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Abstract. For an operator-valued block-matrix model, which is called in quan-
tum physics a Feshbach decomposition, a scattering theory is considered. Un-
der trace class perturbation the channel scattering matrices are calculated.
Using Feshbach’s optical potential it is shown that for a given spectral param-
eter the channel scattering matrices can be recovered either from a dissipative
or from a Lax-Phillips scattering theory.
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1. Introduction

Let L and L0 be self-adjoint operators in a separable Hilbert space L and denote
by P ac(L0) the orthogonal projection onto the absolutely continuous subspace
Lac(L0) of L0. One says that the pair {L, L0} of self-adjoint operators performs a
scattering system if the wave operators W±(L, L0),

W±(L, L0) := s − lim
t→±∞

eitLe−itL0P ac(L0), (1.1)

exist, cf. [5]. If the wave operators exist, then they are isometries from the ab-
solutely continuous subspace Lac(L0) into the absolutely continuous subspace
Lac(L), i.e. ran (W±(L, L0)) ⊆ Lac(L). The scattering system {L, L0} is called
complete if the ranges of the wave operators W±(L, L0) coincide with Lac(L), cf.
[5]. The operator

S(L, L0) := W+(L, L0)
∗W−(L, L0)

is called the scattering operator of the scattering system {L, L0}. One easily ver-
ifies that the scattering operator acts from Lac(L0) into Lac(L0) and commutes
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with L0. If the scattering system {L, L0} is complete, then S(L, L0) is an isometry
from Lac(L0) onto Lac(L0). In physical applications L0 is usually called the un-
perturbed or free Hamiltonian while L is called the perturbed or full Hamiltonian.
Since S(L, L0) commutes with the free Hamiltonian H0 the scattering operator is
unitarily equivalent to a multiplication operator induced by a family {S(λ)}λ∈R

of unitary operators in the spectral representation of H0. This family is called the
scattering matrix of the complete scattering system and is the most important
quantity in the analysis of scattering processes.

In this paper we investigate the special case that the Hilbert space L splits
into two subspaces H1 and H2,

L =
H1

⊕
H2

,

and the unperturbed Hamiltonian L0 is of the form

L0 =

(

H1 0
0 H2

)

:
H1

⊕
H2

−→
H1

⊕
H2

. (1.2)

In physics the subspaces Hj and the self-adjoint operators Hj , j = 1, 2, are often
called scattering channels and channel Hamiltonians, respectively. With respect to
the decomposition (1.2) one introduces the channel wave operators

W±(L, Hj) := s − lim
t→±∞

eitLJje
−itHj P ac(Hj)

where Jj : Hj −→ L is the natural embedding operator. Introducing the channel
scattering operators

Sij = W+(L, Hi)
∗W−(L, Hj) : Hj −→ Hi, i, j = 1, 2,

one obtains a channel decomposition of the scattering operator

S(L, L0) =

(

S11 S12

S21 S22

)

. (1.3)

In physics the decomposition (1.2) is often motivated either by the exclusive in-
terest to scattering data in a certain channel or by the limited measuring process
which allows to measure the scattering data only of a certain channel, say H1.
Thus, let us assume that only the channel scattering operator S11 : Hac

1 −→ Hac
1 in

the scattering channel H1 is known. This rises the following problem: Is it possible
to replace the full Hamiltonian L by an effective one H acting only in H1 such
that the scattering operator of the scattering system {H, H1} coincides with S11?
Since S11 is a contraction, in general, this implies that either the scattering system
{H, H1} cannot be complete or H is not self-adjoint.

The problem has a solution within the scope of dissipative scattering systems
developed in [18, 19, 20] for pairs {H, H1} of dissipative and self-adjoint operators
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in some separable Hilbert space. For such pairs the wave operators W D
± (H, H1)

are defined by

W D
+ (H, H1) := s − lim

t→+∞
eitH∗

e−itH1P ac(H1)

and

W D
− (H, H1) := s − lim

t→+∞
e−itHeitH1P ac(H1),

and the notion of completeness is generalized, cf. [18, 19, 20]. The scattering op-
erator of a dissipative scattering system {H, H1} is defined by

SD := W D
+ (H, H1)

∗W D
− (H, H1).

It turns out that SD is a contraction acting on the absolutely continuous sub-
space Hac

1 of H1 which commutes with H1. In [17, 18] it was shown that for any
self-adjoint operator H1 in H1 and any contraction SD acting on the absolutely
continuous subspace Hac

1 and commuting with H1 there is a maximal dissipa-
tive operator H on H1 such that {H, H1} performs a complete scattering system
with scattering operator given by SD . In particular, this holds for the self-adjoint
operator H1 and the channel scattering operator S11. That means, there is a max-
imal dissipative operator H on H1 such that the channel scattering operator S11

is the scattering operator of the complete dissipative scattering system {H, H1}.
Hence, roughly speaking, the scattering operator S11 can be always viewed as the
scattering operator of a suitable chosen dissipative scattering system on H1. The
disadvantage of this fact is that H is not known explicitly.

Another approach to this problem was suggested by Feshbach in [10, 11],
see also [6, 9]. He proposes a concrete dissipative perturbation V1 of the channel
Hamiltonian H1, called “optical potential”, such that the scattering operator S1 of
the dissipative scattering system {H1 + V1, H1} approximates S11 with a certain
accuracy. To explain this approach in more detail let us assume that the full
Hamiltonian L is obtained from L0 by an additive perturbation, L = L0 + V ,
where V is given by

V =

(

0 G

G∗ 0

)

:
H1

⊕
H2

−→
H1

⊕
H2

. (1.4)

Introducing the “optical potential”

V1(λ) := −G(H2 − λ − i0)−1G∗, λ ∈ R, (1.5)

it was shown in [8, Theorem 4.4.4] that under strong assumptions indeed the scat-
tering operator S1[λ] of the (in general dissipative) scattering system {H1(λ), H1},

H1(λ) := H1 + V1(λ), λ ∈ R, (1.6)

coincides with the scattering operator S11 with an error of second order in the
coupling constant.

We show that Feshbach’s proposal can be made precise in another sense.
Note first that the decomposition (1.2) leads not only to the decomposition (1.3)
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of the scattering operator S but also to a decomposition of the scattering matrix
{S(µ)}µ∈R,

S(µ) :=

(

S11(µ) S12(µ)
S21(µ) S22(µ)

)

,

where {Sij(µ)}µ∈R are called the channel scattering matrices. Denoting the scat-
tering matrix of the dissipative scattering system {H1(λ), H1} by {S1[λ](µ)}µ∈R

we prove that

S11(λ) = S1[λ](λ) (1.7)

holds for a.e. λ ∈ R. This shows, that Feshbach’s proposal gives in fact a good
approximation of the channel scattering matrix {S11(µ)}µ∈R in a neighborhood of
the chosen spectral parameter λ of the optical potential V1(λ).

Moreover, Feshbach’s proposal implies a second problem. Similarly to the
optical potential V1(λ) in the first channel H1 one can introduce an optical potential
V2(λ) in the second channel,

V2(λ) := −G∗(H1 − λ − i0)−1G, λ ∈ R, (1.8)

and define a perturbed operator H2(λ),

H2(λ) := H2 + V2(λ), λ ∈ R, (1.9)

in H2. We show below that the characteristic function Θ2[λ](ξ), ξ ∈ C−, of the
dissipative operator H2(λ) and the scattering matrix {S11(λ)}λ∈R are related by

S11(λ) = Θ2[λ](λ)∗ (1.10)

for a.e. λ ∈ R. By [1]-[4] the last relation also yields that the scattering matrix
{S11(λ)}λ∈R can be regarded as the scattering matrix SLP [λ](µ) of a Lax-Phillips
scattering system at the point λ.

Below we restrict ourself to a complete scattering system {L, L0},
L = L0 + V , where the perturbation V is a self-adjoint trace class operator. The
assumption that V is a trace class operator is made for simplicity. Indeed, it would
be sufficient to assume that the resolvent difference (L−z)−p−(L0−z)−p is nuclear
for a certain p ∈ N or, more generally, that the conditions of the so-called “station-
ary” scattering theory are satisfied, cf. [5, Section 14]. However, we emphasize that
in contrast to [8] the smallness of the perturbation V is not assumed. Following
the lines of [5] we show in Section 2 how the scattering matrix of the scatter-
ing system {L, L0} can be calculated. Under the additional assumptions (1.2) and
(1.4) we find in Section 3 the channel scattering matrices {Sij(λ)}λ∈R. In Section 4
we prove relation (1.7). Section 5 is devoted to the proof of (1.10). Moreover, the
Lax-Phillips scattering theory for which {Θ2[λ](µ)∗}µ∈R is the scattering matrix
is indicated.
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2. Scattering matrix

In this section we briefly recall the notion of the scattering matrix {S(λ)}λ∈R of
a scattering system {L, L0}, where it is assumed that the unperturbed operator
L0 is self-adjoint in the separable Hilbert space L and the perturbed operator L

differs from L0 by a self-adjoint trace class operator V ∈ B1(L),

L = L0 + V, V = V ∗ ∈ B1(L). (2.1)

Let E0(·) be the spectral measure of L0 and denote by B(R) the set of all Borel
subsets of the real axis R. Without loss of generality we assume throughout the
paper that the condition

L = clospan{E0(∆)ran (|V |) : ∆ ∈ B(R)} (2.2)

is satisfied, where |V | := (V ∗V )1/2. By Theorem X.4.4 of [13] the scattering system
{L, L0} is complete, that is, the ranges of the wave operators W±(L, L0) in (1.1)
coincide with the absolutely continuous subspace Lac(L) of L. The operator V

admits the representation

V = |V |1/2C|V |1/2, |V | = (V ∗V )1/2, C = sgn(V ), (2.3)

where |V |1/2 belongs to the Hilbert-Schmidt class B2(L) and sgn(·) is the signum
function. By Proposition 3.14 of [5] the limits

|V |1/2(L − λ ± i0)−1|V |1/2 = lim
ε→+0

|V |1/2(L − λ ± iε)−1|V |1/2 (2.4)

exist in B2(L) for a.e. λ ∈ R. The same holds for the limits

|V |1/2(L0 − λ ± i0)−1|V |1/2.

Moreover by Proposition 3.13 of [5] the derivative

M0(λ) :=
|V |1/2E0(dλ)|V |1/2

dλ
≥ 0 (2.5)

exists in B1(L) for a.e. λ ∈ R. We set

Qλ := clo
{

ran (M0(λ))
}

⊆ L.

By {Q(λ)}λ∈R we denote the family of orthogonal projections from L onto Qλ.
One verifies that {Q(λ)}λ∈R is measurable. Let us consider the standard Hilbert
space L2(R, dλ, L). On L2(R, dλ, L) we introduce the projection Q

(Qf)(λ) := Q(λ)f(λ), λ ∈ R, f ∈ L2(R, dλ, L),

and set Q = ran (Q). Further, in L2(R, dλ, L) we define the multiplication operator
ML by

(MLf)(λ) := λf(λ), λ ∈ R,

dom(ML) :=
{

f ∈ L2(R, dλ, L) : λf(λ) ∈ L2(R, dλ, L)
}

.

Obviously, the multiplication operator ML and the projection Q commute. We set

MQ := ML � dom (ML) ∩ Q.
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From Section 4.5 of [5] one gets that the absolutely continuous part Lac of the per-
turbed operator L and the operator MQ are unitarily equivalent. In the following
we denote the subspace Q by L2(R, dλ, Qλ) which can be regarded as the direct
integral of the family of subspaces {Qλ}λ∈R with respect to the Lebesgue measure
dλ on R, cf. [5].

Since the scattering operator S = W+(L, L0)
∗W−(L, L0) acts on Lac

0 and
commutes with Lac

0 there is a measurable family {S(λ)}λ∈R of operators

S(λ) : Qλ −→ Qλ

such that S is unitarily equivalent to the multiplication operator

(MQ(S)f)(λ) := S(λ)f(λ),
dom (MQ(S)) := L2(R, dλ, Qλ).

The family {S(λ)}λ∈R is called the scattering matrix of the scattering system
{L, L0}. Since the scattering system {L, L0} is complete the operator S(λ) is
unitary on Qλ for a.e. λ ∈ R.

The following representation theorem of the scattering matrix is a conse-
quence of Corollary 18.9 of [5], see also [5, Section 18.2.2].

Theorem 2.1. Let L, L0 and V be self-adjoint operators in L as in (2.1). Then
{L, L0} is a complete scattering system and the corresponding scattering matrix
matrix {S(λ)}λ∈R admits the representation

S(λ) = IQλ
− 2πi M

1/2

0
(λ)
n

C − C|V |1/2(L − λ − i0)−1|V |1/2
C
o

M
1/2

0
(λ)

for a.e. λ ∈ R.

3. Channel scattering matrices

Let us now assume that the Hilbert space L is the orthogonal sum of two subspaces
H1 and H2, L = H1 ⊕H2, that L0 is a diagonal block operator matrix of the form

L0 =

(

H1 0
0 H2

)

:
H1

⊕
H2

−→
H1

⊕
H2

, (3.1)

cf. (1.2), where H1 and H2 are self-adjoint operators in H1 and H2 and that
V ∈ B1(L) is a self-adjoint trace class operator of the form

V =

(

0 G

G∗ 0

)

:
H1

⊕
H2

−→
H1

⊕
H2

, (3.2)

see (1.4). The operator G : H2 −→ H1 describes the interaction between the
channels. Since V is a trace class operator we have

G ∈ B1(H2, H1).
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The perturbed or full Hamiltonian L has the form

L := L0 + V =

(

H1 G

G∗ H2

)

:
H1

⊕
H2

−→
H1

⊕
H2

. (3.3)

The following lemma is known as the Feshbach decomposition in physics, cf. [10,
11]. We use the notation

H1(z) = H1 + V1(z) and H2(z) = H2 + V2(z), z ∈ C\R, (3.4)

where

V1(z) = −G(H2 − z)−1G∗ and V2(z) = −G∗(H1 − z)−1G, (3.5)

see (1.6), (1.9), (1.5) and (1.8).

Lemma 3.1. Let L, H1(z) and H2(z), z ∈ C\R, be given by (3.3) and (3.4), re-
spectively. Then we have z ∈ res(Hi(z)), i = 1, 2, for all z ∈ C\R and

(L − z)−1 =

 

(H1(z) − z)−1 −(H1 − z)−1G(H2(z) − z)−1

−(H2(z) − z)−1G∗(H1 − z)−1 (H2(z) − z)−1

!

. (3.6)

Proof. From

Im
(

(H1(z) − z)h1, h1

)

= Im z‖h1‖2 + Im z‖(H2 − z)−1G∗h1‖2,

z ∈ C\R, h1 ∈ H1, we conclude that (H1(z) − z)−1 exists for z ∈ C\R. Analo-
gously one verifies that (H2(z) − z)−1 exists for all z ∈ C\R. A straightforward
computation shows

(L − z)−1 =
 

(H1 − z)−1 + (H1 − z)−1G(H2(z) − z)−1G∗(H1 − z)−1
−(H1 − z)−1G(H2(z) − z)−1

−(H2(z) − z)−1G∗(H1 − z)−1 (H2(z) − z)−1

!

for z ∈ C\R. From the identity
`

I − G
∗(H1 − z)−1

G(H2 − z)−1
´

−1

G
∗ = G

∗
`

I − (H1 − z)−1
G(H2 − z)−1

G
∗
´

−1

we obtain

(H1 − z)−1 + (H1 − z)−1
G(H2(z) − z)−1

G
∗(H1 − z)−1

= (H1 − z)−1

n

I + G(H2 − z)−1
`

I − G
∗(H1 − z)−1

G(H2 − z)−1
´

−1

G
∗(H1 − z)−1

o

= (H1 − z)−1
˘

I + G(H2 − z)−1
G

∗(H1(z) − z)−1
¯

= (H1(z) − z)−1

for all z ∈ C\R, which proves (3.6). �

In the next lemma we calculate the limit |V |1/2(L − λ − i0)−1|V |1/2, λ ∈ R,
cf. (2.4). Here and in the following it is convenient to use the functions

N1(z) := |G∗|1/2(H1 − z)−1|G∗|1/2,

N2(z) := |G|1/2(H2 − z)−1|G|1/2,
z ∈ C\R, (3.7)
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and

F1(z) := |G∗|1/2(H1(z) − z)−1|G∗|1/2,

F2(z) := |G|1/2(H2(z) − z)−1|G|1/2,
z ∈ C\R. (3.8)

Lemma 3.2. Let V ∈ B1(L) be given by (3.2) with G ∈ B1(H2, H1). Then the limits

Ni(λ) := lim
ε→+0

Ni(λ + iε) and Fi(λ) := lim
ε→+0

Fi(λ + iε), i = 1, 2, (3.9)

exist in B2(Hi) for a.e. λ ∈ R and the representation

|V |1/2(L − λ − i0)−1|V |1/2 =

(

F1(λ) −N1(λ)UF2(λ)
−F2(λ)U∗N1(λ) F2(λ)

)

(3.10)

holds for a.e. λ ∈ R.

Proof. By |G|1/2 ∈ B2(H2) and |G∗|1/2 ∈ B2(H1) the existence of the limits Ni(λ)
in (3.9) for a.e. λ ∈ R follows from Proposition 3.13 of [5]. Using the representations
F1(z) = |G∗|1/2P1(L−z)−1 �H1

|G∗|1/2 and F2(z) = |G|1/2P2(L−z)−1 �H2
|G|1/2,

z ∈ C\R, which follow from (3.6), and taking into account [5, Proposition 3.13] we
again obtain the existence of Fi(λ), i = 1, 2, for a.e. λ ∈ R. It is easy to see that

|V |1/2 = (V ∗V )1/4 =

(

|G∗|1/2 0

0 |G|1/2

)

(3.11)

holds. Let U be a partial isometry from H2 into H1 such that G = U |G|. Making
use of the factorizations

G = |G∗|1/2U |G|1/2 and G∗ = |G|1/2U∗|G∗|1/2, (3.12)

the block matrix representation of (L−z)−1 in Lemma 3.1 and relation (3.11) one
verifies (3.10). �

We note that if U is a partial isometry such that G = U |G| holds and C is defined
by

C :=

(

0 U

U∗ 0

)

, (3.13)

then the operator V in (3.2) can be written in the form |V |1/2C|V |1/2, cf. (2.3).
Let E1(·) and E2(·) be the spectral measures of H1 and H2, respectively. The
operator function M0(·) from (2.5) here admits the representation

M0(λ) =

(

M1(λ) 0
0 M2(λ)

)

(3.14)

for a.e λ ∈ R, where the derivatives

M1(λ) =
|G∗|1/2E1(dλ)|G∗|1/2

dλ
and M2(λ) =

|G|1/2E2(dλ)|G|1/2

dλ
(3.15)

exist in B1(H1) and B1(H2) for a.e. λ ∈ R, respectively. Setting

Qj,λ := clo
{

ran (Mj(λ))
}

, j = 1, 2,
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and

Qλ := Q1,λ ⊕ Q2,λ (3.16)

for a.e. λ ∈ R we obtain the decomposition

L2(R, dλ, Qλ) = L2(R, dλ, Q1,λ) ⊕ L2(R, dλ, Q2,λ),

cf. Section 2. From (2.2) the conditions

H1 = clospan{E1(∆)ran (|G∗|) : ∆ ∈ B(R)},
H2 = clospan{E2(∆)ran (|G|) : ∆ ∈ B(R)} (3.17)

follow. Moreover, the converse is also true, that is, condition (3.17) implies (2.2).
Hence, without loss of generality we assume that condition (3.17) is satisfied.
Therefore the reduced multiplication operators MQj

,

MQj
:= MHj

� dom(MHj
) ∩ L2(R, dλ, Qj,λ),

where

(MHj
f)(λ) := λf(λ), λ ∈ R,

dom (MHj
) :=

{

f ∈ L2(R, dλ, Hj) : λf(λ) ∈ L2(R, dλ, Hj)
}

.

are unitary equivalent to the absolutely continuous parts Hac
j of the operators Hj ,

j = 1, 2.
With respect to the decomposition (3.16) the scattering matrix {S(λ)}λ∈R

admits the decomposition

S(λ) =

(

S11(λ) S12(λ)
S21(λ) S22(λ)

)

:
Q1,λ

⊕
Q2,λ

−→
Q1,λ

⊕
Q2,λ

(3.18)

for a.e. λ ∈ R. The entries {Sij(λ)}λ∈R, i, j = 1, 2, are called channel scattering ma-

trices. We note that the multiplication operators induced by the channel scattering
matrices are unitary equivalent to the channel scattering operators Sij = PiSPj ,
i, j = 1, 2, where Pi is the orthogonal projection in L onto the subspace Hj and S

is the scattering operator of the complete scattering system {L, L0}.
In the next proposition we give a more explicit description of the channel

scattering matrices Sij(λ). The proof is an immediate consequence of Theorem 2.1,
Lemma 3.2 and relations (3.14), (3.15) and (3.13).

Proposition 3.3. Let L0, V and L be given in accordance with (3.1), (3.2) and

(3.3), respectively. Then the scattering matrix {S(λ)}λ∈R of the complete scattering

system {L, L0} admits the representation (3.18) with entries Sij(λ) given by

S11(λ) = IQ1,λ
+ 2πiM1(λ)1/2UF2(λ)U∗M1(λ)1/2,

S12(λ) = −2πiM1(λ)1/2{U + UF2(λ)U∗N1(λ)U}M2(λ)1/2,

S21(λ) = −2πiM2(λ)1/2{U∗ + U∗N1(λ)UF1(λ)U∗}M1(λ)1/2,

S22(λ) = IQ2,λ
+ 2πiM2(λ)1/2U∗F1(λ)UM2(λ)1/2.

(3.19)

for a.e. λ ∈ R.
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4. Dissipative channel scattering

In this section we consider the (dissipative) scattering system {H1(λ), H1} for a.e.
λ ∈ R, where

H1(λ) = H1 + V1(λ), (4.1)

is defined for a.e. λ ∈ R, and H1 is the self-adjoint operator in H1 from (3.1). The
limit V1(λ) = limε→+0 V1(λ + iε) (see Lemma 4.1) is called the optical potential

of the channel H1. In Theorem 4.4 below we establish a connection between the
scattering matrices corresponding to the scattering systems {H1(λ), H1} and the
channel scattering matrix S11(λ) from (3.18) and (3.19).

Lemma 4.1. Let V1(z) = −G(H2 − z)−1G∗, z ∈ C\R, be defined by (3.5) with

G ∈ B1(H2, H1). Then the limit V1(λ) = limε→+0 V1(λ + iε) exists in B1(H1) and

V1(λ) is dissipative for a.e. λ ∈ R.

Proof. Using the factorizations (3.12) of G and G∗ we find

V1(z) = −|G∗|1/2UN2(z)U∗|G∗|1/2, z ∈ C\R, (4.2)

where N2(z) is given by (3.7). According to Lemma 3.2 the limit limε→+0 N2(λ+iε)
exists in B2(H1) and since |G∗|1/2 ∈ B2(H1) we conclude that the limit

V1(λ) = lim
ε→+0

V1(λ + iε) = lim
ε→+0

−|G∗|1/2UN2(λ + iε)U∗|G∗|1/2

exists in B1(H1) for a.e. λ ∈ R. It is not difficult to see that Im V1(z) ≤ 0 for
z ∈ C

+ and therefore also the limit V1(λ) is dissipative for a.e. λ ∈ R. �

It follows from Lemma 4.1 that for a.e. λ ∈ R the operator H1(λ) = H1+V1(λ)
is maximal dissipative and therefore {H1(λ), H1} is a dissipative scattering system

in the sense of [19, 20]. By Theorem 4.3 of [20] the corresponding wave operators

W D
+ (H1(λ), H1) = s − lim

t→+∞
eitH1(λ)∗e−itH1P ac(H1)

and

W D
− (H1(λ), H1) = s − lim

t→+∞
e−itH1(λ)eitH1P ac(H1)

exist and are complete which yields that {H1(λ), H1} performs a complete dissi-
pative scattering system for a.e. λ ∈ R. The associated scattering operators are
defined by

SD [λ] := W D
+ (H1(λ), H1)

∗W D
− (H1(λ), H1)

and act on the absolutely continuous subspaces Hac
1 (H1). Since SD[λ] commutes

with H1 the scattering operator is unitary equivalent to a multiplication operator
in the spectral representation L2(R, dλ, Q1,µ) of H1 induced by a family of con-
tractions {SD[λ](µ)}µ∈R. The family {SD[λ](µ)}µ∈R is called the scattering matrix

of the complete dissipative scattering system {H1(λ), H1}.
Using the fact that every maximal dissipative operator admits a self-adjoint

dilation, i.e., there exists a self-adjoint operator in a (in general) larger Hilbert
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space such that its compressed resolvent coincides with the resolvents of the maxi-
mal dissipative operator for all z ∈ C+, cf. [7, Section 7], see also [12], one concludes
from Proposition 3.14 of [5] that the limit

F1[λ](µ) = lim
ε→+0

F1[λ](µ + iε)

exist in B1(H1) for a.e. µ ∈ R, where

F1[λ](z) := |G∗|1/2(H1(λ) − z)−1|G∗|1/2, z ∈ C+,

is defined for a.e. λ ∈ R. The next proposition is a direct consequence of Theorem
2.2 of [16], see also [15].

Proposition 4.2. Let G ∈ B1(H2, H1) and H1(λ) be given by (4.1). Then for a.e.
λ ∈ R the scattering matrix {SD[λ](µ)}µ∈R of the complete dissipative scattering
system {H1(λ), H1} admits the representation

SD[λ](µ) = IQ1,µ
+ 2πiM1(µ)1/2

U
n

N2(λ) + N2(λ)U∗

F1[λ](µ)UN2(λ)
o

U
∗

M1(µ)1/2

for a.e. (µ, λ) ∈ R2 with respect to the Lebesgue measure in R2.

In the next lemma we show that the limit F1[λ](λ),

F1[λ](λ) = lim
ε→+0

F1[λ](λ + iε) = lim
ε→+0

|G∗|1/2(H1(λ) − λ − iε)−1|G∗|1/2, (4.3)

exist in B2(H1) for a.e. λ ∈ R.

Lemma 4.3. Let L0, V and L be given by (3.1), (3.2) and (3.3), respectively, with

G ∈ B1(H2, H1). Further, let F1(λ) be as in Lemma 3.2 and let H1(λ) be defined

by (4.1). Then the limit F1[λ](λ) in (4.3) exists in B2(H1) for a.e. λ ∈ R and the

relation

F1[λ](λ) = F1(λ) (4.4)

holds for a.e. λ ∈ R.

Proof. We have

F1(z) − F1[λ](z) = |G∗|1/2
(

(H1(z) − z)−1 − (H1(λ) − z)−1
)

|G∗|1/2

= |G∗|1/2(H1(z) − z)−1(V1(λ) − V1(z))(H1(λ) − z)−1|G∗|1/2.
(4.5)

From (4.2) we obtain

V1(λ) − V1(z) = |G∗|1/2U
(

N2(z) − N2(λ)
)

U∗|G∗|1/2

and inserting this expression into (4.5) and using the definitions of F1(z) in (3.8)
and F1[λ](z) yields

F1(z) − F1[λ](z) = F1(z)U(N2(z) − N2(λ))U∗F1[λ](z).

Hence

F1(z) = {IH1
+ F1(z)U(N2(z) − N2(λ))U∗}F1[λ](z)
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and for z = λ + iε, ε > 0 sufficiently small, the operator

{IH1
+ F1(z)U(N2(z) − N2(λ))U∗}

is invertible. Therefore we conclude

{IH1
+ F1(λ + iε)U(N2(λ + iε) − N2(λ))U∗}−1

F1(λ + iε) = F1[λ](λ + iε).

From this representation we get the existence of F1[λ](λ) in B2(H1) and the equality
(4.4) for a.e. λ ∈ R. �

The next theorem is the main result of this section. We show how the channel
scattering matrix S11(λ) of the scattering system {L, L0} is connected with the
scattering matrices SD[λ](µ) of the dissipative scattering systems {H1(λ), H1}.

Theorem 4.4. Let {L, L0} be the scattering system from Section 3, where L0, V

and L are given by (3.1), (3.2) and (3.3), respectively, and G ∈ B1(H2, H1). Fur-

ther, let {Sij(λ)}, i, j = 1, 2, be the corresponding scattering matrix from (3.18)
and let SD[λ](µ) be the scattering matrices of the dissipative scattering systems

{H1(λ), H1}. Then the scattering matrix SD[λ](λ) exists for a.e λ ∈ R and satis-

fies the relation

SD[λ](λ) = S11(λ)

for a.e. λ ∈ R.

Proof. From Proposition 4.2 and Lemma 4.3 we obtain that SD[λ](λ) exists for
a.e λ ∈ R and has the form

SD[λ](µ) = IQ1,µ
+ 2πiM1(µ)1/2

U
n

N2(λ) + N2(λ)U∗

F1(λ)UN2(λ)
o

U
∗

M1(µ)1/2 (4.6)

A similar calculation as in the proof of Lemma 3.1 shows

F2(z) = N2(z) + N2(z)U∗F1(z)UN2(z), z ∈ C+.

If z tends to λ ∈ R, then we get

F2(λ) = N2(λ) + N2(λ)U∗F1(λ)UN2(λ) (4.7)

for a.e. λ ∈ R. Inserting (4.7) into (4.6) we obtain

SD[λ](λ) = IQ1,λ
+ 2πiM1(λ)1/2UF2(λ)U∗M1(λ)1/2

and by Proposition 3.3 this coincides with S11(λ) for a.e. λ ∈ R. �

5. Lax-Phillips channel scattering

Similarly to Lemma 4.1 one verifies that V2(λ) = limε→+0 V2(λ + iε) exists in
B1(H2) for a.e. λ ∈ R. The limit V2(λ), which is called the optical potential of the
channel H2, is dissipative for a.e. λ ∈ R. The optical potential defines the maximal
dissipative operator

H2(λ) := H2 + V2(λ)
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for a.e. λ ∈ R. The operator H2(λ) decomposes for a.e. λ ∈ R into a self-adjoint
part and a completely non-self-adjoint part. Let Θ2[λ](ξ), ξ ∈ C−, be the charac-
teristic function, cf. [12], of the completely non-self-adjoint part of H2(λ). We are
going to verify S11(λ) = Θ2[λ](λ)∗ for a.e. λ ∈ R which shows that for a.e. λ ∈ R

the scattering matrix S11(λ) can be regarded as the result of a certain Lax-Phillips
scattering theory, cf. [1, 2, 3, 4, 14].

There is an orthogonal decomposition

H2 = Hcns
2,λ ⊕ H

self
2,λ

for a.e. λ ∈ R such that Hcns
2,λ and H

self
2,λ reduce H2(λ) into a completely non-self-

adjoint operator Hcns
2 (λ) and a self-adjoint operator H

self
2 (λ),

H2(λ) = Hcns
2 (λ) ⊕ H

self
2 (λ).

Taking into account Proposition 3.14 of [5] we get that

=m(V2(λ)) = −π|G|1/2U∗M1(λ)U |G|1/2

for a.e. λ ∈ R. Let us introduce the operator

α(λ) :=
√

2πM1(λ) U |G|1/2. (5.1)

Notice that

clo{ran (α(λ))} = Q1,λ

for a.e. λ ∈ R. With the completely non-self-adjoint part Hcns(λ) one associates
the characteristic function Θ2[λ](·) : Q1,λ −→ Q1,λ defined by

Θ2[λ](ξ) := IQ1,λ
− iα(λ)(H2(λ)∗ − ξ)−1α(λ)∗,

ξ ∈ C−. The characteristic function is a contraction-valued holomorphic function
in C−. From [12, Section V.2] we get that the boundary values

Θ2[λ](µ) := s − lim
ε→+0

Θ2[λ](µ − iε)

exist for a.e. µ ∈ R.

Theorem 5.1. Let L0, V and L be given by (3.1), (3.2) and (3.3). If the condition

G ∈ B1(H2, H1) is satisfied, then the limit Θ2[λ](λ),

Θ2[λ](λ) := s − lim
ε→+0

Θ2[λ](λ − iε)

exists for a.e. λ ∈ R and the relation

S11(λ) = Θ2[λ](λ)∗

holds for a.e. λ ∈ R.

Proof. We set

Θ∗
2[λ](ξ) := Θ2[λ](ξ)∗ = IQ1,λ

+ iα(λ)(H2(λ) − ξ)−1α(λ)∗

ξ ∈ C+. Using (5.1) we get

Θ∗
2[λ](ξ) = IQ1,λ

+ 2πi
√

M1(λ) UF2[λ](ξ)U∗
√

M1(λ)
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for a.e. λ ∈ R, where

F2[λ](ξ) := |G|1/2(H2(λ) − ξ)−1|G|1/2, ξ ∈ C+.

Similar to the proof of Lemma 4.3 one verifies that the limit F2[λ](λ)

F2[λ](λ) = lim
ε→+0

F2[λ](λ + iε)

exist in B2(H2) for a.e. λ ∈ R and satisfies the relation F2[λ](λ) = F2(λ). Hence the
limit Θ∗

2[λ](λ) = s − limε→+0 Θ2[λ](λ − iε)∗ exists for a.e. λ ∈ R and the relation

Θ∗
2[λ](λ) = IQ1,λ

+ 2πi
√

M1(λ) UF2[λ](λ)U∗
√

M1(λ)

holds for a.e λ ∈ R. From (3.19) we obtain that S11(λ) = Θ∗
2[λ](λ) for a.e. λ ∈ R.

Since the limit Θ∗
2[λ](λ) exists for a.e. λ ∈ R one concludes that

Θ2[λ](λ) := s − lim
ε→+0

Θ2[λ](λ − iε)

exists for a.e. λ ∈ R and Θ2[λ](λ)∗ = Θ∗
2[λ](λ) is valid. This completes the proof

Theorem 5.1. �

The last theorem admits an interpretation of the scattering matrix S11(λ) as the
result of a Lax-Phillips scattering. Indeed, let us introduce the minimal self-adjoint
dilation K2(λ) of the maximal dissipative operator H2(λ). We set

K2,λ = D−,λ ⊕ H2 ⊕ D+,λ,

where

D±,λ := L2(R±, dx, Q1,λ).

Further, we define

K2(λ)





f−
f

f+



 :=





−i d
dxf−

<e (H2(λ))f − 1
2α(λ)∗[f+(0) + f−(0)]
−i d

dxf+





for elements of the domain

dom(K2(λ)) :=











f−
f

f+



 :
f ∈ dom (H2(λ))

f± ∈ W 1,2(R±, dx, Q1,λ)
f+(0) − f−(0) = −iα(λ)f







.

The operator K2(λ) is self-adjoint and is a minimal self-adjoint dilation of the
maximal dissipative operator H2(λ), that is,

(H2(λ) − z)−1 = P
K2,λ

H2
(K2(λ) − z)−1 � H2

for z ∈ C+ and

K2,λ = clospan
{

EK2(λ)(∆)H2 : ∆ ∈ B(R)
}

,

where EK2(λ)(·) is the spectral measure of K2(λ). It turns out that D±,λ are
incoming and outgoing subspaces with respect to K2(λ), i.e.,

e−itK2(λ)D+,λ ⊆ D+,λ, t ≥ 0,
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and

e−itK2(λ)D−,λ ⊆ D−,λ, t ≤ 0.

However, we remark that the completeness condition

K2,λ = clospan
{

e−itK2(λ)D±,λ : t ∈ R
}

(5.2)

is in general not satisfied. Condition (5.2) holds if and only if the maximal dissipa-
tive operator H2(λ) is completely non-selfadjoint and H2 is singular, that means,
the absolutely continuous part Hac

2 of H2 is trivial.
On the subspace Dλ,

Dλ = D−,λ ⊕ D+,λ = L2(R, dx, Q1,λ) ⊆ K2,λ,

let us define the operator K0(λ),

(K0(λ)g)(x) := −i
d

dx
g(x), dom (K0(λ)) := W 1,2(R, dx, Q1,λ).

The self-adjoint operator K0(λ) generates the shift group, i.e,

(e−itK0(λ)g)(x) = g(x − t), g ∈ Dλ.

Using the Fourier transform F : L2(R, dx, Q1,λ) −→ L2(R, dµ, Q1,λ),

(Ff)(µ) =
1√
2π

∫

R

dx e−iµxf(x),

the operator K0(λ) transforms into the multiplication operator on the Hilbert
space L2(R, dµ, Q1,λ). Furthermore, one has

e−itK2(λ) � D+,λ = e−itK0(λ) � D+,λ, t ≥ 0,

and

e−itK2(λ) � D−,λ = e−itK0(λ) � D−,λ, t ≤ 0.

The last properties yield the existence of the Lax-Phillips wave operators

W LP
± [λ] := s − lim

t→±∞
eitK2(λ)J±(λ)e−itK0(λ),

cf. [5, 14] where J±(λ) : D±,λ −→ K2,λ is the natural embedding operator. The
Lax-Phillips scattering operator SLP (λ) is defined by

SLP [λ] := W LP
+ [λ]∗W LP

− [λ],

cf. [5, 14]. With respect to the spectral representation L2(R, dµ, Q1,λ) the Lax-
Phillips scattering matrix {SLP [λ](µ)}µ∈R coincides with {Θ2[λ](µ)∗}µ∈R, see [1,
2, 3, 4]. Hence the scattering matrix {S11(λ)}λ∈R can be regarded as the result of
a Lax-Phillips scattering for a.e. λ ∈ R.
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Herculane, 1984), 223–238, Oper. Theory Adv. Appl., 17, Birkhäuser, Basel, 1986.
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