∈ ker(T − λ)

}
, (2.2)

which implies that Γ0 � N̂λ(T ) is invertible. In the decomposition (2.2) the
direct sum A+̂N of linear relations A and N such that A ∩ N = {0} is
defined by A+̂N = {f + g, f ′ + g′}, where {f, f ′} ∈ A and {g, g′} ∈ N .

We then define the γ-field and Weyl function corresponding to the quasi
boundary triple {G,Γ0,Γ1} as operator functions on ρ(A0) by

λ 7→ γ(λ) = π1
(
Γ0 � N̂λ(T )

)−1
and λ 7→M(λ) = Γ1

(
Γ0 � N̂λ(T )

)−1
;

here π1 denotes the projection onto the first component of H × H. We refer
the reader to [11, 12] for a detailed discussion of the properties of the γ-field
and Weyl function; here we only recall [11, Proposition 2.6].

Proposition 2.2. Let Π = {G,Γ0,Γ1} be a quasi-boundary triple for S∗ with
γ-field γ and Weyl function M . For λ, µ ∈ ρ(A0) the following holds.

(i) γ(λ) is a densely defined operator from G into H with dom γ(λ) = ran Γ0

such that the function λ 7→ γ(λ)ϕ is holomorphic on ρ(A0) for every
ϕ ∈ ran Γ0 and

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ)

holds. Moreover, for each λ ∈ ρ(A0) the operator γ(λ) is closable and

its closure γ(λ) is a bounded operator from G into H.
(ii) γ(λ)∗ is a bounded mapping defined on H with values in ran Γ1 ⊂ G and

for all h ∈ H we have

γ(λ)∗h = Γ1

(
(A0 − λ)−1h

(I + λ(A0 − λ)−1)h

)
.

(iii) M(λ) is a densely defined operator in G with domM(λ) = ran Γ0 and
ranM(λ) ⊂ ran Γ1.

(iv) M(λ)Γ0f̂λ = Γ1f̂λ for all f̂λ ∈ N̂λ(T ).
(v) M(λ) ⊆M(λ)∗ and

M(λ)ϕ−M(µ)∗ϕ = (λ− µ)γ(µ)∗γ(λ)ϕ, ϕ ∈ domM(λ).

The function λ 7→ M(λ) is holomorphic in the sense that it can be
written as M(λ) = C + L(λ), where

Cϕ := ReM(i)ϕ =
1

2
(M(i) +M(i)∗)ϕ, ϕ ∈ domC := domM(i),

is a possible unbounded symmetric operator and L(λ) is given by

L(λ) := γ(i)∗(λ+ (1 + λ2)(A0 − λ)−1)γ(i), λ ∈ ρ(A0).

In the next lemma we show that the inclusion ranM(λ) ⊂ ran Γ1 in
Proposition 2.2 (iii) becomes an equality if the relation A1 := ker Γ1 is as-
sumed to be self-adjoint in H. Note that by Green’s identity A1 is automati-
cally symmetric.
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Lemma 2.3. Let Π = {G,Γ0,Γ1} be a quasi-boundary triple for S∗ with Weyl
function M and assume, in addition, that A1 = ker Γ1 is a self-adjoint re-
lation in H. Then for all λ ∈ ρ(A0) ∩ ρ(A1) the operator M(λ) maps ran Γ0

onto ran Γ1 and M(λ)−1 exist and is defined on ran Γ1.

Proof. The assumption that A1 = ker Γ1 is self-adjoint implies that the trans-
posed triple Π> = {G,Γ1,−Γ0} is also quasi-boundary triple for S∗. The
corresponding Weyl function M>(λ), λ ∈ ρ(A1), is defined on ran Γ1 and
has values in ran Γ0. One easily checks that M>(λ)M(λ)g = −g, g ∈ ran Γ0,
and M(λ)M>(λ)h = −h, h ∈ ran Γ1, λ ∈ ρ(A0) ∩ ρ(A1). Hence M(λ) maps
ran Γ0 onto ran Γ1 and is invertible. �

The next result will be used in the formulation and proof of our abstract
representation formula for the scattering matrix in the next section. The
statement on the existence of a quasi boundary triple follows for the case
that S is densely defined also from [17, Proposition 2.9 (i)] and the Krein-
type resolvent formula in (2.4) is a special case of [12, Corollary 6.17] or [13,
Corollary 3.9].

Proposition 2.4. Let A and B be self-adjoint operators in H and consider the
closed symmetric operator S = A∩B. Then the closure of the linear relation
T = A +̂B coincides with the adjoint relation S∗ and there exists a quasi
boundary triple Π = {G,Γ0,Γ1} for T ⊂ S∗ such that

A = ker Γ0 and B = ker Γ1. (2.3)

Furthermore, if γ and M are the corresponding γ-field and Weyl function
then

(B − λ)−1 − (A− λ)−1 = −γ(λ)M(λ)−1γ(λ)∗, λ ∈ ρ(A) ∩ ρ(B). (2.4)

Proof. Since A and B are self-adjoint extensions of the closed symmetric
operator S = A ∩B (see also (2.1)) there exists an ordinary boundary triple
Π′ = {G,Λ0,Λ1} for S∗ and a self-adjoint operator Θ in G such that

A = ker Λ0 and B = ker(Λ1 −ΘΛ0). (2.5)

We note that in the present situation the self-adjoint parameter Θ in G is
an operator (and not a linear relation) since S = A ∩ B, that is, A and B
are disjoint self-adjoint extensions of S (cf. [20, 22, 23, 29]). Now consider
the restriction T := A +̂B of S∗. Since A and B are disjoint self-adjoint
extensions of S it follows that T = S∗, see [17, Proposition 2.9]. We claim
that Π = {G,Γ0,Γ1}, where

Γ0f̂ := Λ0f̂ and Γ1f̂ := Λ1f̂ −ΘΛ0f̂ , f̂ ∈ T,

is a quasi boundary triple for T ⊂ S∗ such that (2.3) holds. In fact, (2.3)
is clear from (2.5) and the definition of Γ0 and Γ1, and hence it remains to

check items (i)–(iii) in Definition 2.1. For f̂ = {f, f ′}, ĝ = {g, g′} ∈ T one
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computes

(Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ) =
(
Λ1f̂ −ΘΛ0f̂ ,Λ0ĝ

)
−
(
Λ0f̂ ,Λ1ĝ −ΘΛ0ĝ

)
= (Λ1f̂ ,Λ0ĝ)− (Λ0f̂ ,Λ1ĝ)

= (f ′, g)− (f, g′)

and hence the abstract Green’s identity is valid. Next, assume that

0 =

((
ϕ
ψ

)
,

(
Γ0f̂

Γ1f̂

))
=
(
ϕ,Λ0f̂

)
+
(
ψ,Λ1f̂ −ΘΛ0f̂

)
holds for some ϕ,ψ ∈ G and all f̂ ∈ T . Since Π′ = {G,Λ0,Λ1} is an ordinary
boundary triple the map (Λ0,Λ1)> : S∗ → G×G is surjective. It follows that

Λ1 � ker Λ0 maps onto G and hence for f̂ ∈ A = ker Λ0 one has 0 = (ψ,Λ1f̂),

and therefore, ψ = 0. Now (ϕ,Λ0f̂) = 0 for f̂ ∈ T , and the fact that the range
of the restriction of Λ0 onto T is dense in G (this follows since Λ0 : S∗ → G is
surjective, continuous with respect to the norm on S∗ ⊂ H×H and T is dense
in S∗), yield ϕ = 0. Therefore, the range of the mapping (Γ0,Γ1)> : T → G×G
is dense and hence condition (ii) in Definition 2.1 holds. Condition (iii) is clear
from (2.3). Thus, we have shown that Π = {G,Γ0,Γ1} is a quasi boundary
triple for T = S∗.

Next, we verify the Krein-type resolvent formula (2.4). To this end we
note that the right-hand side of (2.3) makes sense by Proposition 2.2 and
Lemma 2.3. It remains to show the equality of the left- and right-hand side.

Let g ∈ H and define f̂ = {f, f ′} ∈ T = A0 +̂ N̂λ(T ) by

f : = (A− λ)−1g − γ(λ)M(λ)−1γ(λ)∗g,

f ′ : = (1 + λ(A− λ)−1)g − λγ(λ)M(λ)−1γ(λ)∗g.
(2.6)

Proposition 2.2 (ii) and the definition of the Weyl function yield

Γ1f̂ = Γ1

{
(A− λ)−1g, (1 + λ(A− λ)−1)g

}
−M(λ)M(λ)−1γ(λ)∗g = 0

and hence f̂ ∈ ker Γ1 = B. From (2.6), A,B ⊂ T , and ran γ(λ) = ker(T − λ)
one infers

(B − λ)f = (T − λ)(A− λ)−1g − (T − λ)γ(λ)M(λ)−1γ(λ)∗g = g

and together with (2.6) this yields the resolvent formula (2.4). �

3. Main result

Let again A and B be self-adjoint operators in a separable Hilbert space H,
and assume first that

(B − λ)−1 − (A− λ)−1 ∈ S1(H) (3.1)

holds for some, and hence for all, λ ∈ ρ(A) ∩ ρ(B). Here the symbol S1

is used for the ideal of trace class operators. The ideal of Hilbert-Schmidt
operators will be denoted in a similar way by S2. The trace class condition
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(3.1) will follow in Theorem 3.1 and Theorem 3.2 from other assumptions
automatically. Denote the absolutely continuous subspaces of A and B by
Hac(A) and Hac(B), respectively, let P ac(A) be the orthogonal projection
onto Hac(A) and let Aac = A � (domA∩Hac(A)) be the absolutely continuous
part of A. It is well known (see, e.g., [9, 32, 45, 48, 49]) that under the trace
class condition (3.1) the wave operators

W±(B,A) := s− lim
t→±∞

eitBe−itAP ac(A)

exist and are complete, i.e. ran(W±(B,A)) = Hac(B). The scattering opera-
tor is defined as S(A,B) := W+(B,A)∗W−(B,A) and it follows that S(A,B)
is a unitary operator in Hac(A). In the following we discuss a representation
formula for the scattering matrix {SAB(λ)}λ∈R, a family of unitary operators
in a spectral representation of the absolutely continuous part Aac of A (see,
e.g., [9, Chapter 4]), which is unitarily equivalent to the scattering operator
S(A,B).

The next theorem is a generalization of [17, Theorem 3.1] (see also [15,
Theorem 3.8]). Instead of generalized boundary triples the result is formu-
lated for quasi boundary triples here, and the assumption that the intersec-
tion of A and B is densely defined is dropped. The proof is similar to the one
in [17], although more technical. For the convenience of the reader we give a
self-contained complete proof in Section 4.

Theorem 3.1. Let A and B be self-adjoint operators in H, suppose that the
closed symmetric operator S = A∩B is simple, choose a quasi boundary triple
{G,Γ0,Γ1} for T = S∗ such that A = ker Γ0 and B = ker Γ1 as in Proposi-
tion 2.4, and let γ and M be the corresponding γ-field and Weyl function M ,
respectively. Assume that

γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A),

and that M(λ1) is boundedly invertible in G for some λ1 ∈ ρ(A)∩ρ(B). Then
the following holds.

(i) The resolvent difference of B and A is a trace class operator, that is,

(B − λ)−1 − (A− λ)−1 ∈ S1(H), λ ∈ ρ(A) ∩ ρ(B).

(ii) For all λ ∈ ρ(A)∩ρ(B) the closure of the Weyl function M(λ) exists and
is boundedly invertible. Moreover, L(λ) := M(λ)−ReM(i), λ ∈ ρ(A), is

a Nevanlinna function such that the limit L(λ+ i0) = limy↓0 L(λ+ iy)
exists in the operator norm for a.e. λ ∈ R and

M(λ+ i0) := ReM(i) + L(λ+ i0)

is boundedly invertible for a.e. λ ∈ R.

(iii) The space L2(R, dλ,Gλ), where Gλ := ran
(
ImM(λ+ i0)

)
for a.e. λ ∈ R,

forms a spectral representation of Aac such that the scattering matrix
{SAB(λ)}λ∈R of the scattering system {A,B} admits the representation

SAB(λ) = IGλ − 2i

√
ImM(λ+ i0)

(
M(λ+ i0)

)−1√
ImM(λ+ i0)
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for a.e. λ ∈ R.

In Theorem 3.1 it is assumed that the closed symmetric operator S =
A∩B is simple. This assumption can be dropped and Theorem 3.1 admits a
natural generalization, which will be explained next. If S is not simple then
there is a nontrivial orthogonal decomposition of H = H1 ⊕ H2 such that

S = H1 ⊕H2,

where H1 is a simple symmetric operator in H1 and H2 is a self-adjoint
operator in H2. Then there exist self-adjoint extensions A1 and B1 of H1 in
H1 such that

A = A1 ⊕H2 and B = B1 ⊕H2.

Let L2(R, dλ,Hλ) be a spectral representation of the absolutely continuous
part Hac

2 of the self-adjoint operator H2 in H2. Then the following variant of
Theorem 3.1 holds.

Theorem 3.2. Let A and B be self-adjoint operators in H, let S = A ∩ B,
choose a quasi boundary triple Π = {G,Γ0,Γ1} for T = S∗ such that A =
ker Γ0 and B = ker Γ1 as in Proposition 2.4, and let γ and M be the corre-
sponding γ-field and Weyl function M , respectively. Assume that

γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A),

and that M(λ1) is boundedly invertible in G for some λ1 ∈ ρ(A) ∩ ρ(B).
Then the conclusions (i) and (ii) of Theorem 3.1 are valid and instead (iii)
the following holds.

(iii’) The space L2(R, dλ,Gλ ⊕Hλ), where Gλ := ran
(
ImM(λ+ i0)

)
for a.e.

λ ∈ R forms a spectral representation of Aac and the scattering matrix
{SAB(λ)}λ∈R of the scattering system {A,B} admits the representation

SAB(λ) =

(
SA1B1(λ) 0

0 IHλ

)
for a.e. λ ∈ R, where {SA1B1

(λ)}λ∈R given in Theorem 3.1 (iii) is the
scattering matrix of the scattering system {A1, B1}.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is split into steps. First we make clear in Lemma 4.1
and Lemma 4.2 in which sense the limits M(λ± i0) and ImM(λ± i0) of the
Weyl function M and its imaginary part are understood; cf. Theorem 3.1 (ii)
and (iii).

Lemma 4.1. Let M be the Weyl function corresponding to the quasi boundary
triple Π = {G,Γ0,Γ1} of Theorem 3.1. Then ImM(λ) ∈ S1(G) for all λ ∈
ρ(A) and the limit

ImM(λ+ i0) := lim
ε→+0

ImM(λ+ iε) (4.1)

exists for a.e. λ ∈ R in S1(G).
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Proof. From Proposition 2.2 (i) and the assumption γ(λ0) ∈ S2(G,H) for

some λ0 ∈ ρ(A) it follows that γ(λ) ∈ S2(G,H) for all λ ∈ ρ(A). Hence we
also have γ(λ)∗ ∈ S2(H,G) and therefore Proposition 2.2 (v) yields

ImM(λ) = Im(λ) γ(λ)∗γ(λ) ∈ S1(G), λ ∈ ρ(A).

In particular, it follows that the limit in (4.1) exists for a.e. λ ∈ R in S1(G);
cf. [18, 19, 38] or [28, Theorem 2.2]. �

Lemma 4.2. Let M be the Weyl function corresponding to the quasi boundary
triple Π = {G,Γ0,Γ1} in Theorem 3.1. For all ϕ ∈ ran Γ0 and a.e. λ ∈ R the
limit

M(λ± i0)ϕ := lim
ε→+0

M(λ± iε)ϕ (4.2)

exists and the operator M(λ ± i0) with domM(λ ± i0) = ran Γ0 is closable.

Moreover, for a.e. λ ∈ R the closure M(λ+ i0) is boundedly invertible and(
M(λ+ i0)

)−1
= lim
ε→0+

M(λ+ iε)−1 = lim
ε→+0

(
M(λ+ iε)

)−1
(4.3)

holds in the operator norm for a.e. λ ∈ R.

Proof. In order to see that the limit in (4.2) exists and defines a closable
operator in G we recall that M(λ), λ ∈ ρ(A), admits the representation

M(λ)ϕ = ReM(i)ϕ+ L(λ)ϕ

for ϕ ∈ ran Γ0, see Proposition 2.2 (v). Since γ(λ0) ∈ S2(G,H) by assumption

we also have γ(i) ∈ S2(G,H) by Proposition 2.2 (i). Hence [9, Proposition
3.14] yields that the limits L(λ ± i0) of L(λ ± iε) exist as ε → +0 with
respect to the Hilbert-Schmidt norm for a.e. λ ∈ R. In particular, one has
L(λ ± i0) ∈ S2(G) for a.e. λ ∈ R. Hence definition (4.2) makes sense and
yields the representation

M(λ± i0)ϕ = ReM(i)ϕ+ L(λ± i0)ϕ

for all ϕ ∈ domM(λ ± i0) := ran Γ0 and a.e. λ ∈ R; thus there is a Borel
set Λ ⊂ R of Lebesgue measure zero such that for each λ ∈ R \ Λ the limit
operator M(λ± i0) is well defined. The operators M(λ± i0) are closable for

a.e. λ ∈ R and the closures M(λ± i0) are given by

M(λ± i0)ϕ = ReM(i)ϕ+ L(λ± i0)ϕ (4.4)

for all ϕ ∈ domM(λ± i0) = dom ReM(i) and a.e. λ ∈ R.
It will be shown next that the closures in (4.4) are boundedly invertible

for a.e. λ ∈ R and that (4.3) holds in the operator norm for a.e. λ ∈ R.

Let us observe first that M(λ) is boundedly invertible for all λ ∈ ρ(A) \ D,
where D is a discrete subset of ρ(A). In fact, since by our assumption there

is some λ1 ∈ ρ(A) such that M(λ1) is boundedly invertible it follows from
Proposition 2.2 (v) that

M(λ) = M(λ1) + (λ− λ1)γ(λ1)∗γ(λ)

= M(λ1)
[
I − (λ1 − λ)M(λ1)

−1
γ(λ1)∗γ(λ)

]
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holds for all λ ∈ ρ(A). Furthermore, the operator-valued function

λ 7→ (λ1 − λ)M(λ1)
−1
γ(λ1)∗γ(λ)

is holomorphic on ρ(A) by Proposition 2.2 (i) and hence the analytic Fred-
holm theorem (see, e.g. [44, Theorem VI.14]) implies that

M(λ)
−1

=
[
I − (λ1 − λ)M(λ1)

−1
γ(λ1)∗γ(λ)

]−1
M(λ1)

−1

is a bounded operator for all λ ∈ ρ(A) \ D, where D is a discrete subset of
ρ(A).

Observe that the transposed triple Π> = {G,Γ1,−Γ0} is also a quasi
boundary triple. The corresponding γ-field γ> and Weyl function M> are
given by

λ 7→ γ>(λ) = γ(λ)M(λ)−1 and λ 7→M>(λ) = −M(λ)−1,

for λ ∈ ρ(A) ∩ ρ(B), respectively. Hence M>(λ) is boundedly invertible for
any λ ∈ ρ(A) ∩ ρ(B) and

M(λ)M>(λ) = M>(λ)M(λ) = −I, λ ∈ ρ(A) ∩ ρ(B).

Since M> is the Weyl function of Π> = {G,Γ1,−Γ0} Proposition 2.2 (v)
yields the representation

M>(λ)ϕ = ReM>(i)ϕ+ γ>(i)∗
(
λ+ (λ2 + 1)(B − λ)−1

)
γ>(i)ϕ

for ϕ ∈ ran Γ1, and hence

K(λ) := M>(λ) = ReM>(i) + L>(λ), λ ∈ ρ(A) ∩ ρ(B),

where

L>(λ) := γ>(i)∗
(
λ+ (λ2 + 1)(B − λ)−1

)
γ>(i).

Our assumptions in Theorem 3.1 yield γ>(i) = γ(i)M(i)
−1
∈ S2(G,H) and

γ>(i)∗ ∈ S2(H,G), and therefore we conclude from [9, Proposition 3.14] that
the limits K(λ + i0) of K(λ + iε) as ε → +0 exist for a.e. λ ∈ R in the
operator norm. Hence we get

K(λ+ i0)M(λ+ i0) = M(λ+ i0)K(λ+ i0) = −I

for a.e. λ ∈ R and it follows that the operator M(λ+ i0) is boundedly in-
vertible for a.e. λ ∈ R. �

The remaining part of the proof of Theorem 3.1 is similar to the proof
of [15, Theorem 3.8] and [17, Theorem 3.1]. The idea is mainly based on The-
orem 4.3 below, which follows from [9, Theorem 18.4]; cf. [17, Theorem A.2].
Some of the arguments require special care when working in the more gen-
eral context of quasi boundary triples since the values of the γ-field and Weyl
function are not closed operators in general; we provide the full details when-
ever necessary. In the following we shall denote by L(G) the space of bounded
and everywhere defined operators in G.
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Theorem 4.3. Assume that the self-adjoint operators A and B satisfy the
trace class condition (3.1) and suppose that the resolvent difference admits
the factorization

(B − i)−1 − (A− i)−1 = φ(A)CGC∗ = QC∗,

where C ∈ S2(G,H), let φ : R → R be a bounded continuous function and
Q = φ(A)CG. Assume that

Hac(A) = clsp
{
EacA (δ)[ranC] : δ ∈ B(R)

}
(4.5)

holds and let D(λ) = d
dλC

∗EA((−∞, λ))C and Gλ = ranD(λ) for a.e. λ ∈
R. Then L2(R, dλ,Gλ) is a spectral representation of Aac and the scattering
matrix of the scattering system {A,B} is given by

SAB(λ) = IGλ + 2πi(1 + λ2)2
√
D(λ)Z(λ)

√
D(λ)

for a.e. λ ∈ R, where

Z(λ) =
1

λ+ i
Q∗Q+

1

(λ+ i)2
φ(λ)G+ lim

ε→+0
Q∗
(
B − (λ+ iε)

)−1
Q

and the limit of the last term on the right hand side exists in the Hilbert-
Schmidt norm.

Proof of Theorem 3.1. (i) Since γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A) and
M(λ1)−1 is bounded for some λ1 ∈ ρ(A)∩ρ(B) it follows from the statements

in [13, Proposition 3.5] that γ(λ) ∈ S2(G,H) for all λ ∈ ρ(A) and M(λ)−1 is
bounded for all λ ∈ ρ(A)∩ρ(B); cf. the proofs of Lemma 4.1 and Lemma 4.2.
Then we also have γ(λ)∗ ∈ S2(H,G) for all λ ∈ ρ(A) and hence the resolvent
difference

(B − λ)−1 − (A− λ)−1 = −γ(λ)M(λ)−1γ(λ)∗ = −γ(λ)M(λ)−1γ(λ)∗

is a trace class operator for all λ ∈ ρ(A) ∩ ρ(B).

(ii) This statement follows from Lemma 4.2.

(iii) This item is proved in two separate steps. In the first step we find
a preliminary form of the scattering matrix making use of Theorem 4.3. In
the second step we then obtain the final form of the scattering matrix.

Step 1. Expressing the resolvent difference at λ = i in the same way as in the
proof of (i) and using γ(i) = (A+ i)(A− i)−1γ(−i) we obtain

(B − i)−1 − (A− i)−1 = −γ(i)M(i)−1γ(−i)∗

= −(A+ i)(A− i)−1γ(−i)M(i)−1γ(−i)∗

= φ(A)CGC∗,

where we have chosen

φ(t) =
t+ i

t− i
, t ∈ R, C = γ(−i) and G = −M(i)−1.
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It follows in exactly the same way as in [17, Proof of Theorem 3.1] that
the condition (4.5) in Theorem 4.3 holds. Now we compute the L(G)-valued
function

λ 7→ D(λ) =
d

dλ
C∗EA((−∞, λ))C

and its square root λ 7→
√
D(λ) for a.e. λ ∈ R. First of all we have

D(λ) = lim
ε→0+

1

2πi
C∗
(
(A− λ− iε)−1 − (A− λ+ iε)−1

)
C

= lim
ε→0+

ε

π
C∗
(
(A− λ− iε)−1(A− λ+ iε)−1

)
C.

On the other hand

ImM(λ+ iε) = εγ(λ+ iε)∗γ(λ+ iε)

together with γ(λ+ iε) = (A+ i)(A− λ− iε)−1γ(−i) shows

ImM(λ+ iε) = εγ(−i)∗(IH +A2)
(
A− λ+ iε

)−1(
A− λ− iε

)−1
γ(−i)

and hence we conclude

ImM(λ+ iε) = εC∗(IH +A2)
(
A− λ+ iε

)−1(
A− λ− iε

)−1
C.

This implies

ImM(λ+ i0) = lim
ε→0+

ImM(λ+ iε) = π(1 + λ2)D(λ)

for a.e. λ ∈ R and, in particular, ran(ImM(λ+ i0)) = ranD(λ) for a.e. λ ∈ R
and hence

Gλ = ran
(
ImM(λ+ i0)

)
= ranD(λ) for a.e. λ ∈ R.

Therefore, Theorem 4.3 yields that L2(R, dλ,Gλ) is a spectral representation
of Aac and the scattering matrix {SAB(λ)}λ∈R is given by

SAB(λ) = IGλ + 2πi(1 + λ2)2
√
D(λ)Z(λ)

√
D(λ)

= IGλ + 2i(1 + λ2)

√
ImM(λ+ i0)Z(λ)

√
ImM(λ+ i0)

(4.6)

for a.e. λ ∈ R, where

Z(λ) =
1

λ+ i
Q∗Q+

1

(λ+ i)2
φ(λ)G+ lim

ε→0+
Q∗
(
B − (λ+ iε)

)−1
Q (4.7)

and Q = φ(A)CG is given by

Q = −(A+ i)(A− i)−1γ(−i)M(i)−1 = −γ(i)M(i)−1 ∈ S2(G,H).

Step 2. In this step we compute the explicit form

Z(λ) = − 1

1 + λ2
M(λ+ i0)−1 (4.8)

for a.e. λ ∈ R of Z(λ) in (4.7). From this and (4.6) the asserted form of the
scattering matrix follows immediately.
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Observe that by Proposition 2.4 we have

Γ0(B − λ)−1 = Γ0(A− λ)−1 − Γ0γ(λ)M(λ)−1γ(λ)∗

= −M(λ)−1γ(λ)∗

= −M(λ)−1γ(λ)∗

for λ ∈ ρ(A) ∩ ρ(B) and hence

Γ0(B + i)−1 = −M(−i)−1γ(i)∗

=
(
−γ(i)(M(−i)−1)∗

)∗
=
(
−γ(i)M(i)−1

)∗
= Q∗,

where we have used (M(−i)−1)∗ = (M(−i)∗)−1 = M(i)−1. This yields

Q∗(B − λ)−1Q = Γ0(B + i)−1(B − λ)−1Q

= Γ0

(
Q∗(B − λ)−1(B − i)−1

)∗
= Γ0

(
Γ0(B + i)−1(B − λ)−1(B − i)−1

)∗
.

(4.9)

Since

(B + i)−1(B − λ)−1(B − i)−1 =
−1

1 + λ
2

(
(B + i)−1 − (B − λ)−1

)
+

1

2i(λ− i)
(
(B + i)−1 − (B − i)−1

)
it follows from Proposition 2.4 that

Γ0(B + i)−1(B − λ)−1(B − i)−1

=
1

1 + λ
2

(
M(−i)−1γ(i)∗ −M(λ)−1γ(λ)∗

)
− 1

2i(λ− i)
(
M(−i)−1γ(i)∗ −M(i)−1γ(−i)∗

)
.

Taking into account (M(µ)−1)∗ = M(µ)−1 for µ ∈ ρ(A)∩ρ(B) we obtain for
the adjoint(

Γ0(B + i)−1(B − λ)−1(B − i)−1
)∗

=
1

1 + λ2
(
γ(i)M(i)−1 − γ(λ)M(λ)−1

)
+

1

2i(λ+ i)

(
γ(i)M(i)−1 − γ(−i)M(−i)−1

)
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and for ϕ ∈ ran Γ1 = domM(µ)−1, µ ∈ ρ(A) ∩ ρ(B), we then conclude from
(4.9)

Q∗(B − λ)−1Qϕ = Γ0

(
Γ0(B + i)−1(B − λ)−1(B − i)−1

)∗
ϕ

=
1

1 + λ2
Γ0

(
γ(i)M(i)−1 − γ(λ)M(λ)−1

)
ϕ

+
1

2i(λ+ i)
Γ0

(
γ(i)M(i)−1 − γ(−i)M(−i)−1

)
ϕ

=
1

1 + λ2
(
M(i)−1 −M(λ)−1

)
ϕ

+
1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
ϕ

which extends by continuity from the dense set ran Γ1 onto G and takes the
form

Q∗(B − λ)−1Q =
1

1 + λ2
(
M(i)−1 −M(λ)−1

)
+

1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
.

This leads to

lim
ε→0+

Q∗
(
B − (λ+ iε)

)−1
Q =

1

1 + λ2
(
M(i)−1 −M(λ+ i0)−1

)
+

1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)

for a.e. λ ∈ R. Note also that by Lemma 4.2 the limit M(λ+ i0)−1 exists for
a.e. λ ∈ R in the operator norm.

Moreover, for ϕ ∈ ran Γ1 = domM(µ)−1, µ ∈ ρ(A) ∩ ρ(B), we have

Q∗Qϕ =
(
γ(i)M(i)−1

)∗
γ(i)M(i)−1ϕ

= M(−i)−1γ(i)∗γ(i)M(i)−1ϕ

=
1

2i
M(−i)−1

(
M(i)−M(−i)

)
M(i)−1ϕ

=
1

2i

(
M(−i)−1 −M(i)−1

)
ϕ.
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Hence we obtain for ϕ ∈ ran Γ1 and a.e. λ ∈ R that

Z(λ)ϕ =
1

λ+ i
Q∗Qϕ+

1

(λ+ i)2
φ(λ)Gϕ+Q∗

(
B − (λ+ i0)

)−1
Qϕ

=
1

2i(λ+ i)

(
M(−i)−1 −M(i)−1

)
ϕ− 1

1 + λ2
M(i)−1ϕ

+
1

1 + λ2
(
M(i)−1 −M(λ+ i0)−1

)
ϕ

+
1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
ϕ

= − 1

1 + λ2
M(λ+ i0)−1ϕ

and since M(λ+ i0)−1 ∈ L(G) we conclude (4.8). This completes the proof
of Theorem 3.1. �

5. An example

In this section we discuss a scattering system consisting of the one-dimensio-
nal Schrödinger operators {A,B}, where

Af = −f ′′, Bf = −f ′′ + V f, domA = domB = H2(R). (5.1)

Our aim is to show in a particularly simple situation how quasi boundary
triples for the adjoints of non-densely defined symmetric operators appear and
can be applied to obtain a formula for the scattering matrix via Theorem 3.1.
To avoid technical difficulties we will assume that the real-valued potential
V in (5.1) satisfies the condition

V ∈ L∞(R). (5.2)

It is well known that the operators A and B in (5.1) are self-adjoint in L2(R).
Later, in Lemma 5.2, it will also be assumed that V ∈ L1(R). In the present
situation the symmetric operator S = A ∩B has the form

Sf = −f ′′ = −f ′′ + V f, domS =
{
f ∈ H2(R) : V f = 0

}
, (5.3)

and, in general, S is not densely defined. In particular, it may happen that
domS = {0}. In the following we use the factorization

V =
√
|V | sgn(V )

√
|V | = D∗UD, (5.4)

where

D : L2(R)→ G, f 7→
√
|V |f,

G := ran
√
|V |, and U : G → G, ϕ 7→ sgn(V )ϕ. Observe that ranD is dense

in G and that U is a unitary operator in G. In the next proposition we shall
construct a suitable quasi boundary triple for the adjoint relation S∗. For our
purposes it is convenient to introduce the linear relation

T =
{
{f,−f ′′ + V h} : f, h ∈ H2(R)

}
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in L2(R)×L2(R). It is not difficult to see that T = A +̂B holds. We emphasize
that the quasi boundary triple Π = {G,Γ0,Γ1} below is not a generalized
boundary triple in the sense of [23, Definition 6.1] whenever ranD is not
closed.

Proposition 5.1. Let A,B and S, T be as above. Then Π = {G,Γ0,Γ1}, where

G = ran
√
|V |, Γ0f̂ = Dh and Γ1f̂ = UDh− UDf,

f̂ = {f,−f ′′ + V h} ∈ T , is a quasi boundary triple for T = S∗ such that
A = ker Γ0 and B = ker Γ1. The corresponding γ-field and Weyl function are
given by

γ(λ)ϕ = −(A− λ)−1D∗ϕ, ϕ ∈ ran Γ0,

and
M(λ)ϕ = Uϕ+ UD(A− λ)−1D∗Uϕ, ϕ ∈ ran Γ0.

Proof. Consider two elements f̂ = {f,−f ′′ + V h}, ĝ = {g,−g′′ + V k} ∈ T
and note that (−f ′′, g)L2(R) − (f,−g′′)L2(R) = 0 as f, g ∈ H2(R) = domA
and A is a self-adjoint operator. A straightforward computation shows(

−f ′′ + V h, g
)
L2(R) −

(
f,−g′′ + V k

)
L2(R)

= (V h, g)L2(R) − (f, V k)L2(R)

= (h, V g)L2(R) − (V f, k)L2(ι) + (V h, k)L2(R) − (h, V k)L2(R)

=
(
V h− V f, k

)
L2(R) −

(
h, V k − V g

)
L2(R)

=
(
UDh− UDf,Dk

)
G −

(
Dh,UDk − UDg

)
G

= (Γ1f̂ ,Γ0ĝ)G − (Γ0f̂ ,Γ1ĝ)G

and hence the abstract Green’s identity in Definition 2.1 is satisfied. Next we
check that ran(Γ0,Γ1)> is dense in G × G. Assume that for some ζ, ξ ∈ G we
have

0 = (ζ,Γ0f̂)G + (ξ,Γ1f̂)G = (ζ,Dh)G + (ξ, UDh− UDf)G (5.5)

for all f̂ = {f,−f ′′ + V h} ∈ T . In particular, if h = 0 then

0 = (ξ, UDf)G = (D∗U∗ξ, f)L2(R)

for all f ∈ H2(R). Hence D∗U∗ξ = 0 and kerD∗ = (ranD)⊥ = {0} yields
U∗ξ = 0. But U is unitary and thus we conclude ξ = 0. Now (5.5) reduces
to 0 = (ζ,Dh)G = (D∗ζ, h)L2(R) for all h ∈ H2(R). As above kerD∗ = {0}
implies ζ = 0. We have shown that ran(Γ0,Γ1)> is dense in G × G.

Furthermore, if f̂ ∈ ker Γ0 then Dh = 0 for all h ∈ H2(R), and hence
V h = 0 for all h ∈ H2(R) by (5.4). Therefore

ker Γ0 =
{
{f,−f ′′} : f ∈ H2(R)

}
= A

and it follows that Π = {G,Γ0,Γ1} is a quasi boundary triple for T = S∗.

Moreover, if f̂ ∈ ker Γ1 then Dh = Df and hence V h = V f by (5.4). This
implies

ker Γ1 =
{
{f,−f ′′ + V f} : f ∈ H2(R)

}
= B.
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It remains to verify the assertions on the form of the γ-field and Weyl
function corresponding to the quasi boundary triple Π = {G,Γ0,Γ1}. Note
first that in the present situation for λ ∈ ρ(A) we have

N̂λ(T ) =
{
{fλ, λfλ} : fλ = −(A− λ)−1V h, h ∈ H2(R)

}
.

As

λfλ = −λ(A− λ)−1V h = −A(A− λ)−1V h+ V h = Afλ + V h

it follows that the elements f̂λ ∈ N̂λ(T ) have the form

f̂λ =
{
fλ,−f ′′λ + V h

}
, fλ = −(A− λ)−1V h.

Using (5.4) we find

f̂λ =
{
fλ,−f ′′λ +D∗UDh

}
, fλ = −(A− λ)−1D∗UDh. (5.6)

Setting ϕ = Dh ∈ ran Γ0, h ∈ H2(R), we get

f̂λ =
{
fλ,−f ′′λ +D∗Uϕ

}
, fλ = −(A− λ)−1D∗Uϕ.

By definition one has Γ0f̂λ = Dh = ϕ which yields

γ(λ)ϕ = fλ = −(A− λ)−1D∗Uϕ.

Hence the assertion on the γ-field is proven. Furthermore, applying Γ1 to the
same element in (5.6) gives

Γ1f̂λ = UDh− UDfλ = Uϕ+ UD(A− λ)−1D∗Uϕ

which implies the assertion on the Weyl function. �

In the next lemma we shall strengthen the condition (5.2) on V such
that the assumptions on γ and M in Theorem 3.1 are satisfied.

Lemma 5.2. Assume that the real-valued potential V in (5.1) satisfies

V ∈ L∞(R) ∩ L1(R) (5.7)

and let γ and M be the γ-field and Weyl function corresponding to the quasi
boundary triple Π = {G,Γ0,Γ1} in Proposition 5.1. Then

γ(λ0) ∈ S2

(
G, L2(R)

)
(5.8)

for some λ0 ∈ ρ(A) and M(λ1) is boundedly invertible for some λ1 ∈ ρ(A) ∩
ρ(B).

Proof. The assumption (5.7) yields that D(A − λ)−1 is a Hilbert-Schmidt
operator for all λ ∈ ρ(A). Hence (A − λ)−1D∗U is also a Hilbert-Schmidt
operator and (5.8) follows for all λ0 ∈ ρ(A). Moreover, one has

M(λ) = U + UD(A− λ)−1D∗U, λ ∈ ρ(A).

For Im(λ) sufficiently large the operator norm UD(A − λ)−1D∗U∗ becomes

small and hence M(λ1) is boundedly invertible for some λ1 ∈ ρ(A)∩ρ(B). �
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Finally, we summarize the conclusion for the scattering matrix of the
scattering system {A,B}. Here it is clear that the resolvent difference of A
and B is a trace class operator (see, e.g. [47, Lemma 9.34]) and this also
follows from Theorem 3.1. Furthermore, the symmetric operator S in (5.3) is
simple and the absolutely continuous part Aac of A coincides with A. Hence
by Theorem 3.1 the scattering matrix {SAB(λ)}λ∈R of the scattering system
{A,B} admits the representation

SAB(λ) = IGλ − 2i

√
ImM(λ+ i0)

(
M(λ+ i0)

)−1√
ImM(λ+ i0) (5.9)

for a.e. λ ∈ R, and L2(R, dλ,Gλ), where

Gλ := ran
(
ImM(λ+ i0)

)
(5.10)

for a.e. λ ∈ R, is a spectral representation of A. It will turn out next that
the limit ImM(λ+ i0) is zero for a.e. λ < 0 and a rank two operator for a.e.
λ > 0 and hence (5.10) simplifies to

Gλ = ran
(
ImM(λ+ i0)

)
and for the scattering matrix we get

SAB(λ) = IGλ − 2i
√

ImM(λ+ i0)
(
M(λ+ i0)

)−1√
ImM(λ+ i0).

In fact, for ϕ ∈ H2(R) we first compute ImM(λ + i0)ϕ for λ ∈ R.
Observe that for λ ∈ C \ R we have

((A− λ)−1f)(x) =

∫
R

i

2
√
λ
ei
√
λ|x−y|f(y)dy, f ∈ L2(R),

where the square root
√
· is defined for all λ ∈ C\ [0,∞) such that Im

√
λ > 0

and
√
λ ≥ 0 for λ ∈ [0,∞). Making use of

√
λ = −

√
λ for λ ∈ C \ [0,∞) we

find

(ImM(λ)ϕ)(x) =
1

2
sgn(V (x))

√
|V (x)|×

×
∫
R

[
1

2
√
λ
ei
√
λ|x−y| +

1

2
√
λ
e−i
√
λ|x−y|

]√
|V (y)| sgn(V (y))ϕ(y)dy

for λ ∈ C \ R and for λ+ i0 = λ > 0 this implies

( ImM(λ+ i0)ϕ)(x)

=
1

2
√
λ

sgn(V (x))
√
|V (x)|

∫
R

cos
(√
λ|x− y|

)√
|V (y)| sgn(V (y))ϕ(y)dy

=
1

2
√
λ

sgn(V (x))
√
|V (x)| cos(

√
λx)

∫
R

cos(
√
λy)
√
|V (y)| sgn(V (y))ϕ(y)dy

+
1

2
√
λ

sgn(V (x))
√
|V (x)| sin(

√
λx)

∫
R

sin(
√
λy)
√
|V (y)| sgn(V (y))ϕ(y)dy;
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in particular, ImM(λ + i0) is a rank two operator for λ > 0 and the spaces
Gλ, λ > 0, in the spectral representation L2(R, dλ,Gλ) of Aac are given by

Gλ = span
{

sgn(V )
√
|V | cos(

√
λ·), sgn(V )

√
|V | sin(

√
λ·)
}
.

Note that ImM(λ + i0) = 0 for a.e. λ < 0 as (−∞, 0) ⊂ ρ(A), and hence
Gλ = {0} for a.e. λ < 0.

Remark 5.3. (i) The representation (5.9) of the scattering matrix coincides
with the one obtained in quite different manner in [9, Section 18.2.2].

(ii) Proposition 5.1 admits a straight forward generalization to higher di-
mensions. However, under the assumption (5.7) the condition (5.8) in
Lemma 5.2 remains valid only for space dimensions n = 2, 3.

(iii) If ranD is not closed then the quasi boundary triple in Proposition 5.1
is not a generalized boundary triple and hence our extension of [17,
Theorem 3.1] for quasi boundary triples is necessary here.

(iv) If for some C > 0 the condition

|V (x)| 6 C 1

(1 + |x|)1+ε
, ε > 0,

is satisfied for a.e. x ∈ Rn it was shown by Kato in [30] (see also [31])
that the wave operators W±(B,A) exist and are complete. In this proof

it also turns out that the limit M(λ+ i0) of the function M exists for
a.e. λ ∈ R in the operator norm.
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