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Abstract

In this paper we develop a perturbation approach to investigate spectral prob-
lems for singular ordinary differential operators with indefinite weight functions.
We prove a general perturbation result on the local spectral properties of selfad-
joint operators in Krein spaces which differ only by finitely many dimensions from
the orthogonal sum of a fundamentally reducible operator and an operator with
finitely many negative squares. This result is applied to singular indefinite Sturm-
Liouville operators and higher order singular ordinary differential operators with
indefinite weight functions.
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1 Introduction

Sturm-Liouville differential operators and higher order ordinary differential
operators with indefinite weight functions have attracted a lot of attention
in the recent past. In many situations it is possible to apply techniques from
operator theory in indefinite inner product spaces and to obtain in this way
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information on the spectral structure of the indefinite differential operator,
see, e.g., [3,6,9–11,19–25,29,34–37,39].

Let us consider the Sturm-Liouville differential expression

ℓ =
1

w

(
− d

dx
p

d

dx
+ q

)
, (1.1)

where w, p−1 and q are real valued locally integrable functions on some bounded
or unbounded interval (a, b) and p(x) > 0, w(x) 6= 0 almost everywhere. It
will be assumed that the weight function w has different signs on subsets of
positive Lebesgue measure of (a, b). In this case ℓ is said to be an indefinite
Sturm-Liouville expression, and it is convenient also to consider the definite
counterpart of ℓ,

τ =
1

|w|

(
− d

dx
p

d

dx
+ q

)
. (1.2)

The operators associated to (1.1) and (1.2) act in the weighted L2-space
L2
|w|(a, b) which consists of all (equivalence classes) of complex valued mea-

surable functions f on (a, b) such that |f |2|w| is integrable. Equipped with the
scalar product

(f, g) =
∫ b

a
f(x) g(x) |w(x)| dx, f, g ∈ L2

|w|(a, b), (1.3)

L2
|w|(a, b) is a Hilbert space and the definite Sturm-Liouville differential ex-

pression (1.2) is formally symmetric with respect to the positive definite inner
product (1.3). The spectral properties of the selfadjoint realizations of τ in
the Hilbert space L2

|w|(a, b) have been studied comprehensively, see, e.g., the
monographs [47,48,50–52] as introductory texts and for further references.

In contrast to τ the indefinite Sturm-Liouville expression ℓ is not symmetric
with respect to (1.3), but becomes symmetric with respect to the indefinite
inner product

[f, g] =
∫ b

a
f(x) g(x) w(x) dx, f, g ∈ L2

|w|(a, b), (1.4)

and the challenging problem is now to investigate the spectral properties of the
differential operators associated to ℓ which are selfadjoint with respect to (1.4).
The Hilbert space scalar product (1.3) and the Krein space inner product (1.4)
are connected via [J ·, ·] = (·, ·), where J is the multiplication operator with
the function x 7→ sgn (w(x)). Formally, we have Jτ = ℓ and hence every self-
adjoint realization A of τ in the Hilbert space L2

|w|(a, b) induces a J-selfadjoint
realization JA of ℓ, i.e., an operator which is selfadjoint in the Krein space
(L2

|w|(a, b), [·, ·]), and vice versa. We point out that the spectral properties of

2



operators which are J-selfadjoint differ essentially from the spectral properties
of selfadjoint operators in Hilbert spaces, e.g., the spectrum is in general not
real and may even be emtpy or cover the whole complex plane.

Since the pioneering work [19] by B. Ćurgus and H. Langer in 1989 the spec-
tral structure of the J-selfadjoint realizations of ℓ (and also of higher order
ordinary differential operators with indefinite weights) in the regular case, i.e.,
the interval (a, b) is bounded and the coefficients are integrable up to the end-
points, is well understood. Namely, since every selfadjoint realization of the
regular differential expression τ in the Hilbert space L2

|w|(a, b) is semibounded
from below and the spectrum of such a differential operator A consists only
of eigenvalues which accumulate to +∞, it can be shown with the help of
abstract perturbation arguments that the resolvent set of any J-selfadjoint
realization of ℓ is nonempty, the spectrum of such a regular indefinite Sturm-
Liouville operator JA is discrete and the form [JA·, ·] = (A·, ·) has finitely
many negative squares. It follows that the nonreal spectrum of JA consists of
(at most) finitely many pairs of eigenvalues which are symmetric with respect
to the real line and that the real eigenvalues accumulate to +∞ and −∞; cf.
[19, § 1] and [44,45]. Under additional assumptions similar results also hold if
both endpoints are in the limit circle case.

If at least one of the endpoints of the interval (a, b) is in the limit point case the
situation becomes much more difficult. Let us consider the particularly inter-
esting setting where both endpoints a and b are in the limit point case. Then
it is well known that the maximal operator A associated to the definite Sturm-
Liouville expression τ in (1.2) is selfadjoint in the Hilbert space L2

|w|(a, b) and
hence the maximal operator JA associated to the indefinite Sturm-Liouville
expression ℓ in (1.1) is J-selfadjoint. For simplicity, let us assume here in this
paragraph that (a, b) = R, that p(x) = 1, w(x) = sgn(x) holds for |x| > c for
some c > 0 and that the coefficient q admits limits at +∞ and −∞,

q∞ := lim
x→+∞

q(x) and q−∞ := lim
x→−∞

q(x).

In Corollaries 4.3 and 4.4 we shall treat this and more general cases. The
operator A is then semibounded from below and the essential spectrum σess(A)
coincides with the interval [µ, +∞), where µ := min{q∞, q−∞}. If the lower
bound of the spectrum σ(A) is positive, then it is well known that the indefinite
Sturm-Liouville operator JA has a nonempty resolvent set and is nonnegative
with respect to the indefinite inner product [·, ·] in (1.4). This implies, in
particular, that the spectrum of JA is real. There exists an extensive literature
on such left-definite Sturm-Liouville problems. We mention only [12–15,40,41]
and refer to the monograph [52] for further references and a detailed treatment
of regular and singular left-definite problems. If only the lower bound µ of
σess(A) is positive, then it can be shown that JA is an operator with finitely
many negative squares and the resolvent set ρ(JA) is nonempty, see, e.g.,
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[19, Proposition 1.1], [39, Theorem 3.3] and Theorem 3.2. In particular, as in
the regular case the nonreal spectrum consists only of finitely many pairs of
eigenvalues which are symmetric with respect to the real axis. In the case that
the lower bound of the essential spectrum of A becomes nonpositive serious
difficulties arise, e.g., it does not even follow immediately that the resolvent
set of the indefinite Sturm-Liouville operator JA is nonempty. However, under
some additional assumptions a first result on the spectral structure of JA was
proved in [6] with the help of a general perturbation result from [7], see also
[37]. Namely, it was shown that JA is a so-called locally definitizable operator
over C\[µ,−µ] in the sense of P. Jonas, see [30–32], with spectral properties
similar to J-selfadjoint operators with finitely many negative squares outside
any open neighborhood of the interval [µ,−µ].

The first of our main objectives in this paper is to develop a perturbation ap-
proach to tackle spectral problems for singular ordinary differential operators
with indefinite weight functions. For this we prove in Section 3 a general per-
turbation theorem which is directly applicable to the setting sketched above
with µ ≤ 0 and much more general situations. In particular, our abstract re-
sult Theorem 3.5 ensures local definitizability of JA over C\[µ,−µ] as above.
The second of our main objectives is to remove the additional assumption
ρ(JA) 6= ∅ for a large class of J-selfadjoint singular indefinite Sturm-Liouville
operators JA. In the special situation w(x) = sgn(x) and p(x) = 1 for a.e.
x ∈ R it follows directly from the asymptotic behaviour of the Titchmarsh-
Weyl functions associated to selfadjoint realizations of τ in L2(R±) that ρ(JA)
is nonempty, see [28] and [36,37], but for more general cases – e.g., when w has
many turning points – this seems to be unknown. If the weight w has constant
signs in a neighborhood of the singular endpoints a and b, and the definite
Sturm-Liouville operator A is semibounded from below it will be shown in The-
orem 4.5 that the resolvent set of the J-selfadjoint indefinite Sturm-Liouville
operator JA is nonempty. For this we make use of local sign type proper-
ties of Titchmarsh-Weyl coefficients associated to indefinite Sturm-Liouville
expressions on certain subintervals of (a, b).

Besides the indefinite Sturm-Liouville expression (1.1) we also study higher
order differential expressions with an indefinite weight and real valued locally
integrable coefficients of the form

ℓ̂ =
1

w

(
(−1)n dn

dxn
p0

dn

dxn
+ (−1)n−1 dn−1

dxn−1
p1

dn−1

dxn−1
+ · · · + pn

)
(1.5)

on (a, b); cf. [19]. The corresponding definite differential expression τ̂ is defined
as ℓ̂ in (1.5) with w replaced by |w| and was already studied by M.G. Krein
in [42], see also [48]. Again we are particularly interested in singular problems
where the lower bound of the essential spectrum of a selfadjoint realization
A of τ̂ in L2

|w|(a, b) is nonpositive. Under the assumption ρ(JA) 6= ∅ our
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general perturbation result can be applied and yields local definitizability,
information on sign type properties of the real spectrum and boundedness of
the nonreal eigenvalues of the J-selfadjoint realization JA of ℓ̂ in Theorem 5.1.
We point out that it is not clear if ρ(JA) 6= ∅ holds in general. However, under
additional assumptions on the weight function w and the boundary condition
we make use of [19, Theorem 3.6] on the regularity of the critical point ∞
for J-selfadjoint realizations of the differential expression ℓ̂ − η sgn w (with
suitable η < 0) to prove ρ(JA) 6= ∅ in Theorem 5.4.

The present paper is organized as follows. In Section 2 we collect the nec-
essary preliminaries on J-selfadjoint operators, sign types of spectral points,
and locally definitizable J-selfadjoint operators. The connection between the
spectrum of a selfadjoint operator A in a Hilbert space and the spectrum of
the corresponding J-selfadjoint operator JA is investigated in Section 3. The
case that the lower bound of the spectrum or the essential spectrum of A is
positive is recalled in Theorem 3.1 and Theorem 3.2; cf. [39, Theorems 1.1
and 1.2] and [16,19,44,45]. In both these cases JA is definitizable. The main
result in this abstract part of the paper is Theorem 3.5. Here the lower bound
of the essential spectrum of A is assumed to be nonpositive and it is shown
under suitable assumptions that JA is still locally definitizable and the sign
properties of the spectrum of JA are studied. This result is applied to singular
indefinite Sturm-Liouville operators in Section 4 and to higher order singular
ordinary differential operators with indefinite weights in Section 5.

2 Locally definitizable J-selfadjoint operators

Let H be a Hilbert space with scalar product (·, ·), let J = J∗ = J−1 be a
bounded everywhere defined operator in H and define the inner product [·, ·]
on H by

[h, k] := (Jh, k), h, k ∈ H. (2.1)

The inner product [·, ·] is in general indefinite, (H, [·, ·]) is a so-called Krein
space and J is the fundamental symmetry connecting the inner products [·, ·]
and (·, ·). The orthogonal sum with respect to (·, ·) is denoted by ⊕. The
fundamental symmetry J induces a fundamental decomposition

H = H+ ⊕H−, where H± = ker (J ∓ I),

of the Krein space (H, [·, ·]). Here (H+, [·, ·]) and (H−,−[·, ·]) are Hilbert spaces
and orthogonal to each other with respect to both (·, ·) and [·, ·]. In the fol-
lowing all topological notions are to be understood with respect to the Hilbert
space norm ‖ · ‖ induced by (·, ·). We refer the reader to [2,16,43] for further
details on indefinite inner product spaces.
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Let T be a densely defined linear operator in H. The spectrum and resolvent
set of T are denoted by σ(T ) and ρ(T ), respectively. The adjoint of T with
respect to the scalar product (·, ·) is denoted by T ∗. The adjoint of T with
respect to the Krein space inner product [·, ·] is defined by T+ := JT ∗J , i.e.,

[Tx, y] = [x, T+y] for all x ∈ dom T, y ∈ dom T+ = J(dom T ∗).

The operator T is called J-symmetric (J-selfadjoint) if T ⊂ T+ (T = T+,
respectively). Such operators are also said to be symmetric or selfadjoint in
the Krein space (H, [·, ·]). Observe that T is J-symmetric (J-selfadjoint) if and
only if JT is symmetric (selfadjoint, respectively) in the Hilbert space (H, (·, ·))
and that a J-symmetric operator has J-selfadjoint extensions in H if and only
if the symmetric operator JT has selfadjoint extensions in (H, (·, ·)).

In the following we will briefly recall the definitions and basic properties of the
so-called definitizable and locally definitizable J-selfadjoint operators. For a
detailed exposition we refer to [30–32,44,45]. For a J-selfadjoint operator T in
the Krein space (H, [·, ·]) a point λ ∈ C is said to belong to the approximative
point spectrum σap(T ) of T if there exists a sequence (xn) ⊂ dom T with
‖xn‖ = 1, n = 1, 2, . . . , and ‖(T − λ)xn‖ → 0 if n → ∞. If λ ∈ σap(T ) and
each sequence (xn) ⊂ dom T with ‖xn‖ = 1, n = 1, 2, . . . , and ‖(T−λ)xn‖ → 0
for n → ∞, satisfies

lim inf
n→∞

[xn, xn] > 0
(
lim sup

n→∞
[xn, xn] < 0

)
,

then λ is called a spectral point of positive type (negative type, respectively)
of T ; cf. [32,46]. The J-selfadjointness of T implies that the spectral points
of positive and negative type are real. An open set ∆ ⊂ R is said to be of
positive type (negative type) with respect to T if ∆∩ σ(T ) consists of spectral
points of positive type (negative type, respectively) of T . We say that an open
set ∆ ⊂ R is of definite type with respect to T if ∆ is either of positive or of
negative type with respect to T .

The next definition can be found in a more general form in, e.g., [31]. We
denote the extended real line and extended complex plane by R and C, re-
spectively.

Definition 2.1 Let I ⊂ R be a closed connected set and let T be a J-self-
adjoint operator in H such that σ(T )∩ (C\R) consists of isolated points which
are poles of the resolvent of T , and no point of R\I is an accumulation point
of the nonreal spectrum of T . Then T is said to be definitizable over C\I, if
the following conditions (i) and (ii) hold:

(i) Every point µ ∈ R\I has an open connected neighborhood Uµ in R such
that both components of Uµ\{µ} are of definite type with respect to T .
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(ii) For every finite union ∆ of open connected subsets of R, ∆ ⊂ R\I, there
exist m ≥ 1, M > 0 and an open neighborhood O of ∆ in C such that

‖(T − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m

holds for all λ ∈ O\R.

A J-selfadjoint operator T is said to be nonnegative in a neighborhood of ∞
if T is definitizable over C\I for some I ⊂ R as above and there exists η ≥ 0
such that (η, +∞) is of positive type and (−∞,−η) is of negative type with
respect to T .

If T is a J-selfadjoint operator in H which is definitizable over C (= C\∅),
then T is said to be definitizable. This is equivalent to the fact that there
exists a polynomial p such that [p(T )x, x] ≥ 0 holds for all x ∈ dom p(T ) and
ρ(T ) 6= ∅; cf. [32, Theorem 4.7] and [44,45]. Such a polynomial is said to be
definitizing for T .

Let κ ∈ N0. The J-selfadjoint operator T is said to have κ negative squares
if ρ(T ) 6= ∅ and the inner product [T ·, ·] (on dom T ) has κ negative squares,
i.e., there exists a subspace M ⊂ dom T with dim M = κ on which the inner
product [T ·, ·] is negative definite, and the dimension of every other subspace
in dom T with this property is not greater than κ. A J-selfadjoint operator
with a finite number κ of negative squares is definitizable and nonnegative
in a neighborhood of ∞, see [45] and Theorem 3.2 below. If κ = 0, then the
operator T is also called J-nonnegative or [·, ·]-nonnegative.

Let T be a J-selfadjoint operator which is locally definitizable over C\I. Then
for every open set O ⊂ C which contains I the operator T can be decomposed
into the direct sum of a definitizable operator T1 and a bounded operator T2

with spectrum contained in O, see [32, Theorem 4.8]. If, in addition, T is
nonnegative in a neighborhood of ∞, then O can be chosen such that T1 is
[·, ·]-nonnegative, see, e.g., [8, §3.1]. This is due to the fact that T possesses
a local spectral function δ 7→ ET (δ) on R\I which is defined on all finite
unions δ of connected subsets of R\I with endpoints in R\I which are either
spectral points of definite type of T or belong to ρ(T ), see [32, Section 3.4
and Remark 4.9]. We note that an open interval ∆ ⊂ R\I is of positive type
(negative type) with respect to T if and only if for every set δ, δ ⊂ ∆, for
which ET (δ) is defined, the spectral subspace (ET (δ)H, [·, ·]) ((ET (δ)H,−[·, ·]),
respectively) is a Hilbert space. Next we recall the notion of spectral points
and intervals of type π+ and type π−; cf. [31]. The direct sum of subspaces in
H is denoted by +̇.

Definition 2.2 Let I ⊂ R be a closed connected set and let T be a J-self-
adjoint operator in H which is definitizable over C\I. A point λ0 ∈ σ(T ) ∩
(R\I) is called a spectral point of type π+ (type π−) of T if there exists an
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open interval δ ⊂ R\I with λ0 ∈ δ such that both components of δ\{λ0} are
of positive type (negative type, respectively) with respect to T and if ker (T −
λ0) = K ∔ N , where (K, [·, ·]) ((K,−[·, ·]), respectively) is a Hilbert space and
dimN < ∞. An open interval ∆ ⊂ R\I is said to be of type π+ (type π−)
with respect to T if every point in σ(T ) ∩ ∆ is a spectral point of type π+

(type π−, respectively) of T .

The above definition of spectral points of type π+ and type π− is equivalent to
that in [31]. Spectral points of type π+ and type π− can also be characterized
with the help of approximative eigensequences in a similar way as the spectral
points of positive and negative type; cf. [5]. Observe that a spectral point
of positive type (negative type) of T is at the same time a spectral point
of type π+ (type π−, respectively) of T . Furthermore, the spectral function
ET (·) of the locally definitizable J-selfadjoint operator T can be used for the
description of intervals of type π+ and type π− of T . More precisely, if T is
definitizable over C\I, then an open interval ∆ ⊂ R\I is of type π+ (type π−)
if and only if for every set δ, δ ⊂ ∆, for which ET (δ) is defined, the inner
product [·, ·] has a finite number of negative (positive, respectively) squares
on the spectral subspace ET (δ)H.

Remark 2.3 It is important to note that in an interval of type π+ (type π−)
the set of points which are not of positive type (negative type, respectively) is
discrete and can only accumulate to the endpoints of the interval; cf. [5].

3 Spectral properties of a class of J-selfadjoint operators

Let throughout this section (H, (·, ·)) be a separable Hilbert space, let A be
a bounded or unbounded selfadjoint operator in H and denote the spectral
function of A by EA(·). It will always be assumed that A is semibounded from
below. Recall that the essential spectrum σess(A) of A consists of the accumu-
lation points of σ(A) and the isolated eigenvalues of infinite multiplicity. For
brevity we set

ν := min σ(A), µ := min σess(A), (3.1)

and if the set σess(A) is empty we define µ := +∞. Obviously, we then have
the following inequality

−∞ < ν ≤ µ ≤ +∞.

Suppose that a bounded linear operator J = J∗ = J−1 is given on H and
let [·, ·] be the Krein space inner product induced by J and (·, ·), i.e. [h, k] =
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(Jh, k), h, k ∈ H. Then

H = H+ ⊕H−, H± := ker (J ∓ I),

is the corresponding fundamental decomposition of H. In the sequel we in-
vestigate the spectral properties of the J-selfadjoint operator JA. If the lower
bound ν of the spectrum of A or the lower bound µ of the essential spectrum
of A in (3.1) is positive, then it is known that JA is J-nonnegative or has a
finite number of negative squares. For the convenience of the reader we recall
these and some other facts in Theorem 3.1, Theorem 3.2 and Remark 3.3 be-
low. The proofs of the statements are essentially contained in [16,19,44,45],
see also [39, Theorem 3.3], [11, Theorem 3.1] and [21, Proposition 1.6].

Theorem 3.1 Let A and J be as above and suppose ν = min σ(A > 0. Then
the following holds for the J-selfadjoint operator JA:

(i) JA is J-nonnegative and (C\R) ∪ {0} ⊂ ρ(JA);
(ii) (0,∞) is of positive and (−∞, 0) is of negative type with respect to JA;
(iii) JA is definitizable with definitizing polynomial p(t) = t.

Recall that an eigenvalue λ of a closed operator T in H is said to be normal
if λ is isolated and has finite algebraic multiplicity.

Theorem 3.2 Let A and J be as above and suppose µ = min σess(A) > 0.
Then the following holds for the J-selfadjoint operator JA:

(i) JA has κ negative squares, where

κ = dim EA((−∞, 0)) < ∞,

and the nonreal spectrum of JA consists of at most κ pairs of normal
eigenvalues;

(ii) (0,∞) is of type π+ and (−∞, 0) is of type π− with respect to JA;
(iii) JA is nonnegative in a neighborhood of ∞ and definitizable with defini-

tizing polynomial p(t) = tq(t)q(t), where q is a monic polynomial with
degree ≤ κ.

Remark 3.3 We remark that for the J-selfadjoint operator JA in Theo-
rem 3.2 the multiplicity of the nonreal eigenvalues, the positive eigenvalues
which are not of positive type and the negative eigenvalues which are not of
negative type can be estimated by the number κ = dim EA((−∞, 0)). More
precisely, if {κ−(λ), κ0(λ), κ+(λ)} denotes the signature of the inner product
[·, ·] on the algebraic eigenspace corresponding to an eigenvalue λ of JA, then

∑

λ∈(−∞,0)

(κ+(λ) + κ0(λ)) +
∑

λ∈(0,∞)

(κ−(λ) + κ0(λ)) +
∑

Im λ>0

κ0(λ) ≤ κ

and, if 0 6∈ σp(JA), then equality holds; cf. [44,45] and [11, Theorem 3.1].
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The following simple example shows that in the case µ ≤ 0 additional assump-
tions on A have to be imposed to obtain further information on the spectral
structure of JA.

Example 3.4 Let K be an infinite dimensional Hilbert space and let B be an
unbounded nonnegative selfadjoint operator in K. Consider the operators

A :=




B 0

0 0


 and J =




0 IK

IK 0




in the product Hilbert space H := K⊕K. Then A is a nonnegative selfadjoint
operator in H with ν = µ = 0 and J = J∗ = J−1. Since dom B 6= K and

JA =




0 0

B 0


 , dom JA = dom B ⊕K,

it follows that ran (JA − λ) 6= H for all λ ∈ C, i.e., σ(JA) = C.

The next theorem is the main result of this section. Very roughly speaking
it states that if A is such that JA differs by at most finitely many dimen-
sions from the orthogonal sum of a so-called fundamentally reducible opera-
tor and an operator with finitely many negative squares, then JA is locally
definitizable and nonnegative at ∞. Recall that the essential spectrum σess(S)
of a closed symmetric operator S in a Hilbert space consists of all points
λ ∈ C such that S − λ is not Fredholm, i.e., ran (S − λ) is not closed or
dim (ker (S − λ)) = ∞. The set r(S) of points of regular type of S is defined
by r(S) := C\(σess(S) ∪ σp(S)).

Theorem 3.5 Let A be a selfadjoint operator in (H, (·, ·)) which is semi-
bounded from below with µ = min σess(A) ≤ 0 and let J and H = H+ ⊕H− be
as above. Let K± ⊂ H± and Kd be closed subspaces of H such that

H = K+ ⊕K− ⊕Kd. (3.2)

Assume that there exist linear subspaces Gi ⊂ dom A∩Ki, i ∈ {+,−, d}, such
that the following holds:

(i) dim
(
dom A/(G+ ⊕ G− ⊕ Gd)

)
< ∞;

(ii) AG± ⊂ K±, AGd ⊂ Kd;
(iii) σess(A↾ Gd) ∩ [µ, ε) = ∅ for some ε > 0.

If, in addition, ρ(JA) 6= ∅, then the following statements hold for the J-
selfadjoint operator JA:

(a) JA is definitizable over C\[µ,−µ] and nonnegative in a neighborhood of
∞;
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(b) (−∞, µ) is of type π− and (−µ,∞) is of type π+ with respect to JA;
(c) σ(JA) ∩ (C\R) is bounded and consists of normal eigenvalues with only

possible accumulation points in [µ,−µ].

Remark 3.6 Evidently, if A is bounded or boundedly invertible, then the con-
dition ρ(JA) 6= ∅ in Theorem 3.5 is satisfied.

Remark 3.7 If JA satisfies (a)-(c) in Theorem 3.5 then the local spectral
function can be used to decompose JA into an operator with finitely many
negative squares and a bounded operator; cf. Section 2. More precisely, for
every open neighborhood O ⊂ C of the interval [µ,−µ] there exists a decom-
position H∞ ⊕Hµ of H such that JA can be written in the form

JA =




(JA)∞ 0

0 (JA)µ


 ,

where (JA)∞ is a (J ↾ H∞)-selfadjoint operator in H∞ with ρ((JA)∞) 6= ∅

and finitely many negative squares, and (JA)µ is a bounded (J ↾Hµ)-selfadjoint
operator in Hµ with σ((JA)µ) ⊂ O.

In the special case Kd = {0} Theorem 3.5 reduces to the following corollary.

Corollary 3.8 Let A, J and H = H+ ⊕ H− be as above and µ ≤ 0. As-
sume that there exists a subspace G+ ⊕ G−, G± ⊂ H±, in dom A such that
dim (dom A/(G+ ⊕ G−)) < ∞ and AG± ⊂ H± holds. If, in addition, ρ(JA) 6=
∅, then the statements (a)-(c) in Theorem 3.5 hold.

In the special cases K− = {0} or K+ = {0} the assertions in Theorem 3.5 can
be improved. We emphasize that, in particular, the assumption ρ(JA) 6= ∅ can
be dropped. This is a consequence of [3, Theorem 2.2] and [4, Theorem 3.1],
see also [33, Theorem 1].

Corollary 3.9 Let A, J and H = H+ ⊕ H− be as above and µ ≤ 0. Let
K+ ⊂ H+ (K− ⊂ H−) and Kd be closed subspaces of H such that

H = K+ ⊕Kd (H = K− ⊕Kd, respectively).

Assume that there exist linear subspaces Gi ⊂ dom A ∩ Ki, i ∈ {+, d} (i ∈
{−, d}, respectively), such that the following holds:

(i)± dim (dom A/(G+⊕Gd)) < ∞ (dim (dom A/(G−⊕Gd)) < ∞, respectively);
(ii)± AG+ ⊂ K+ (AG− ⊂ K−, respectively), AGd ⊂ Kd;
(iii)± σess(A↾ Gd) = ∅.

Then ρ(JA) 6= ∅, σess(JA) = σess(A) (σess(JA) = σess(−A), respectively) and
JA is definitizable (over C) and nonnegative in a neighborhood of ∞.
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Proof of Theorem 3.5. The proof is divided into three steps. In the first
step we construct a J-selfadjoint operator JÃ which differs only by finitely
many dimensions from JA and admits a diagonal block operator matrix rep-
resentation with respect to the decomposition (3.2). In step 2 we show that
the assertions (a)-(c) are satisfied with JA replaced by JÃ. Finally, a general
perturbation result from [7] applied to the present situation shows that JA
satisfies (a)-(c).

Step 1. Denote by G̃i, i ∈ {+,−, d}, the closure of Gi with respect to the
graph norm ‖ · ‖A of A. Since A is closed it follows without difficulties that
G̃i ⊂ dom A ∩ Ki, i ∈ {+,−, d}, and that the assumptions (i)-(iii) are valid
with Gi replaced by G̃i (in order to see that (iii) holds with G̃d instead of Gd,
note that A↾ Gd = A ↾ G̃d). Therefore, we may assume that G+, G−, Gd and
also

G := G+ ⊕ G− ⊕ Gd

are closed in (dom A, ‖ · ‖A). From this and assumption (ii) it follows that the
operators

S := A↾ G, S+ := A↾ G+, S− := A↾ G− and Sd := A↾ Gd,

are (not necessarily densely defined) closed symmetric operators in the Hilbert
spaces H, K+, K− and Kd, respectively. Since A is a selfadjoint extension of S,
the deficiency indices n±(S) = dim (ran (S ± i))⊥ of S coincide and are finite
by condition (i). Moreover, since S is closed, the fact that A is semibounded
from below implies

C\[ν,∞) ⊂ r(S), (3.3)

where ν is the lower bound of σ(A); cf. (3.1). With respect to the decomposi-
tion (3.2) we have

S =




S+ 0 0

0 S− 0

0 0 Sd




.

Therefore, r(S) = r(S+) ∩ r(S−) ∩ r(Sd), and it follows from (3.3) that each
of the symmetric operators S+, S− and Sd has equal finite deficiency indices.
Note also that

n±(S) = n±(S+) + n±(S−) + n±(Sd) = dim (dom A/G) (3.4)

holds.

Let A+, A− and Ad be selfadjoint extensions of S+, S− and Sd in the Hilbert
spaces K+, K− and Kd, respectively. Although the domains G+, G− and Gd of
the symmetric operators S+, S− and Sd, respectively, may not be dense it is
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no restriction to assume that A+, A− and Ad are operators (instead of linear
relations). Then the operator

Ã :=




A+ 0 0

0 A− 0

0 0 Ad




is a selfadjoint extension of S in the Hilbert space H = K+ ⊕ K− ⊕ Kd.
Obviously both operators A and Ã coincide on G = dom S and therefore, by
(3.4) and condition (i),

dim ran
(
(A − λ)−1 − (Ã − λ)−1

)
≤ n±(S) < ∞ (3.5)

holds for all λ ∈ ρ(A) ∩ ρ(Ã). Well known perturbation results for selfad-
joint operators in Hilbert spaces imply σess(A) = σess(Ã) and, in particular,
min σess(Ã) = µ. From the definition of ν and µ it follows that for all λ ∈ [ν, µ)
the finite-dimensional restriction S of A satisfies

dim ker (S − λ) < ∞ and ran (S − λ) = ran (S − λ). (3.6)

Moreover, the eigenvalues of S in [ν, µ) are discrete with µ as only possi-
ble accumulation point and hence this is also true for Sd. As a consequence
of assumption (iii) (3.6) with S replaced by Sd holds also for all λ ∈ [ν, ε).
Hence, by well known properties of Fredholm operators we find that for all
ε0 ∈ (0, ε) the interval (−∞, ε0), with the possible exception of at most finitely
many eigenvalues with finite multiplicities, is contained in r(Sd). Therefore,
since Sd is semibounded from below the spectrum of the finite dimensional
selfadjoint extension Ad in (−∞, ε0) consists of at most finitely many eigen-
values with finite multiplicities. This also implies min σess(Ad) ≥ ε and hence
µ = min σess(A+) or µ = min σess(A−).

Set J± := J ↾ K±. As K± ⊂ H±, we have J± = ±IK±
and thus, Kd is J-

invariant. Therefore, with respect to the decomposition (3.2) the fundamental
symmetry J has the form

J =




IK+
0 0

0 −IK−
0

0 0 Jd




, (3.7)
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where Jd := J ↾ Kd. Hence, with respect to (3.2) the representation of the
J-selfadjoint operator JÃ is as follows:

JÃ =




A+ 0 0

0 −A− 0

0 0 JdAd




. (3.8)

Note that A+ is a selfadjoint operator in the Hilbert space (K+, (·, ·)) and
that −A− is a selfadjoint operator in (K−,−(·, ·)). In particular, σ(A+) and
σ(−A−) are real.

Step 2. In this step we show that statements (a)–(c) in the theorem hold with
JA replaced by the operator JÃ in (3.8). Similar arguments have also been
used in [3,6,49]. Observe first that by Theorem 3.2 the Jd-selfadjoint operator
JdAd in the Krein space (Kd, (Jd·, ·)) is an operator with finitely many negative
squares, σ(JdAd)∩(C\R) consists of at most finitely many normal eigenvalues,
the interval (0,∞) is of type π+ and the interval (−∞, 0) is of type π− with
respect to JdAd. Furthermore JdAd is nonnegative in a neighborhood of ∞
and since JdAd is definitizable the resolvent satisfies the growth condition

‖(JdAd − λ)−1‖ ≤ Md(1 + |λ|)2md−2|Im λ|−md (3.9)

for some md ≥ 1, Md > 0 and all nonreal λ ∈ ρ(JdAd) near R; cf. [32,44,45]
and Definition 2.1.

In order to verify definitizability of JÃ over the set C\[µ,−µ] observe first that
σ(JÃ)∩(C\R) coincides with σ(JdAd)∩(C\R) and hence σ(JÃ)∩(C\R) con-
sists of (at most finitely many) isolated points which are poles of the resolvent
of JÃ, and, in particular, no point of R\[µ,−µ] is an accumulation point of
the nonreal eigenvalues of JÃ. The growth condition in Definition 2.1 on the
resolvent of JÃ is satisfied, since ‖(JdAd − λ)−1‖ can be estimated as in (3.9)
and the norm of the resolvents of the selfadjoint operators A+ and −A− can
be estimated by |Im λ|−1 for λ ∈ C\R.

We show that condition (i) in Definition 2.1 holds for all λ ∈ R\[µ,−µ].
For this assume first λ ∈ (−µ,∞). We have to check that there exists some
δ > 0 such that the intervals (λ − δ, λ) and (λ, λ + δ) are of definite type
with respect to JÃ. If λ ∈ ρ(JÃ) this is clear. If λ ∈ σ(JÃ), then, from
σess(−A−) ⊂ (−∞,−µ] we conclude λ /∈ σess(−A−), i.e., there exists δ > 0
such that (λ−δ, λ+δ)\{λ} ⊂ ρ(−A−). In particular, the set (λ−δ, λ+δ)\{λ}
is of positive type with respect to −A−. Furthermore, since the interval (0,∞)
is of type π+ with respect to the definitizable operator JdAd we can assume
that δ is chosen such that (λ − δ, λ + δ)\{λ} is also of positive type with
respect to JdAd, see Remark 2.3. Clearly, as A+ is a selfadjoint operator in
the Hilbert space (K+, (·, ·)) any real spectral point is of positive type with
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respect to A+ and hence (λ− δ, λ + δ)\{λ} is of positive type with respect to
A+. Now it is not difficult to see that (λ− δ, λ+ δ)\{λ} is also of positive type
with respect to the orthogonal sum of the operators A+, −A− and JdAd, that
is, (λ − δ, λ + δ)\{λ} is of positive type with respect to JÃ.

In the case λ ∈ (−∞, µ) a similar reasoning applies. In fact, as λ 6∈ σess(A+)
there exists δ′ > 0 such that (λ − δ′, λ + δ′)\{λ} ⊂ ρ(A+) and according to
Theorem 3.2 we can assume that (λ − δ′, λ + δ′)\{λ} is of negative type with
respect to JdAd. Furthermore, every spectral point of the selfadjoint operator
−A− in (K−,−(·, ·)) is of negative type and hence (λ − δ′, λ + δ′)\{λ} is of
negative type with respect to −A−. Therefore (λ−δ′, λ+δ′)\{λ} is of negative
type with respect to JÃ.

It remains to discuss the point λ = ∞. For this choose η > 0 such that
(η,∞) ⊂ ρ(−A−) and (η,∞) is of positive type with respect to JdAd, which
is possible according to Theorem 3.2. As (η,∞) is also of positive type with
respect to A+ it follows that (η,∞) is of positive type with respect to the or-
thogonal sum JÃ. Analogous arguments show that for some η′ > 0 sufficiently
large the interval (−∞,−η′) is of negative type with respect to JÃ. We have
shown that JÃ is definitizable over C\[µ,−µ] and that JÃ is nonnegative in
a neighborhood of ∞, i.e., assertion (a) holds for JÃ.

Let us show that assertion (b) holds for JÃ. In the above arguments it was
already shown that the interval (−µ,∞), with the possible exception of a
discrete set that can only accumulate to −µ, is of positive type with respect
to JÃ. The exceptional points are eigenvalues of −A− or spectral points of
JdAd which are not of positive type. Since (−µ,∞) ∩ σess(−A−) = ∅ and
(0,∞) is of type π+ with respect to JdAd it follows directly from

ker (JÃ − λ) = ker (A+ − λ) ⊕ ker (−A− − λ) ⊕ ker (JdAd − λ)

and Definition 2.2 that the spectral points of JÃ in (−µ,∞) which are not
of positive type are of type π+ with respect to JÃ. A similar reasoning shows
that (−∞, µ) is of type π− with respect to JÃ.

Finally, assertion (c) is true since the nonreal eigenvalues of JÃ are the (at
most finitely many) nonreal eigenvalues of the operator JdAd. Observe that
by Theorem 3.2 these are normal eigenvalues.

Step 3. It is clear that JÃ and JA are both finite-dimensional J-selfadjoint
extensions of the J-symmetric operator JS. Therefore, as ρ(JA) 6= ∅ by
assumption and σ(JÃ)\R = σ(JdAd)\R consists of at most finitely many
points we conclude that ρ(JA) ∩ ρ(JÃ) is nonempty and that

dim ran
(
(JA − λ)−1 − (JÃ − λ)−1

)
≤ n±(S) < ∞
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holds for all λ ∈ ρ(JA)∩ρ(JÃ); cf. (3.5). From [7, Theorem 3.2] we now obtain
that JA is also locally definitizable over C\[µ,−µ], the interval (−µ,∞) is of
type π+ and the interval (−∞, µ) is of type π− with respect to JA, and JA
is nonnegative in a neighborhood of ∞. ¤

Remark 3.10 In general the region of definitizability of the operator JA in
Theorem 3.5 can not be enlarged. However, easy examples show that the state-
ment is not always optimal. Suppose, e.g., that µ = min σess(A) < 0 is an
isolated point of σess(A) and that (µ,−µ] is contained in ρ(A). Then a slight
variation of the proof of Theorem 3.5 shows that the diagonal operator JÃ in
(3.8) is definitizable (over C) and hence JA is definitizable (over C). Further-
more, at least one of the points µ or −µ belongs to σess(JA). If µ ∈ σess(JA)
(−µ ∈ σess(JA)), then it can be shown that µ (−µ) is an isolated spectral point
of JA which is not of type π− (type π+, respectively).

4 Indefinite Sturm-Liouville operators

In this section we study the spectral properties of J-selfadjoint operators as-
sociated to the indefinite Sturm-Liouville differential expression

ℓ =
1

w

(
− d

dx
p

d

dx
+ q

)
, (4.1)

on an open interval (a, b) where −∞ ≤ a < b ≤ ∞, the coefficients w, p−1, q
are real valued and locally integrable, w(x) 6= 0 and p(x) > 0 for a.e. x ∈ (a, b),
and the weight function w changes its sign on (a, b). Under certain natural as-
sumptions on the differential expression ℓ we apply our general perturbation
result from the previous section to a differential operator T associated to ℓ.
For this it is necessary to ensure that the resolvent set of this J-selfadjoint op-
erator T is nonempty; cf. Theorem 3.5. Since this fact seems to be known only
for a special class of indefinite differential expressions, see, e.g., [34,36,37], we
investigate this problem in Theorem 4.5. Making use of local sign type prop-
erties of Titchmarsh-Weyl functions associated to Sturm-Liouville expressions
on subintervals of (a, b) we verify that under the conditions (I) and (II) below
the resolvent set of the J-selfadjoint operator T is in fact always nonempty.

We will consider the case where the weight function w in (4.1) has different
signs at the endpoints of the bounded or unbounded interval (a, b). More
precisely, we will assume that the following condition (I) holds:

(I) There exist α, β ∈ (a, b), α < β, such that w(x) < 0 for a.e. x ∈ (a, α)
and w(x) > 0 for a.e. x ∈ (β, b).
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Let L2
|w|(a, b) be the space of all equivalence classes of complex valued measur-

able functions f defined on (a, b) such that
∫ b
a |f(x)|2|w(x)| dx is finite and let

(·, ·) be be the usual Hilbert space scalar product in L2
|w|(a, b) from (1.3). We

also equip L2
|w|(a, b) with the indefinite inner product (1.4). Since by assump-

tion w(x) 6= 0 for a.e. x ∈ (a, b) the space (L2
|w|(a, b), [·, ·]) is a Krein space and

the fundamental symmetry

(Jf)(x) := (sgn w(x))f(x), x ∈ (a, b), f ∈ L2
|w|(a, b), (4.2)

connects the indefinite inner product [·, ·] in (1.4) with the Hilbert space scalar
product (·, ·) in (1.3), i.e., [Jf, g] = (f, g) for all f, g ∈ L2

|w|(a, b).

Besides the indefinite Sturm-Liouville expression ℓ in (4.1) we shall also make
use of its definite counterpart τ = Jℓ in (1.2). Denote by Dmax the set of all
functions f ∈ L2

|w|(a, b) such that f and pf ′ are absolutely continuous and

τ(f) ∈ L2
|w|(a, b) (or, equivalenty, ℓ(f) ∈ L2

|w|(a, b)) and define the maximal
Sturm-Liouville differential operator A associated to the definite differential
expression τ by

Af := τ(f) =
1

|w|
(
−(pf ′)′ + qf

)
, dom A = Dmax. (4.3)

Later we shall sometimes write Dmax(a, b) instead of Dmax to emphasize that
the functions are defined on the interval (a, b). It will be assumed that the
following condition (II) holds for A:

(II) The operator A is selfadjoint in the Hilbert space (L2
|w|(a, b), (·, ·)) and

semibounded from below.

Remark 4.1 If the differential expression τ is regular or in the limit cir-
cle case at the endpoint a or b, then suitable boundary conditions have to be
imposed on the functions in Dmax in order to ensure the selfadjointness in con-
dition (II), see, e.g., [48,50–52]. However, we are mainly interested in singular
differential expressions where both endpoints are in the limit point case since
our methods yield only new insights for semibounded differential operators A
with nonempty essential spectrum. It is well known that A is selfadjoint if and
only if τ is in the limit point case at a and b. We refer to [48,50–52] for condi-
tions on the coefficients w, p and q that imply semiboundedness of A, see also
Corollaries 4.3 and 4.4.

The maximal operator T associated to the indefinite differential expression ℓ
is defined as T := JA, i.e.,

Tf = JAf =
1

w

(
−(pf ′)′ + qf

)
, dom T = dom A. (4.4)

Since by condition (II) A is selfadjoint in the Hilbert space L2
|w|(a, b) it is clear
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that T is J-selfadjoint.

For the case that the lower bound of the spectrum or the essential spectrum
of A is positive Theorem 3.1 and Theorem 3.2 imply that T is J-nonnegative
or T has finitely many negative squares, respectively. These facts are well
known, see, e.g., [19,39]. The next theorem deals with the more difficult case
min σess(A) ≤ 0 and generalizes earlier results from [3,6,11,36,37]. With the
exception of the statement ρ(T ) 6= ∅ the proof is a consequence of the abstract
perturbation result Theorem 3.5.

Theorem 4.2 Suppose that conditions (I) and (II) are satisfied, let µ =
min σess(A) ≤ 0 and let T be the J-selfadjoint indefinite Sturm-Liouville op-
erator from (4.4). Then the following statements hold:

(a) T is definitizable over C\[µ,−µ] and nonnegative in a neighborhood of
∞;

(b) (−∞, µ) is of type π− and (−µ,∞) is of type π+ with respect to T ;
(c) σ(T ) ∩ (C\R) is bounded and consists of normal eigenvalues with only

possible accumulation points in [µ,−µ].

Proof. Let us verify that the conditions (i)-(iii) in Theorem 3.5 are fulfilled.
Observe first, that in the present situation the fundamental decomposition of
L2
|w|(a, b) is given by L2

|w|(a, b) = H+ ⊕H−, where

H± = L2
|w|(∆±) and ∆± := {x ∈ (a, b) : ±w(x) > 0}.

Let α < β be as in condition (I) and define

K− := L2
|w|(a, α), Kd := L2

|w|(α, β), and K+ := L2
|w|(β, b);

here the index function |w| is the corresponding restriction of |w| onto the
interval (a, α), (α, β) and (β, b), respectively, and the weighted L2-spaces and
their inner products are defined in the same way as L2

|w|(a, b) and the inner
products in (1.3) and (1.4). By condition (I) we have (β, b) ⊂ ∆+ and (a, α) ⊂
∆− and therefore K± ⊂ H±. Furthermore, it is clear that K+, K− and Kd are
closed subspaces of L2

|w|(a, b) and that the decomposition

L2
|w|(a, b) = K+ ⊕K− ⊕Kd

holds, i.e., (3.2) is valid.

Denote the sets of functions that are restrictions of elements in Dmax onto the
subintervals (a, α), (α, β) and (β, b) by Dmax(a, α), Dmax(α, β) and Dmax(β, b),
respectively. These are the maximal domains of the differential operators asso-
ciated to ℓ and τ in the spaces L2

|w|(a, α), L2
|w|(α, β) and L2

|w|(β, b), respectively.
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Let now

G− :=
{
g ∈ Dmax(a, α) : g(α) = (pg′)(α) = 0

}
,

Gd :=
{
h ∈ Dmax(α, β) : h(α) = (ph′)(α) = h(β) = (ph′)(β) = 0

}
,

G+ :=
{
k ∈ Dmax(β, b) : k(β) = (pk′)(β) = 0

}
.

Then we have Gi ⊂ dom A ∩ Ki, i ∈ {+,−, d}, and it is easy to see that
the conditions (i) and (ii) of Theorem 3.5 are fulfilled. As the restriction of
the differential expression τ onto (α, β) is regular at α and β any selfadjoint
realization in the Hilbert space L2

|w|(α, β) has a compact resolvent and hence
the closed minimal operator A↾ Gd has no essential spectrum; cf. [48,50–52].

The fact that the resolvent set ρ(T ) of the J-selfadjoint operator T = JA
is nonempty will be shown in Theorem 4.5 below. Hence, all conditions of
Theorem 3.5 are satisfied and therefore the assertions of Theorem 4.2 follow.

¤

If condition (I) is replaced by the condition

(I′) There exist α, β ∈ (a, b), α < β, such that w(x) > 0 for a.e. x ∈ (a, α)
and w(x) < 0 for a.e. x ∈ (β, b);

then the assertions in Theorem 4.2 remain true. It is also not difficult to see
that in the case that the signs of w on (a, α) and (β, b) coincide and that (II)
holds the operator T is definitizable (over C); cf. Corollary 3.9.

The following corollary is an immediate consequence of Theorem 4.2 and well
known spectral properties of selfadjoint Sturm-Liouville differential operators
in Hilbert spaces. We leave it to the reader to formulate a variant of Corol-
lary 4.3 for the case µ > 0; cf. Theorems 3.1 and 3.2, and [19,39].

Corollary 4.3 Let (a, b) = R and suppose that condition (I) holds. Assume,
in addition, that the functions s±(x) =

∫ x
0

1
p(t)

dt, x ∈ R
±, do not belong to

L2
|w|(R

±) and that

Q±∞ := lim inf
x→±∞

q(x)

|w(x)| > −∞. (4.5)

Then condition (II) is valid and min{Q−∞, Q+∞} ≤ min σess(A) holds. In the
case µ = min σess(A) ≤ 0 the statements (a)-(c) in Theorem 4.2 hold for the
J-selfadjoint indefinite Sturm-Liouville operator T in (4.4).

Proof. Since s± 6∈ L2
|w|(R

±) and (4.5) holds it follows that both singular
endpoints +∞ and −∞ are in the limit point case by [51, Satz 13.24], and
hence the operator A in (4.3) is selfadjoint in L2

|w|(a, b). Let γ± < Q±∞ be
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real numbers. It is no restriction to assume that α and β in condition (I) are
chosen such that

q(x)

|w(x)| ≥ γ+, x ∈ (β,∞), and
q(x)

|w(x)| ≥ γ−, x ∈ (−∞, α),

hold. Let G−, Gd and G+ be defined as in the proof of Theorem 4.2 and denote
the restrictions of A onto these subspaces by S−, Sd and S+, respectively.
Then S−, Sd and S+ coincide with the minimal operators associated to the
definite differential expression τ in L2

|w|(−∞, α), L2
|w|(α, β) and L2

|w|(β,∞),
respectively. As in the proof of Theorem 4.2 we have σess(Sd) = ∅ and Sd is
semibounded from below. According to [50, Theorem 6.A.1 (page 104)] the
operators S+ and S− are semibounded from below by γ+ and γ−, respectively.
As S := S− ⊕ Sd ⊕ S+ ⊂ A and S has finite defect it follows that A is
semibounded from below. Furthermore, we have

σess(A) = σess(S) = σess(S−) ∪ σess(S+) ⊂ [min{γ−, γ+},∞).

With γ± → Q±∞ the corollary is proved. ¤

In the special case that the coefficient q admits limits q±∞ at ±∞ and p(x) =
1, w(x) = sgn (x) outside of a compact subinterval it is easy to see that
σess(A) = [min{q+∞, q−∞},∞) holds. In this case Theorem 4.2 reduces to the
following statement; cf. [6, Corollary 3.4] where an additional condition was
imposed to ensure ρ(T ) 6= ∅.

Corollary 4.4 Let (a, b) = R and suppose that p(x) = 1 and w(x) = sgn (x)
for a.e. x ∈ (−∞, α)∪(β, +∞) for some numbers α < β. Assume, in addition,
that the limits

q−∞ := lim
x→−∞

q(x) and q+∞ := lim
x→+∞

q(x)

exist and satisfy µ := min{q−∞, q+∞} ≤ 0. Then conditions (I) and (II) are
valid, [µ,∞) = σess(A), the statements (a)-(c) in Theorem 4.2 hold for the
J-selfadjoint differential operator T in (4.4) and σess(T ) = R.

We mention that the statements in Corollary 4.4 can be slighly improved,
namely, the assertions (a)-(c) in Theorem 4.2 even hold for the possibly smaller
interval [q+∞,−q−∞]; cf. Remark 3.10.

The following theorem completes the proof of Theorem 4.2 but is also of
independent interest.

Theorem 4.5 Assume that conditions (I) and (II) are satisfied. Then the
resolvent set of the J-selfadjoint indefinite Sturm-Liouville operator T = JA
in (4.4) is nonempty.
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Proof. Let ℓ be as in (4.1) and β as in condition (I), set

Jaβ := J ↾ L2
|w|(a, β) and Jβb := J ↾ L2

|w|(β, b),

and define two operators Taβ and Tβb in L2
|w|(a, β) and L2

|w|(β, b), respectively,
by

Taβg := ℓ(g), dom Taβ := {g ∈ Dmax(a, β) : g(β) = 0} ,

and

Tβbk := ℓ(k), dom Tβb := {k ∈ Dmax(β, b) : k(β) = 0} .

Then Taβ is Jaβ-selfadjoint in L2
|w|(a, β) and as Jβb is the identity operator in

L2
|w|(β, b) the definite and indefinite differential expressions τ and ℓ coincide

on (β, b). Thus the operator Tβb is a selfadjoint Sturm-Liouville operator in
L2
|w|(β, b).

The rest of the proof is devided into four steps. The idea is as follows: We show
first that the Jaβ-selfadjoint operator Taβ is definitizable and nonnegative in
a neighborhood of ∞. Nonnegativity at ∞ is also reflected in local sign type
properties of the Titchmarsh-Weyl coefficient maβ associated to Taβ. If ρ(T )
was empty, the Titchmarsh-Weyl coefficient mβb associated to the selfadjoint
Sturm-Liouville operator Tβb would coincide with −maβ, which together with
the fact that mβb is a Nevanlinna function leads to a contradiction.

Step 1. In this step of the proof we show that the operator Taβ is definitizable
and nonnegative in a neighborhood of ∞. In fact, this is a simple consequence
of Corollary 3.9. To see this, we set Aaβ := JaβTaβ, H := L2

|w|(a, β) and

H± := L2
|w|(δ±), where δ± := {x ∈ (a, β) : ±w(x) > 0}.

Then H = H+ ⊕H− is the fundamental decomposition induced by the funda-
mental symmetry Jaβ and Aaβ is a selfadjoint operator in the Hilbert space H.
Since Aaβ is a one dimensional extension of the minimal symmetric operator
associated to τ on (a, β) and this symmetric operator is contained in A it
follows from condition (II) that Aaβ is semibounded from below. Furthermore,
let α be as in condition (I) and define the subspaces K−, Kd and the linear
manifolds G− and Gd as in the proof of Theorem 4.2. Now, it is easy to see that
the conditions (i)−- (iii)− of Corollary 3.9 are satisfied with A replaced by Aaβ.
Hence, the operator Taβ is definitizable and nonnegative in a neighborhood of
∞.

Step 2. Let λ ∈ C and denote by φλ and ψλ the unique solutions of the
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equation (ℓ − λ)u = 0 which satisfy

φλ(β) = 1, (pφ′
λ)(β) = 0,

ψλ(β) = 0, (pψ′
λ)(β) = 1,

(4.6)

i.e., φλ, ψλ, pφ′
λ and pψ′

λ are locally absolutely continuous on (a, b), φλ and ψλ

solve the equation

−(pu′)′ + (q − λw)u = 0,

and (4.6) holds. For λ ∈ ρ(Taβ) and µ ∈ ρ(Tβb) the (values of the) Titchmarsh-
Weyl coefficients corresponding to ℓ on (a, β) and (β, b) are defined as the
unique complex numbers maβ(λ) and mβb(µ), respectively, such that

φλ − maβ(λ)ψλ ∈ L2
|w|(a, β) and φµ + mβb(µ)ψµ ∈ L2

|w|(β, b),

respectively. The existence and uniqueness of maβ(λ) follow from the fact
that the definite differential expression τ is in the limit point case at a by
assumption (II) and the definiteness of w on (a, α). We also remark that mβb

is the usual Titchmarsh-Weyl coefficient on (β, b) corresponding to τ and the
selfadjoint operator Tβb. In this step we will show the following implication:

ρ(T ) = ∅ =⇒ −maβ(λ) = mβb(λ) for all λ ∈ ρ(Taβ) ∩ ρ(Tβb). (4.7)

Let us assume that ρ(T ) = ∅. Then

ρ(Taβ) ∩ ρ(Tβb) ⊂ σp(T ). (4.8)

To see this let S := T ↾ {f ∈ dom T : f(β) = 0}. Obviously, the operator
S is contained in both T and Taβ ⊕ Tβb (with respect to the decomposition
L2
|w|(a, b) = L2

|w|(a, β) ⊕ L2
|w|(β, b)) and has defect one. Now, if λ ∈ ρ(Taβ) ∩

ρ(Tβb) then λ ∈ ρ(Taβ ⊕ Tβb), and thus ran (S − λ) has codimension one and
ker (S−λ) = {0}. By writing dom T = dom S∔span{g} with some g ∈ dom T
it is not difficult to see that λ is an eigenvalue of T as λ 6∈ ρ(T ) by assumption.

Let λ ∈ ρ(Taβ) ∩ ρ(Tβb). Then, by (4.8) there exists a nontrivial solution f of
(ℓ − λ)u = 0 which is an element of L2

|w|(a, b) and hence the restrictions of f

onto (a, β) and (β, b) belong to L2
|w|(a, β) and L2

|w|(β, b), respectively. It is no
restriction to assume f(β) = 1. Due to the definition of the Titchmarsh-Weyl
coefficients we have

f(x) =





φλ(x) − maβ(λ)ψλ(x), x ∈ (a, β),

φλ(x) + mβb(λ)ψλ(x), x ∈ (β, b).

From this and (4.6) we conclude

−maβ(λ) = lim
x↑β

(pf ′)(x) = lim
x↓β

(pf ′)(x) = mβb(λ)
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which proves (4.7). We note that in the abstract framework of boundary
triplets for symmetric operators in Hilbert and Krein spaces (see [24,26]) the
Titchmarsh-Weyl coefficients maβ and mβb can be viewed as the Weyl func-
tions of suitable boundary triplets for the closed minimal operators on (a, β)
and (β, b) associated to the Sturm-Liouville differential expressions ℓ and τ .
From this point of view the implication (4.7) is a simple consequence of general
properties of boundary triplets and their Weyl functions.

Step 3. By step 1 of the proof the operator Taβ is (definitizable and) nonneg-
ative in a neighborhood of ∞. This implies, in particular, that there exists a
number R > 0 such that the interval (R,∞) is of positive type with respect
to Taβ. In this step we prove that for any sequence (λn) ⊂ C

+ ∩ ρ(Taβ) which
converges to some λ > R we have

lim inf
n→∞

Im maβ(λn) ≥ 0. (4.9)

Let us suppose that this is not true. Then there exists some λ > R, a sequence
(λn) ⊂ C

+ ∩ ρ(Taβ) converging to λ and some ε > 0 such that

Im maβ(λn) ≤ −ε (4.10)

holds for all n ∈ N. For µ ∈ ρ(Taβ) define the function

gµ := φµ − maβ(µ)ψµ ∈ L2
|w|(a, β).

The indefinite and definite inner products in L2
|w|(a, β) are defined in the same

way as in (1.4) and (1.3) and will also be denoted by [·, ·] and (·, ·), respectively.
By ℓgµ = µgµ, the Lagrange identity, (4.6) and the fact that τ is in the limit
point case at a we have

(µ − µ̄) [gµ, gµ] = [ℓgµ, gµ] − [gµ, ℓgµ] = (τgµ, gµ) − (gµ, τgµ)

= gµ(β)(pg′
µ)(β) − (pg′

µ)(β)gµ(β) = maβ(µ) − maβ(µ),

and hence Im maβ(µ) = (Im µ) [gµ, gµ]. Thus, (4.10) implies

−ε ≥ (Im λn) [gλn
, gλn

], where gλn
= φλn

− maβ(λn)ψλn
, (4.11)

for all n ∈ N. In particular, this yields [gλn
, gλn

] → −∞ and thus ‖gλn
‖ → ∞

as n → ∞. Let ν ∈ ρ(Taβ) be fixed and gν = φν − maβ(ν)ψν . Then the
functions

fn := ‖gλn
‖−1 (gλn

− gν) ∈ Dmax(a, β)

satisfy fn(β) = 0 and hence fn ∈ dom Taβ for all n ∈ N. From ‖fn‖ → 1,

(Taβ − λ)fn = ‖gλn
‖−1 (ℓ − λ) (gλn

− gν)

= (λn − λ)‖gλn
‖−1gλn

− ‖gλn
‖−1(ν − λ)gν → 0
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as n → ∞ we obtain λ ∈ σap(Taβ). Since λ > R it follows that λ is a spectral
point of positive type of Taβ, hence

lim inf
n→∞

[fn, fn] > 0. (4.12)

If we now set hn := ‖gλn
‖−1gλn

then it follows from (4.11) that [hn, hn] ≤ 0
for all n ∈ N. But as ‖hn − fn‖ = ‖gλn

‖−1‖gν‖ → 0 as n → ∞ we have

lim inf
n→∞

[fn, fn] = lim inf
n→∞

[hn, hn] ≤ 0

which contradicts (4.12) and hence (4.9) holds.

Step 4. In this last step we complete the proof. Recall first that the
Titchmarsh-Weyl coefficient mβb is an analytic function on ρ(Tβb) which maps
the upper half plane into itself and, hence, admits the integral representation

mβb(λ) = c +
∫ ∞

−∞

(
1

t − λ
− t

1 + t2

)
dσ(t), (4.13)

where c ∈ R and σ is a nondecreasing function such that
∫ ∞
−∞

dσ(t)
1+t2

< ∞; cf.

[1,17,38]. We can assume that σ is normalized by σ(t) = 1
2
(σ(t+0)−σ(t−0)),

so that σ can be expressed in terms of mβb via the inversion formula [38,
(S1.1.7)],

σ(t2) − σ(t1) = lim
ε↓0

1

π

∫ t2

t1

Im mβb(λ + iε) dλ, t1, t2 ∈ R. (4.14)

Let us suppose that ρ(T ) = ∅. Let (λn) ⊂ C
+ ∩ ρ(Taβ) be a sequence which

converges to some λ > R where R is chosen such that (R,∞) is of positive
type with respect to Taβ. By step 3 we have

lim inf
n→∞

Im maβ(λn) ≥ 0.

Moreover, maβ(µ) = −mβb(µ) holds for all µ ∈ ρ(Taβ) ∩ ρ(Tβb) by step 2 and
hence

lim sup
n→∞

Im mβb(λn) ≤ 0. (4.15)

As mβb maps the upper half plane into itself (4.15) implies that

lim
n→∞

Im mβb(λn) = 0 (4.16)

holds for all sequences (λn) ⊂ C
+ ∩ ρ(Taβ) with limn→∞ λn = λ > R. For all

t1, t2 ∈ R such that R < t1 < t2 < ∞ relation (4.16) together with (4.14) and
the Lebesgue convergence theorem shows σ(t1) = σ(t2). Hence, the function
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σ is constant on (R,∞) and the integral representation (4.13) implies that
mβb admits an analytic extension on (R,∞); cf. [38, §1.2]. But the domain
of holomorphy of the Titchmarsh-Weyl coefficient mβb coincides with the set
ρ(Tβb) and hence (R,∞) ⊂ ρ(Tβb). As the selfadjoint Sturm-Liouville operator
Tβb is also bounded from below it follows that Tβb is bounded, a contradiction.
This completes the proof of Theorem 4.5. ¤

5 Higher order singular ordinary differential operators with indef-

inite weight functions

As in [19, Section 2] we consider the formal differential expression ℓ̂ of order
2n on the interval (a, b), −∞ ≤ a < b ≤ ∞, given by

ℓ̂(f) =
1

w

(
(−1)n(p0f

(n))(n) + (−1)n−1(p1f
(n−1))(n−1) + · · · + pnf

)
, (5.1)

where w, p−1
0 , p1, . . . , pn ∈ L1

loc(a, b) are assumed to be real valued functions
such that w(x) 6= 0 and p0(x) > 0 for a.e. x ∈ (a, b). With the help of the
quasi-derivatives

f [0] := f, f [k] :=
dkf

dxk
, k = 1, 2, . . . , n − 1,

f [n] := p0
dnf

dxn
, f [n+k] := pk

dn−kf

dxn−k
− d

dx
f [n+k−1], k = 1, 2, . . . , n;

(5.2)

cf. [42,48], formula (5.1) can be written as

ℓ̂(f) =
1

w
f [2n]. (5.3)

It will be assumed that the weight function w satisfies condition (I) or (I′)
from Section 4. Let L2

|w|(a, b) be the weighted L2-space as in the previous

section and equip L2
|w|(a, b) with the Hilbert space scalar product (1.3), the

indefinite inner product (1.4) and let J be the fundamental symmetry from
(4.2). Besides the indefinite differential expression (5.3) we also introduce the
definite differential expression τ̂ by

τ̂(f) =
1

|w|f
[2n]; (5.4)

cf. (1.2). The maximal operator Amaxf = τ̂(f) associated to (5.4) is defined
on the dense subspace Dmax consisting of all functions f ∈ L2

|w|(a, b) which

have locally absolutely continuous quasi derivatives f [0], f [1], . . . , f [2n−1] such
that τ̂(f) ∈ L2

|w|(a, b). The restriction A0
min of Amax to functions with compact
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support is a densely defined symmetric operator in the Hilbert space L2
|w|(a, b).

The minimal operator Amin is defined as the closure of A0
min. Then Amin is a

symmetric operator with equal deficiency indies (m,m), 0 ≤ m ≤ 2n, and
A∗

min = Amax holds; cf. [19,48]. In particular, the selfadjoint realizations of τ̂
in the Hilbert space L2

|w|(a, b) are finite dimensional extensions of Amin.

The following theorem is the analogue of Theorem 4.2 for the more general
class of differential operators considered here. In contrast to Theorem 4.2
we have to impose the assumption that the resolvent set of the J-selfadjoint
realization of ℓ̂ is nonempty. In special cases it is known that this holds, see
[3,19,39], Corollary 5.3 and Theorem 5.4. In Theorem 5.1 below it is assumed
that the selfadjoint realizations of τ̂ have a nonempty essential spectrum,
which also implies that the deficiency indices of Amin are smaller than 2n; cf.
[48]. Although the proof of Theorem 5.1 is similar to the proof of Theorem 4.2
a short sketch is given for the convenience of the reader.

Theorem 5.1 Suppose that condition (I) or (I′) in Section 4 holds and that A
is a selfadjoint realization of τ̂ in L2

|w|(a, b) which is semibounded from below
such that µ := min σess(A) ≤ 0. Then T := JA is a J-selfadjoint realization
of ℓ̂, and if ρ(T ) 6= ∅, then the following statements hold:

(a) T is definitizable over C\[µ,−µ] and nonnegative in a neighborhood of
∞;

(b) (−∞, µ) is of type π− and (−µ,∞) is of type π+ with respect to T ;
(c) σ(T ) ∩ (C\R) is bounded and consists of normal eigenvalues with only

possible accumulation points in [µ,−µ].

Proof. Suppose that condition (I) holds. The arguments in the case that
condition (I′) holds are almost the same. Let us verify that the conditions
(i)-(iii) in Theorem 3.5 are fulfilled. For this we decompose L2

|w|(a, b) in the
same way as in the proof of Theorem 4.2,

L2
|w|(a, b) = H+ ⊕H− and L2

|w|(a, b) = K+ ⊕K− ⊕Kd.

With numbers α and β as in (I) let Dmax(a, α), Dmax(α, β) and Dmax(β, b) be
the sets of functions that are restrictions of elements in Dmax onto the subin-
tervals (a, α), (α, β) and (β, b), respectively. These are the maximal domains
of the differential operators associated to ℓ̂ and τ̂ in the spaces L2

|w|(a, α),

L2
|w|(α, β) and L2

|w|(β, b), respectively. Let now

G− :=
{
g ∈ Dmax(a, α) : g[0](α) = · · · = g[2n−1](α) = 0

}
,

Gd :=
{
h ∈ Dmax(α, β) : h[0](α) = · · · = h[2n−1](α) = 0,

h[0](β) = · · · = h[2n−1](β) = 0
}
,

G+ :=
{
k ∈ Dmax(β, b) : k[0](β) = · · · = k[2n−1](β) = 0

}
.
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Then we have Gi ⊂ dom A ∩ Ki, i ∈ {+,−, d}, and the conditions (i) and (ii)
of Theorem 3.5 are fulfilled. As the restriction of the differential expression τ̂
onto (α, β) is regular at α and β the essential spectrum of the closed minimal
operator A ↾ Gd is empty; cf. [48]. Hence, all conditions of Theorem 3.5 are
satisfied and therefore the assertions in Theorem 5.1 follow. ¤

Assume that ℓ̂ in (5.1) is defined on R, that w(x) = sgn (x) and that the
coefficients p0, p1, . . . , pn, p0 > 0, are constant outside of some bounded in-
terval. Then it follows that A := Amax is selfadjoint and from [27, XIII.7.
Corollary 14] together with Glazman’s decomposition principle one obtains
σess(A) = [µ,∞), where

µ = min{p(t) : t ∈ R}, p(t) = p0t
2n + p1t

2(n−1) + p2t
2(n−2) + · · · + pn. (5.5)

This implies the following statement which is similar to Corollary 4.4.

Corollary 5.2 Let (a, b) = R, suppose that w(x) = sgn (x) and the functions
p0, p1, . . . , pn are constant for a.e. x ∈ (−∞, α) ∪ (β, +∞) for some numbers
α < β, and assume that µ ≤ 0 in (5.5). Then T = JA is a J-selfadjoint
realization of ℓ̂, and if ρ(T ) 6= ∅, then the statements (a)-(c) in Theorem 5.1
hold and σess(T ) = R.

In general it is not clear if the resolvent set of the J-selfadjoint operator
T = JA in Theorem 5.1 is nonempty; cf. also Theorem 5.4. However, if at
least one endpoint of the interval (a, b) is regular, that is, one endpoint is
finite and the coefficients w, p−1

0 , p1, . . . , pn are integrable up to this point,
then Corollary 3.9 implies the following statement.

Corollary 5.3 Suppose that condition (I) or (I′) in Section 4 holds and that
A is a selfadjoint realization of τ̂ in L2

|w|(a, b) which is semibounded from below
such that µ = min σess(A) ≤ 0. Assume, in addition, that τ̂ is regular at a or
b. Then T = JA is a J-selfadjoint realization of ℓ̂ with ρ(T ) 6= ∅ and T is
definitizable (over C) and nonnegative in a neighborhood of ∞. Furthermore,

(i) if (I) holds and a (b) is regular, then σess(T ) = σess(A) (σess(T ) = σess(−A),
respectively).

(ii) if (I′) holds and a (b) is regular, then σess(T ) = σess(−A) (σess(T ) =
σess(A), respectively).

Our next goal is to find a sufficient condition for ρ(T ) 6= ∅ in terms of the
behaviour of the weight function w at its turning points and the properties
of the functions in the form domain of A. Theorem 5.4 below is inspired
by [19, Theorem 3.6] where a sufficient condition for the regularity of the
critical point ∞ of J-selfadjoint realizations associated to ordinary differential
expressions with indefinite weights is proved, see also [18]. Recall first that

27



the form domain dom [A] of a selfadjoint operator A which is semibounded
from below consists of all f such that there exists a sequence (fn) ⊂ dom A
with fn → f and (A(fn − fm), (fn − fm)) → 0 for n,m → ∞. Next we
recall the notion of n-simplicity of turning points used in [19]. For this let
v : (a, b) → R and let x0 ∈ (a, b). If for some δ > 0 the function v is nonnegative
(nonpositive) on [x0, x0 + δ] and there exists ξ ∈ Cn[x0, x0 + δ], ξ(x0) > 0 and
ξ′(x0+) = · · · = ξ(n−1)(x0+) = 0, such that

v(x) = (x − x0)
τξ(x)

(
v(x) = −(x − x0)

τξ(x), respectively
)

holds for some τ > −1 and a.e. x ∈ [x0, x0 + δ], then v is said to be n-simple
from the right at x0. The function v is said to be n-simple from the left at
x0 if the function x 7→ v(−(x − x0) + x0) is n-simple from the right at x0.
The function v is said to be n-simple at x0 if v is n-simple from the right and
n-simple from the left at x0.

Theorem 5.4 Let A be a selfadjoint realization of τ̂ in L2
|w|(a, b) which is

semibounded from below such that µ = min σess(A) ≤ 0 and assume that the
following conditions hold.

(i) If f ∈ dom [A] coincides in a neighborhood of the endpoint a (b) with a
function g ∈ L2

|w|(a, b), where g, g′, . . . , g(n−1) are locally absolutely con-

tinuous on (a, b), g(n)√p0 ∈ L2
loc(a, b), and g = 0 in a neighborhood of the

other endpoint b (a, respectively), then g ∈ dom [A];
(ii) w changes its sign at 2k + 1 points, is n-simple at each of these turning

points and p0 and p−1
0 are essentially bounded in neighborhoods of the

turning points.

Then T = JA is a J-selfadjoint realization of ℓ̂ with ρ(T ) 6= ∅ and the
statements (a)-(c) in Theorem 5.1 hold.

Proof. Let A be a selfadjoint realization of τ̂ which is semibounded from
below. It will be shown that the resolvent set of the J-selfadjoint operator
T = JA is nonempty. For this fix some η ∈ (−∞, ν), where ν = min σ(A),
and consider the differential expression

τ̂ηf :=
1

|w|f
〈2n〉,

where the quasi-derivatives f 〈k〉 are defined by

f 〈k〉 := f [k], k = 0, . . . , 2n − 1, and f 〈2n〉 := (pn − η|w|)f − d

dx
f 〈2n−1〉;

cf. (5.2). Then f 〈2n〉 = f [2n] − η|w|f and τ̂ηf = τ̂ f − ηf . Therefore Amax − η is
the maximal operator corresponding to τ̂η on (a, b). From this and the choice
of η we conclude that the operator A − η is a uniformly positive selfadjoint
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realization of τ̂η and that, by condition (i), dom [A−η] = dom [A] is separated
in the sense of [19, page 53]. Since by Theorem 3.1 the J-selfadjoint operator

Tη := J(A − η) = T − ηJ

is J-nonnegative with 0 ∈ ρ(Tη) it follows from [19, Theorem 3.6] that the
point ∞ (the only critical point of Tη) is a regular critical point of Tη. Hence,
Tη admits a spectral function ETη

(·) on R such that the spectral projections
E+ := ETη

((0,∞)) and E− := ETη
((−∞, 0)) exist, see, e.g., [44,45].

Let [·, ·] be the indefinite inner product in (1.4) and let [+̇] be the direct
[·, ·]-orthogonal sum in H := L2

|w|(a, b). Since Tη is J-nonnegative and 0 ∈
ρ(Tη) the spectral subspaces (E+H, [·, ·]) and (E−H,−[·, ·]) are Hilbert spaces,
E+ + E− = I and with respect to the decomposition H = E+H [+̇]E−H the
J-selfadjoint operator Tη can be written in the form

Tη =




Tη,+ 0

0 Tη,−


 ,

where Tη,+ and Tη,− are selfadjoint in the Hilbert spaces (E±H,±[·, ·]). The
Hilbert space scalar product

(f, g)∼ := [E+f, E+g] − [E−f, E−g], f, g ∈ H,

is connected with the usual Hilbert space scalar product (·, ·) in (1.3) by

(f, g)∼ =
(
J(E+ − E−)f, g

)
, f, g ∈ H,

and as J(E+ −E−) is an isomorphism in H the norms ‖ · ‖∼ and ‖ · ‖ induced
by (·, ·)∼ and (·, ·), respectively, are equivalent. Fix some λ0 ∈ C\R such that
|Im λ0| > ‖ηJ‖∼. Then, as Tη is selfadjoint with respect to (·, ·)∼, we have

‖ηJ(Tη − λ0)
−1‖∼ ≤ ‖ηJ‖∼

1

|Im λ0|
< 1,

and it follows that

T − λ0 = Tη − λ0 + ηJ =
(
I + ηJ(Tη − λ0)

−1
)
(Tη − λ0)

is boundedly invertible in (H, (·, ·)∼) and hence in (H, (·, ·)), i.e., λ0 ∈ ρ(T ).

According to (ii) the weight function w has an odd number of turning points
and therefore condition (I) or (I′) holds. Hence we can apply Theorem 5.1 and
the statements (a)-(c) hold. ¤
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its Applications, Ion Colojoară Anniversary Volume, Theta (2003) 95–127.

[33] P. Jonas and H. Langer, Compact perturbations of definitizable operators, J.
Operator Theory 2 (1979) 63–77.

[34] I.M. Karabash and A.S. Kostenko, Indefinite Sturm-Liouville operators with
the singular critical point zero, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008)
801–820.

[35] I.M. Karabash, A.S. Kostenko, and M.M. Malamud, The similarity problem for
J-nonnegative Sturm-Liouville operators, J. Differential Equations 246 (2009)
964–997.

[36] I.M. Karabash and M.M. Malamud, Indefinite Sturm-Liouville operators

(sgn x)(− d2

dx2 + q(x)) with finite-zone potentials, Oper. Matrices 1 (2007) 301–
368.

[37] I.M. Karabash and C. Trunk, Spectral properties of singular Sturm-Liouville
operators, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009) 483–503.

[38] I.S. Kac and M.G. Krein, R-functions – analytic functions mapping the upper
halfplane into itself, Appendix I to the russian edition of F.V. Atkinson, Discrete
and continuous boundary problems, Mir, Moscow, 1968.
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