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Abstract. We investigate spectral points of type π+ and type π
−

for self-adjoint
operators in Krein spaces. In particular a sharp lower bound for the codimension of
the linear manifold H0 occuring in the definition of spectral points of type π+ and
type π

−
is determined. Furthermore, we describe the structure of the spectrum in a

small neighbourhood of such points and we construct a finite dimensional perturba-
tion which turns a real spectral point of type π+ (type π

−
) into a point of positive

(resp. negative) type. As an application we study a singular Sturm-Liouville operator
with an indefinite weight.

1. Introduction

Let A be a self-adjoint operator in a Krein space (H, [., .]). A real point λ0 of the
spectrum σ(A) of A is called a spectral point of positive (negative) type, if for every
approximative eigensequence (xn) corresponding to λ0 all accumulation points of the
sequence ([xn, xn]) are positive (resp. negative) (see Definition 2.1).

For bounded self-adjoint operators these spectral points were introduced by P. Lan-
caster, A. Markus and V. Matsaev in [10]. Thereafter H. Langer, A. Markus and V. Mat-
saev proved in [12] the existence of a local spectral function for a closed interval ∆ con-
taining only spectral points of positive (negative) type of A or points of the resolvent set
ρ(A). It turns out that the inner product [·, ·] is positive (negative) on the spectral sub-
spaces corresponding to subintervals of ∆ and therefore A locally has the same spectral
properties as a self-adjoint operator in a Hilbert space.

In this paper the object of investigation are points of the approximative point spectrum
of A which are defined in almost the same way as the points of positive and negative
type but we require the positivity (negativity) of the accumulation points of ([xn, xn])
only for approximative eigensequences (xn) belonging to some linear manifold H0 of
finite codimension, cf. Definition 2.2. These points are called of type π+ and type π−,
respectively, and were recently introduced by T. Azizov, P. Jonas and C. Trunk in [2].
Under compact perturbations of the operator A spectral points of positive (negative)
type turn into spectral points of type π+ (resp. type π−) or become points of ρ(A). If
each point of a closed interval ∆ is an accumulation point of ρ(A) and all spectral points
in ∆ are of type π+ (type π−), then there exists a local spectral function, the spectral
subspaces corresponding to subintervals of ∆ are Pontryagin spaces with finite rank of
negativity (resp. positivity) and it follows that A is a so-called locally definitizable
operator (see [2], [7]).

In this paper we continue the investigation of spectral points of type π+ and type
π− of self-adjoint (in general unbounded) operators started in [2]. In Theorem 3.3 we
determine a sharp lower bound for the codimension of the linear manifold H0 occuring
in the definition of a spectral point λ0 of type π+ (type π−) and in the case of a locally
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definitizable operator we show that this number is smaller or equal to the negativity (resp.
positivity) index of the spectral subspaces corresponding to small intervals containing λ0,
cf. Theorem 3.6.

In Theorem 4.1 we describe the structure of the spectrum in a neighbourhood of a
spectral point λ0 of type π+ or type π−. In contrast to [2] we allow λ0 to be an inner
point of the spectrum of A. Using a Fredholm argument we show that there is an open
neighbourhood U of λ0 such that for all λ ∈ U\{λ0} the eigenspaces are nonnegative
(nonpositive) and the dimension of their isotropic parts is constant. In the special case
that the latter constant is zero and that λ0 is real we retrieve a result from [2], namely,
in this case U\{λ0} consists only of spectral points of positive (resp. negative) type and
of points from ρ(A).

In Section 5 we construct a special finite dimensional perturbation which turns a real
point of type π+ (type π−) into a point of positive (resp. negative) type. Finally, as an
example for spectral points of type π+ and type π− we consider a singular Sturm-Liouville
operator with the indefinite weight sgn x in Section 6.

2. Preliminaries

Let (H, [., .]) be a Krein space. In the following all topological notions are understood
with respect to some Hilbert space norm ‖ . ‖ on H such that [., .] is ‖ . ‖-continuous. Any
two such norms are equivalent.

Let A be a closed operator in H. We define the extended spectrum σe(A) of A by
σe(A) := σ(A) if A is bounded and σe(A) := σ(A)∪{∞} if A is unbounded. The resolvent
set of A is denoted by ρ(A) and the extended resolvent set is defined by ρe(A) := C\σe(A).
A point λ0 ∈ C is said to belong to the approximative point spectrum σap(A) of A if there
exists a sequence (xn) ⊂ D(A) with ‖xn‖ = 1, n = 1, 2, . . . , and ‖(A − λ0)xn‖ → 0 if
n → ∞. For a self-adjoint operator A in H all real spectral points of A belong to σap(A)
(see e.g. [3, Corollary VI.6.2]).

First we recall the notions of spectral points of positive and negative type and of
type π+ and type π−. The following definition was given in [10] and [12] for bounded
self-adjoint operators.

Definition 2.1. For a self-adjoint operator A in H a point λ0 ∈ σ(A) is called a spectral
point of positive (negative) type of A if λ0 ∈ σap(A) and for every sequence (xn) ⊂ D(A)
with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞ we have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

The point ∞ is said to be of positive (negative) type of A if A is unbounded and for every
sequence (xn) ⊂ D(A) with limn→∞ ‖xn‖ = 0 and ‖Axn‖ = 1 we have

lim inf
n→∞

[Axn, Axn] > 0
(
resp. lim sup

n→∞
[Axn, Axn] < 0

)
.

We denote the set of all points of σe(A) of positive (negative) type by σ++(A) (resp.
σ−−(A)).

It is not difficult to see that the sets σ++(A) and σ−−(A) are contained in R. Moreover
the non-real spectrum of A cannot accumulate to σ++(A) ∪ σ−−(A).

In a similar way as above we define some subsets σπ+
(A) and σπ

−

(A) of σe(A) con-
taining σ++(A) and σ−−(A), respectively (cf. [2, Definition 5]).

Definition 2.2. For a self-adjoint operator A in H a point λ0 ∈ σ(A) is called a spectral
point of type π+ (type π−) of A if λ0 ∈ σap(A) and if there exists a linear submanifold
H0 ⊂ H with codimH0 < ∞ such that for every sequence (xn) ⊂ H0 ∩ D(A) with
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‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞ we have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.(2.1)

The point ∞ is said to be of type π+ (type π−) of A if A is unbounded and if there
exists a linear submanifold H0 ⊂ H with codimH0 < ∞ such that for every sequence
(xn) ⊂ H0 ∩ D(A) with limn→∞ ‖xn‖ = 0 and ‖Axn‖ = 1 we have

lim inf
n→∞

[Axn, Axn] > 0
(
resp. lim sup

n→∞
[Axn, Axn] < 0

)
.

We denote the set of all points of σe(A) of type π+ (type π−) of A by σπ+
(A) (resp.

σπ
−

(A)).

By [2, Proposition 6] a point λ0 ∈ σap(A) is of type π+ (type π−) if and only if there
exists a linear manifold D0 ⊂ D(A) with finite codimension in D(A) such that for every
sequence (xn) ⊂ D0 with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞ the property (2.1)
holds. An analogous statement holds for λ0 = ∞. We note that if ∞ is a spectral point
of type π+ (type π−) of the self-adjoint operator A, then it follows that ∞ is of positive
(resp. negative) type, cf. [2, Lemma 10]. Since our investigations in this paper mainly
concern spectral points of type π+ or type π− which are not of positive or negative type,
respectively, no special attention is paid to ∞ in the next sections.

We recall a criterion for a spectral point of A not belonging to σπ+
(A) (σπ

−

(A)) which
will be used frequently in this paper, see [2, Theorem 14].

Theorem 2.3. Let λ0 ∈ σap(A). Then λ0 /∈ σπ+
(A) (λ0 /∈ σπ

−

(A)) if and only if there

exists a sequence (xn) ⊂ D(A) with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞, which

converges weakly to zero such that

lim inf
n→∞

[xn, xn] ≤ 0
(
resp. lim sup

n→∞
[xn, xn] ≥ 0

)
.

Recall, that a self-adjoint operator A in a Krein space (H, [., .]) is called definitizable
if the resolvent set ρ(A) is nonempty and there exists a polynomial p 6= 0 such that
[p(A)x, x] ≥ 0 for all x ∈ D(p(A)). For a detailed study of the spectral properties
of definitizable operators we refer to the fundamental paper [11] of H. Langer. Here we
note only that a definitizable operator possesses a spectral function and that the non-real
spectrum consists of no more than a finite number of eigenvalues.

In the next definition we recall the notion of locally definitizable operators, see e.g.
[7, Definition 4.4]. We emphasize that a self-adjoint operator is definitizable if and
only if it is definitizable over C, cf. [7]. As usual we denote the open half planes by
C± := {z ∈ C : ±Im z > 0}.

Definition 2.4. Let Ω be a domain in C which is symmetric with respect to R such
that Ω ∩ R 6= ∅ and Ω ∩ C

+ and Ω ∩ C
− are simply connected. Let A be a self-adjoint

operator in the Krein space (H, [., .]) such that σ(A) ∩ (Ω \R) consists of isolated points
which are poles of the resolvent of A, and no point of Ω ∩ R is an accumulation point of
the non-real spectrum of A. The operator A is called definitizable over Ω, if the following
holds.

(i) For every closed subset ∆ of Ω∩R there exist an open neighbourhood U of ∆ in C

and numbers m ≥ 1, M > 0 such that

‖(A − λ)−1‖ ≤ M
(1 + |λ|)2m−2

|Im λ|m

holds for all λ ∈ U \ R.
(ii) Every point λ ∈ Ω ∩ R has an open connected neighbourhood Iλ in R such that

the spectral points in each component of Iλ \ {λ} are either all of positive type or
of negative type with respect to A.
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Let A be a self-adjoint operator in a Krein space and let ∆ be a closed connected
subset of R with

∆ ∩ σe(A) ⊂ σπ+
(A) ∪ σπ

−

(A)

and assume, in addition, that each point of ∆ is an accumulation point of ρ(A). Then,
by [2, Theorem 23] there exists a domain Ω with the properties as in Definition 2.4 such
that the operator A is definitizable over Ω.

If Ω is a domain as in Definition 2.4 and A is definitizable over Ω, then A possesses
a local spectral function E. For the construction and the properties of this spectral
function we refer to [7] (see also [6]). We mention only that E(∆) is defined and is
a self-adjoint projection in (H, [., .]) for every union ∆ of a finite number of connected
subsets ∆i, i = 1, . . . , n, of Ω ∩ R, ∆i ⊂ Ω ∩ R, such that the endpoints of ∆i belong to
σ++(A) ∪ σ−−(A) ∪ ρe(A).

If A is self-adjoint and definitizable over Ω then the real spectral points of type π+

(type π−) of A in Ω can be characterized with the help of the local spectral function of
A, see [2, Theorem 26].

Theorem 2.5. Let A be definitizable over Ω and let E be the local spectral function of

A. A real point λ ∈ σ(A) ∩ Ω belongs to σπ+
(A) (σπ−(A)) if and only if there exists

a bounded open interval ∆, λ ∈ ∆, such that E(∆) is defined and (E(∆)H, [., .]) is a

Pontryagin space with finite rank of negativity (resp. finite rank of positivity).

3. A lower bound for the codimension of H0

In this section we investigate the properties of the linear submanifolds H0 in Defini-
tion 2.2 corresponding to a spectral point λ0 ∈ σπ+

(A) (or λ0 ∈ σπ
−

(A)). In particular
we will establish a sharp lower bound for the codimension of H0 with the help of a fun-
damental decomposition of ker(A − λ0) (see Theorem 3.3) and in the case of a locally
definitizable operator A we show that this minimal codimension is smaller or equal to
the rank of negativity of the spectral subspaces corresponding to small open intervals
containing λ0, cf. Theorem 3.6.

Let (H, [., .]) be a Krein space. For an arbitrary subset L of H we denote the orthogonal
companion by L[⊥],

L[⊥] =
{
x ∈ H : [x, y] = 0 for all y ∈ L

}
.

It is clear from the definition that L[⊥] is a subspace. Throughout this paper a subspace
is a closed linear manifold. If a subspace M ⊂ H is the direct sum of two subspaces L,
N ⊂ H such that [x, y] = 0 holds for all x ∈ L, y ∈ N , then we write

M = L[
.
+]N .

Recall that a subspace N of a Krein space always admits a fundamental decomposition

N = N0[
.
+]N+[

.
+]N−,

where N0 = N ∩ N [⊥], N+ is a positive subspace of H and N− is a negative subspace
of H. Here and in the following the linear manifolds N+ and N− in a fundamental

decomposition are always assumed to be closed. Note that if N = N ′
0[

.
+]N ′

+[
.
+]N ′

− is
another fundamental decomposition of N , then

N0 = N ′
0, dimN ′

+ = dimN+ and dimN ′
+ = dimN+(3.1)

holds (see [1]).
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Lemma 3.1. Let A be a self-adjoint operator in H, let K0 ⊂ H be a linear manifold and

let λ0 ∈ σπ+
(A) \ {∞} (λ0 ∈ σπ

−

(A) \ {∞}). Let KA
0 be the closure of K0 ∩ D(A) in

D(A) with respect to the graph norm ‖ . ‖A of A,

KA
0 := K0 ∩ D(A)

‖ . ‖A

.

Then the following assertions are equivalent.

(i) All non-zero elements of KA
0 ∩ker(A−λ0) are positive (resp. negative) in the Krein

space H.

(ii) For every sequence (xn) ⊂ K0 ∩ D(A) with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as

n → ∞ we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).(3.2)

If, in addition, K0 is closed, then assertions (i) and (ii) are equivalent to

(iii) All non-zero elements of K0 ∩ker (A−λ0) are positive (resp. negative) in the Krein

space H.

Remark 3.2. A linear manifold H0 from Definition 2.2 satisfies (ii) (and hence (i) and, if
it is a subspace also (iii)) in Lemma 3.1.

Proof of Lemma 3.1. We will prove this lemma only for λ0 ∈ σπ+
(A) \ {∞}. Note first,

that the equivalence of (i) and (iii) is evident if K0 is closed.
We show that (ii) implies (i). Let y ∈ KA

0 ∩ ker(A − λ0), y 6= 0. Then there exists a
sequence (yn) ⊂ K0 ∩ D(A) with yn → y and (A − λ0)yn → (A − λ0)y = 0 as n → ∞.
Hence if (ii) holds then it follows from (3.2) that y is a positive vector, i.e. (i) is valid.

In order to show that (i) implies (ii) we verify first that KA
0 ∩ker(A−λ0) is uniformly

positive. Assume the contrary. Then there exists a sequence (yn) in KA
0 ∩ ker(A − λ0),

‖yn‖ = 1, n ∈ N, which converges weakly to some y0 and satisfies

[yn, yn] ≤
1

n
, n ∈ N.

On the space ker(A − λ0) the norm of H and the graph norm ‖ . ‖A are equivalent.
Therefore KA

0 ∩ker(A−λ0) is closed in H and y0 ∈ KA
0 ∩ker(A−λ0). For n ∈ N we have

|[y0, y0]| ≤ |[y0 − yn, y0]| + [yn, yn]
1
2 [y0, y0]

1
2

and y0 = 0 follows, which is a contradiction to λ0 ∈ σπ+
(A) (cf. Theorem 2.3). Hence

KA
0 ∩ker(A−λ0) is a uniformly positive subspace of H and there exists a Krein subspace

G0 ⊂ H with

H =
(
KA

0 ∩ ker(A − λ0)
)
[

.
+]G0.(3.3)

Assume now that assertion (ii) is not true. Then there exists a sequence (xn) in
K0 ∩ D(A) with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞ such that

lim
n→∞

[xn, xn] ≤ 0.(3.4)

It is no restriction to assume that (xn) converges weakly to some x0. By the closedness
of the operator A, it follows that x0 ∈ ker (A − λ0). Moreover, (xn) converges weakly to
x0 in the Hilbert space (D(A), ‖ . ‖A), therefore

x0 ∈ KA
0 ∩ ker(A − λ0).(3.5)

According to (3.3) we write xn, n ∈ N, in the form

xn = un + vn
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for some un ∈ KA
0 ∩ ker(A − λ0) and some vn ∈ G0. By (3.4) and the positivity of

KA
0 ∩ ker(A − λ0) we obtain

0 ≥ lim
n→∞

[xn, xn] = lim
n→∞

([un, un] + [vn, vn]) ≥ lim
n→∞

[vn, vn].(3.6)

Assume that there exits a subsequence (vnk
) of (vn) with limk→∞ ‖vnk

‖ = 0. Then,
by ‖xn‖ = 1, we have limk→∞ ‖unk

‖ = 1 and, by (3.6), 0 = limk→∞[unk
, unk

], which
is a contradiction to the fact that KA

0 ∩ ker(A − λ0) is uniformly positive. Therefore,
lim infn→∞ ‖vn‖ > 0 and for n ∈ N we have

(A − λ0)vn = (A − λ0)(xn − un) = (A − λ0)xn,

which implies (A−λ0)vn → 0 as n → ∞. Moreover, if P denotes the self-adjoint projector
onto G0, then vn = Pxn and, by (3.5), (vn) converges weakly to zero. Hence together
with (3.6) and Theorem 2.3 this is a contradiction to λ0 ∈ σπ+

(A). This completes the
proof of Lemma 3.1.

With the help of Lemma 3.1 we will determine the minimal possible codimension of
a linear manifold H0 occuring in Definition 2.2. We do not exclude the case of spectral
points of positive or negative type. The orthogonal complement and orthogonal sum
with respect to the inner product corresponding to the Hilbert space norm ‖ . ‖ on H will
be denoted by ⊥ and ⊕, respectively.

Theorem 3.3. Let A be a self-adjoint operator in H and let λ0 ∈ σπ+
(A) \ {∞} (λ0 ∈

σπ
−

(A) \ {∞}). Let N0[
.
+]N+[

.
+]N− be a fundamental decomposition of ker (A − λ0).

Then the following holds.

(i) The finite nonnegative number

dimN0 + dimN−

(
resp. dimN0 + dimN+

)

is a lower bound for the codimension of every linear manifold H0 satisfying the con-

ditions from Definition 2.2 and does not depend on the fundamental decomposition

of ker (A − λ0), that is, for every linear manifold H0 ⊂ H from Definition 2.2 we

have

codimH0 ≥ dimN0 + dimN−(
resp. codimH0 ≥ dimN0 + dimN+

)
.

(3.7)

(ii) The subspace

H′
0 = N+ ⊕ ker (A − λ0)

⊥
(
resp. H′

0 = N− ⊕ ker (A − λ0)
⊥

)
(3.8)

has the properties required in Definition 2.2 and we have

codimH′
0 = dimN0 + dimN−(

resp. codimH′
0 = dimN0 + dimN+

)
.

(3.9)

Proof. We will prove this theorem only for λ0 ∈ σπ+
(A) \ {∞}. Note that by Theorem

2.3 we have

dimN0 + dimN− < ∞(3.10)

and, by (3.1), this number does not depend on the fundamental decomposition of ker (A−
λ0). Since codimH0 < ∞ and H0 ∩ (N0[+̇]N−) = {0} inequality (3.7) is evident and
assertion (i) holds. Obviously H′

0 in (3.8) is closed and (3.9) holds. We have

H′
0 ∩ ker (A − λ0) = N+,

and therefore (iii) from Lemma 3.1 is satisfied. From Lemma 3.1 (ii) we conclude that
H′

0 has the properties required in Definition 2.2.
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Corollary 3.4. Let λ0 ∈ σπ+
(A)\{∞} (λ0 ∈ σπ

−

(A)\{∞}). Then λ0 ∈ σ++(A) (resp.
λ0 ∈ σ−−(A)) if and only if N0 = N− = {0} (resp. N0 = N+ = {0}).

The following statement was proved in [2]. Here it follows immediately from Theo-
rem 3.3.

Corollary 3.5. If λ0 ∈ σπ+
(A) \ σ++(A) (λ0 ∈ σπ

−

(A) \ σ−−(A)) then λ0 is an eigen-

value of A with a corresponding nonpositive (resp. nonnegative) eigenvector. In particu-

lar, we have

σπ+
(A) \ R ⊂ σp(A) and σπ

−

(A) \ R ⊂ σp(A).

In the next theorem we consider the case that λ0 is a real spectral point of type π+

or type π− of a locally definitizable operator. We note that if λ0 ∈ σπ+
(A) ∩ R is an

accumulation point of the resolvent set of A, then there exists a domain Ω with the
properties as in Definition 2.4 such that λ0 ∈ Ω and A is definitizable over Ω, cf. [2,
Theorem 23] and Section 2. The algebraic eigenspace of A corresponding to λ0 will be
denoted by Lλ0

(A).

Theorem 3.6. Let A be a self-adjoint operator in H and assume that A is definitizable

over Ω. Let λ0 ∈ σπ+
(A) (λ0 ∈ σπ

−

(A)) belong to Ω ∩ R and let ∆ ⊂ Ω ∩ R be a closed

interval such that λ0 is an inner point of ∆ and

∆ \ {λ0} ⊂ σ++(A) ∪ ρ(A)
(
resp. ∆ \ {λ0} ⊂ σ−−(A) ∪ ρ(A)

)

holds. Then the following assertions (i)-(iii) are true.

(i) The spectral projection E(∆) is defined and (E(∆)H, [·, ·]) is a Pontryagin space

with finite rank of negativity κ− (resp. finite rank of positivity κ+).

(ii) If N0[
.
+]N+[

.
+]N− and L0[

.
+]L+[

.
+]L− are fundamental decompositions of ker(A−

λ0) and Lλ0
(A), respectively, then we have

dimN0 + dimN− ≤ dimL0 + dimL− = κ−(
resp. dimN0 + dimN+ ≤ dimL0 + dimL+ = κ+

)
.

(3.11)

(iii) If H0 ⊆ H is a subspace as in Definition 2.2 such that codimH0 is minimal, then

codimH0 = κ− (codimH0 = κ+) if and only if

dimN0 + dimN− = dimL0 + dimL−(
resp. dimN0 + dimN+ = dimL0 + dimL+

)
.

Proof. We prove the theorem in the case λ0 ∈ σπ+
(A). Assertion (i) was already proved in

[2]. Let us show (ii). According to [3, Theorem IX.2.5] we find subspaces P ,M ⊆ E(∆)H
such that P is neutral, skewly linked to L0 and

E(∆)H = L+[
.
+]L−[

.
+](L0

.
+ P)[

.
+]M and Lλ0

(A)[⊥] = L0[
.
+]M

hold, where Lλ0
(A)[⊥] denotes the orthogonal companion of Lλ0

(A) in E(∆)H. Since
A|E(∆)H is a definitizable operator in E(∆)H and Lλ0

(A) = Lλ0
(A|E(∆)H) we con-

clude from [11, Propositions II.5.1 and II.5.2] that the subspace Lλ0
(A)[⊥] is nonnegative

and therefore M is positive. In order to verify dimL0 + dimL− = κ− we show that

L0[
.
+]L− is a maximal nonpositive subspace in E(∆)H. Assume that this is not true.

Then there exists a vector

e := `+ + m + p, `+ ∈ L+, m ∈ M, p ∈ P ,

such that L0

.
+ L−

.
+ span {e} is nonpositive. From [e, e] ≤ 0 we obtain e = p. Since L0

and P are skewly linked we find `0 ∈ L0 with [p, `0] > 0. But then

p + `0 ∈ L0

.
+ L−

.
+ span {e}



8 BEHRNDT, PHILIPP, AND TRUNK

is a positive vector, which is a contradiction, i.e. dimL0 + dimL− = κ−. The inequal-

ity in (3.11) follows from N0[
.
+]N− ⊆ E(∆)H. Finally, assertion (iii) is an immediate

consequence of (ii) and Theorem 3.3.

The following simple example shows that in general the number dimN0 + dimN− in
Theorem 3.6 (ii) does not coincide with the negativity index κ− of the corresponding
spectral subspace.

Example. Let

A =




1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


 and J =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

Then A is self-adjoint in the Pontryagin space Π2 := (C4, (J ., .)). The rank of negativity
of Π2 is 2 and the rank of positivity is 2. It is obvious that

ker(A − 1) = span (1, 0, 0, 0)T

is a neutral subspace and the algebraic eigenspace L1(A) coincides with Π2. Thus the
numbers κ+ and κ− in Theorem 3.6 are both equal to two but dimN0 + dimN− is
one. Here the subspace H0 from Definition 2.2 can be chosen as the (·, ·)-orthogonal
complement of ker(A − 1), cf. Theorem 3.3 (ii).

4. Structure of the spectrum in a neighbourhood of a spectral point of

type π+ or type π−

Let A be a self-adjoint operator in the Krein space H, let ∆ ⊂ R be a closed bounded
interval and assume that

∆ ∩ σ(A) ⊂ σπ+
(A)

holds. If ρ(A) 6= ∅ and if each point of ∆ is an accumulation point of ρ(A), then by
[2, Theorem 18] there exists an open neighbourhood U in C of ∆ such that U \ R ⊂
ρ(A) and there are at most finitely many points λ1, . . . , λn in U ∩ R which belong to
σπ+

(A) \ σ++(A). In the following theorem we give a more complete description.

Theorem 4.1. Let A be a self-adjoint operator in H and let ∆ be a closed bounded

interval with

∆ ∩ σ(A) ⊂ σπ+
(A)

(
∆ ∩ σ(A) ⊂ σπ

−

(A)
)
.

For λ ∈ C denote by N0(A − λ)[
.
+]N+(A − λ)[

.
+]N−(A − λ) a fundamental decompo-

sition of ker (A − λ). Then there exist an open neighbourhood U in C of ∆, a finite

nonnegative number α and at most finitely many points λ1, . . . , λn in σπ+
(A)\σ++(A)

(σπ
−

(A)\σ−−(A)) such that for all λ ∈ U \ {λ1, . . . , λn} we have

α = dimN0(A − λ) ≤ min
j=1,... ,n

dimN0(A − λj)(4.1)

and

dimN−(A − λ) = 0
(
resp. dimN+(A − λ) = 0

)
.(4.2)

Moreover, in the case α = 0 we have

U \ R ⊂ ρ(A) and (U ∩ σ(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ++(A)
(
resp. U \ R ⊂ ρ(A) and (U ∩ σ(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ−−(A)

)

and in the case α > 0

U ⊂ σπ+
(A) \ σ++(A)

(
resp. U ⊂ σπ+

(A) \ σ−−(A)
)
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holds, in particular U ⊂ σp(A).

Proof. We prove the theorem only for ∆ ∩ σ(A) ⊂ σπ+
(A). Let λ0 ∈ ∆. We will show

that there exist an open neighbourhood Uλ0
of λ0 and a finite nonnegative number αλ0

such that

αλ0
= dimN0(A − λ) ≤ dimN0(A − λ0) and dimN−(A − λ) = 0(4.3)

holds for all λ ∈ Uλ0
\{λ0}.

If λ0 /∈ σap(A), then λ0 ∈ ρ(A) and there exists an open neighbourhood Uλ0
⊂ ρ(A)

of λ0 such that relation (4.3) holds with αλ0
= 0.

If λ0 ∈ σap(A), there exists (see [2, Lemma 12]) an open neighbourhood Vλ0
of λ0

with Vλ0
∩ σap(A) ⊂ σπ+

(A). We set

Ñ0 := span
{
N0(A − λ) : λ ∈ Vλ0

∩ (C+ ∪ R), λ 6= λ0

}

and

Ñ− := span
{
N−(A − λ) : λ ∈ Vλ0

∩ (C+ ∪ R), λ 6= λ0

}
.

Then Ñ0 is neutral, Ñ− is negative and [x, y] = 0 for all x ∈ Ñ0, y ∈ Ñ−. Denote

by L0 the closure of Ñ0 and by L the closure of Ñ0[
.
+]Ñ− in H. Then L0 is a neutral

subspace and L is a nonpositive subspace of H. Denote by AL0
(AL) the closure of A|Ñ0

(resp. A|Ñ0[
.
+]Ñ−) in L0 (resp. L). Obviously AL0

− λ0 (resp. AL − λ0) maps Ñ0 (resp.

Ñ0[
.
+]Ñ−) onto itself, hence it has a dense range.

Assume that the range of AL0
−λ0 (resp. of AL−λ0) is not closed. Then for any ε > 0

and every subspace M of L0 (resp. L) with finite codimension in L0 (resp. L) there exists
an f ∈ M∩ D(AL0

) (resp. f ∈ M∩ D(AL)) such that ‖f‖ = 1 and ‖(AL0
− λ0)f‖ < ε

(resp. ‖(AL − λ0)f‖ < ε). Hence there exists an orthonormal sequence (fn) ⊂ D(AL0
)

(resp. (fn) ⊂ D(AL)) such that (AL0
− λ0)fn → 0 (resp. (AL − λ0)fn → 0) as n → ∞.

The sequence (fn) converges weakly to zero. Since fn ∈ L0 (resp. fn ∈ L) we have for
n ∈ N

[fn, fn] = 0 (resp. [fn, fn] ≤ 0).

From AL0
, AL ⊂ A and Theorem 2.3 we find that this contradicts λ0 ∈ σπ+

(A), hence
the ranges of AL0

− λ0 and AL − λ0 are closed. In particular AL0
− λ0 and AL − λ0 are

surjective operators in L0 and L, respectively. Thus, they are semi-Fredholm.
For some λ ∈ Vλ0

∩ (C+ ∪R), λ 6= λ0, let x ∈ ker (AL0
−λ). Then x ∈ ker (A−λ) and

we write x = x0 +x+ + x− with x0 ∈ N0(A−λ), x+ ∈ N+(A−λ) and x− ∈ N−(A−λ).

There exists a sequence (xn) in Ñ0 with xn → x as n → ∞. By [x+, xn] = [x−, xn] = 0
for n ∈ N, we have

[x+, x+] = [x+, x] = lim
n→∞

[x+, xn] = 0, [x−, x−] = [x−, x] = lim
n→∞

[x−, xn] = 0.

Therefore x+ = x− = 0 and we obtain x ∈ N0(A − λ). Together with N0(A − λ) ⊂
ker (AL0

− λ) we conclude for λ ∈ Vλ0
∩ (C+ ∪ R), λ 6= λ0,

ker (AL0
− λ) = N0(A − λ)(4.4)

and, using similar arguments as above,

ker (AL − λ) = N0(A − λ)[
.
+]N−(A − λ).(4.5)

As AL0
− λ0 and AL − λ0 are surjective semi-Fredholm operators by [9, IV 5.31], (3.10),

(4.4) and (4.5) there exist finite nonnegative numbers αλ0
and βλ0

and an open neigh-

bourhood Ũλ0
of λ0, Ũλ0

⊂ Vλ0
, such that for all λ ∈ Ũλ0

∩ (C+ ∪ R), λ 6= λ0, we
have

αλ0
= dim ker (AL0

− λ) = dimN0(A − λ) = dim ker (AL0
− λ0)(4.6)



10 BEHRNDT, PHILIPP, AND TRUNK

and

βλ0
= dim ker (AL − λ) = dim

(
N0(A − λ)[

.
+]N−(A − λ)

)
.(4.7)

Since N−(A − λ) = 0 for λ ∈ C+ and dimN0(A − λ) = αλ0
for all λ ∈ Ũλ0

∩ (C+ ∪ R),

λ 6= λ0, relations (4.6) and (4.7) imply N−(A − λ) = 0 also for λ ∈ Ũλ0
∩ R, λ 6= λ0.

Hence we have

αλ0
= dimN0(A − λ) = dim ker (AL0

− λ0) and dimN−(A − λ) = 0(4.8)

for all λ ∈ Ũλ0
∩ (C+ ∪ R), λ 6= λ0.

Let x ∈ ker (AL0
− λ0). Then there exists a sequence (xn) in Ñ0 with xn → x as

n → ∞. For y ∈ ker (A − λ0) we have [xn, y] = 0, n ∈ N, hence [x, y] = 0. Thus,
x ∈ ker (A− λ0)∩ (ker (A− λ0))

[⊥] = N0(A− λ0). This and (4.8) imply that (4.3) holds

for all λ ∈ Ũλ0
∩ (C+ ∪ R), λ 6= λ0. It is easily seen that the above reasoning still holds

true if C+ is replaced by C−. Therefore there exists an open neighbourhood Uλ0
of λ0

such that (4.3) holds for all λ ∈ Uλ0
\ {λ0}.

The compactness of the interval ∆ implies the existence of U and of points λ1, . . . , λn

with the properties mentioned in Theorem 4.1 such that (4.1) and (4.2) hold.
In the case α = 0 we have ker(A − λ) = {0} for λ ∈ U\R. If λ ∈ σap(A), then λ0 ∈

σπ+
(A) and Corollary 3.4 implies λ ∈ σ++(A), which is impossible since σ++(A) ⊂ R.

Hence for each λ ∈ U\R we obtain that ran (A− λ) is closed and it is not difficult to see
that U\R ⊂ ρ(A) holds. A similar argument shows that with the exception of finitely
many points U ∩ σ(A) ∩R belongs to σ++(A). The remaining assertions of Theorem 4.1
follow from Corollary 3.5.

For a self-adjoint operator A in H and a non-real point λ0 belonging to σπ+
(A)∪σπ

−

(A)
we have a similar situation, see Lemma 4.2 and Theorem 4.3 below.

Lemma 4.2. For a non-real λ0 ∈ σπ+
(A)∪σπ

−

(A) the operator A−λ0 is semi-Fredholm

and dim ker (A − λ0) < ∞.

Proof. Let λ0 ∈ σπ+
(A). Let H0 ⊂ H be a linear manifold with the properties from

Definition 2.2 and assume that H0 is closed, choose e.g. H0 = N+ ⊕ ker(A − λ0)
⊥, cf.

Theorem 3.3. Assume that there exists no ε > 0 with

‖(A − λ0)x‖ ≥ ε‖x‖ for all x ∈ H0 ∩ D(A).(4.9)

Then there exists a sequence (xn) ⊂ H0 ∩D(A) with ‖xn‖ = 1 and ‖(A−λ0)xn‖ → 0 as
n → ∞. Therefore, by

(−Imλ0) lim inf
n→∞

[xn, xn] = lim inf
n→∞

Im [(A − λ0)xn, xn] = 0,

lim infn→∞[xn, xn] = 0 follows, a contradiction to λ0 ∈ σπ+
(A). Thus there exists ε > 0

such that (4.9) holds and A−λ0 is semi-Fredholm with dim ker (A−λ0) < ∞. A similar
proof holds for points from σπ

−

(A).

The following theorem is a direct consequence of Theorem 4.1 and Lemma 4.2

Theorem 4.3. Let K be a connected compact set in C such that K ∩ σap(A) belongs to

σπ+
(A) (σπ

−

(A)). For λ ∈ C denote by

N0(A − λ)[
.
+]N+(A − λ)[

.
+]N−(A − λ)

a fundamental decomposition of ker (A−λ). Then there exist an open neighbourhood U in

C of K, a finite nonnegative number α and at most finitely many points λ1, . . . , λn ∈ K
which belong to σπ+

(A)\σ++(A) (resp. σπ
−

(A)\σ−−(A)) such that

α = dimN0(A − λ) ≤ min
j=1,... ,n

dimN0(A − λj)
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and

dimN−(A − λ) = 0
(
resp. dimN+(A − λ) = 0

)

hold for all λ ∈ U \ {λ1, . . . , λn}.

We will give an example where the number α from Theorem 4.1 and Theorem 4.3 is
larger than zero.

Example. Let l2(N) denote the Hilbert space of all square summable sequences equipped
with the usual inner product. Denote by T the right shift operator and by S the left
shift operator in l2(N). On H := l2(N) × l2(N) we introduce an indefinite inner product
[., .] by

[(
x1

x2

)
,

(
y1

y2

)]
:= (x2, y1) + (x1, y2), x1, x2, y1, y2 ∈ l2(N).

Then (H, [., .]) is a Krein space and the operator A, defined by

A :=

(
T 0
0 S

)

is self-adjoint. For λ with |λ| < 1 the operator A − λ is Fredholm, we have

dim ker (A − λ) = 1

and all eigenvectors corresponding to λ are neutral in H. Hence, the open unit disc
belongs to σπ+

(A) \ σ++(A) and also to σπ
−

(A) \ σ−−(A).

5. Finite dimensional perturbations

In this section we construct a special finite dimensional perturbation which turns a
real point of type π+ (type π−) into a point of positive (resp. negative) type. In the
case of a definitizable operator this was shown in [8]. For locally definitizable operators
it follows from Theorem 2.5 combined with [8].

Theorem 5.1. Let A be a self-adjoint operator in H and let λ0 ∈ σπ+
(A) ∩ R (λ0 ∈

σπ
−

(A)∩R). Let N0[
.
+]N+[

.
+]N− be a fundamental decomposition of ker (A−λ0). Then

there exists a finite dimensional bounded self-adjoint operator F with

dim ranF = dimN0 + dimN−

and

λ0 ∈ σ++(A + F ) ∪ ρ(A + F )
(
resp. λ0 ∈ σ−−(A + F ) ∪ ρ(A + F )

)
.

Moreover, there exists an open neighbourhood U in C of λ0 such that

U ∩ σ(A + F ) ∩ R ⊂ σ++(A + F )
(
resp. U ∩ σ(A + F ) ∩ R ⊂ σ−−(A + F )

)

and U \ R ⊂ ρ(A + F ) holds.

Proof. We will prove this theorem only for λ0 ∈ σπ+
(A) ∩ R.

The subspace N+ is uniformly positive. Otherwise there exists a sequence (yn) ⊂ N+,
‖yn‖ = 1, n ∈ N, which converges weakly to some y0 ∈ N+ and satisfies limn→∞[yn, yn] ≤
0. As in the proof of Lemma 3.1 we conclude from

|[y0, y0]| ≤ |[y0 − yn, y0]| + [yn, yn]
1
2 [y0, y0]

1
2

that y0 = 0, which is a contradiction to λ0 ∈ σπ+
(A) (cf. Theorem 2.3).

As N− is finite dimensional (see Theorem 3.3), the space N+[
.
+]N− is a Pontryagin

space. Hence there exists a Krein subspace K of H with

H = N+[
.
+]N−[

.
+]K.
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Then D(A) ∩ K is dense in K and we have N0 ∩ (D(A) ∩ K)[⊥] = {0}. N0 is finite
dimensional (see Theorem 3.3) and by [3, Lemma I.10.4] we find a basis e1, . . . , en of N0

and f1, . . . , fn ∈ D(A) ∩ K such that [ej , fk] = δjk, j, k = 1, . . . , n, holds. Set

G := N0 +̇ span {f1 . . . , fn}.

Then (G, [., .]) is a Krein space. Denote by JG a fundamental symmetry in G. Then

P := JGN0

is a neutral subspace with G = N0

.
+ P . There exists a Krein subspace M of H with

H = N+[
.
+]N−[

.
+]G[

.
+]M

and

H = N+

.
+ N−

.
+ N0

.
+ P

.
+ M.

Denote by P− the self-adjoint projection in the Krein space H onto N− and by Q0 and

Q1 the bounded projections onto N0 and P
.
+ M, respectively. For x, y ∈ H we have

that JGQ0x and JGQ0y belong to (P
.
+ M)[⊥] and, hence,

[JGQ0x, y] = [JGQ0x, Q0y + Q1y] = [JGQ0x, Q0y]

= [Q0x, JGQ0y] = [x, JGQ0y].

Therefore, the operator JGQ0, considered as an operator in H, is self-adjoint. We define
the operator F by

F := P− + JGQ0.

Then the operator A + F is also self-adjoint. Hence, the real point λ0 belongs either to
σap(A + F ) or to ρ(A + F ). Assume λ0 ∈ σap(A + F ). The space

H0 := N+[
.
+]P [

.
+]M

is closed, has finite codimension and from Lemma 3.1 we obtain that every sequence (xn)
in H0 ∩ D(A) with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞ fulfils

lim inf
n→∞

[xn, xn] > 0.

From A|H0 = (A + F )|H0 we conclude λ0 ∈ σπ+
(A + F ). Moreover the inclusion

N+ ⊂ ker (A + F − λ0) holds. For x ∈ ker (A + F − λ0) it follows

0 = [(A + F − λ0)x, P−x] = [(A − λ0)x + P−x + JGQ0x, P−x]

= [P−x, P−x]
(5.1)

and

0 = [(A + F − λ0)x, Q0x] = [P−x + JGQ0x, Q0x] = [JGQ0x, Q0x].(5.2)

From (5.1) and (5.2) we conclude P−x = Q0x = 0, hence Fx = 0. This implies x ∈
ker (A − λ0), thus x ∈ N+. Therefore

N+ = ker (A + F − λ0)

and with Corollary 3.4 we have

λ0 ∈ σ++(A + F ).

The remaining assertions of Theorem 5.1 follow from the fact that σ++(A+F ) is open in
σe(A + F ) and that the non-real spectrum of A + F does not accumulate to σ++(A + F )
(see [2, Lemma 2 and Proposition 4] and [12]).
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6. An example: spectral points of type π+ and type π− of indefinite

Sturm-Liouville operators

In this section we consider the singular Sturm-Liouville differential expression

(sgn x)
(
−f ′′(x) + q(x)f(x)

)
, x ∈ R,

with the signum function as indefinite weight and a real potential q ∈ L1
loc(R), where it

is assumed that q is continuous in R\[−η, η] for some positive η and the limits

q+
∞ := lim

x→+∞
q(x) and q−∞ := lim

x→−∞
q(x)(6.1)

exist.
Let in the following L2(R, sgn) be the Krein space (L2(R), [·, ·]), where

[f, g] =

∫ ∞

−∞

f(x)g(x) sgn x dx, f, g ∈ L2(R),

and denote by J the fundamental symmetry of L2(R, sgn) defined by

(Jf)(x) := (sgn x)f(x), x ∈ R.

Then (·, ·) := [J ·, ·] is the usual Hilbert scalar product of L2(R).

Proposition 6.1. Let q ∈ L1
loc(R) be a real valued function as above such that the limits

q+
∞ and q−∞ in (6.1) exist. Then the operator

(Af)(x) = (sgn x)
(
−f ′′(x) + q(x)f(x)

)
,

D(A) =
{
f ∈ L2(R) | f, f ′ ∈ W 1,2(R), −f ′′ + qf ∈ L2(R)

}
,

(6.2)

is self-adjoint in the Krein space L2(R, sgn) and the interval (−q−∞,∞) is of type π+ and

the interval (−∞, q+
∞) is of type π− with respect to A.

Proof. The differential expression − d2

dx2 + q is in the limit point case at both singular
endpoints ∞ and −∞ since the limits limx→+∞ q(x) and limx→−∞ q(x) exist (see e.g.
[13]). Hence

(JAf)(x) = −f ′′(x) + q(x)f(x), D(JA) = D(A),

is a self-adjoint operator in the Hilbert space (L2(R), (·, ·)) and therefore A is self-adjoint
in the Krein space L2(R, sgn).

In the following the elements f of L2(R) will be identified with the elements {f+, f−},
f+ := f |R+, f− := f |R−, of L2(R+) × L2(R−); similarly for q = {q+, q−}. Further we
denote the set of all f± ∈ L2(R±) such that f±, f ′

± ∈ W 1,2(R±) and ∓f ′′
± ± q±f± ∈

L2(R±) by Dmax,±. Let

D0 :=
{
f ∈ D(A) | f(0) = f ′(0) = 0

}
.

Then the codimension of D0 in D(A) is two and the operator S := A|D0 is the direct
sum of the closed symmetric operator

S+f+ = −f ′′
+ + q+f+,

D(S+) =
{
f+ ∈ Dmax,+ | f+(0) = f ′

+(0) = 0
}
,

in the Hilbert space (L2(R+), (·, ·)) and the closed symmetric operator

S−f− = f ′′
− − q−f−,

D(S−) =
{
f− ∈ Dmax,− | f−(0) = f ′

−(0) = 0
}
,
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in (L2(R−), (·, ·)). The deficiency indices of both S+ and S− are (1, 1). It is well known
(see e.g. [5], [13]) that the spectrum of the self-adjoint extension

T+f+ = −f ′′
+ + q+f+,

D(T+) =
{
f+ ∈ Dmax,+ | f+(0) = 0

}
,

(6.3)

of S+ in L2(R+) is semibounded from below, σ(T+)∩ (−∞, q+
∞) consists of eigenvalues of

multiplicity one and the essential spectrum of T+ coincides with [q+
∞,∞). Analogously

the spectrum of the operator

T−f− = f ′′
− − q−f−,

D(T−) =
{
f− ∈ Dmax,− | f−(0) = 0

}
,

(6.4)

in L2(R−) is semibounded from above, σ(T−) ∩ (−q−∞,∞) consists of eigenvalues of
multiplicity one and the essential spectrum of T− coincides with (−∞,−q−∞].

Let us show that each point in σ(A) ∩ (−q−∞,∞) belongs to σπ+
(A). Assume that

λ ∈ σ(A), λ > −q−∞, and let (fn) ⊂ D0 be a sequence with ‖fn‖ = 1 and ‖(A−λ)fn‖ → 0
as n → ∞. Then we have ‖(S − λ)fn‖ → 0 for n → ∞ and as S is the direct sum of S+

and S− we obtain

lim
n→∞

‖(S+ − λ)fn,+‖ = 0 and lim
n→∞

‖(S− − λ)fn,−‖ = 0.

Since λ > −q−∞ we conclude that λ belongs to ρ(T−) or λ is an eigenvalue of T− of
multiplicity one. In both cases ran (T−−λ) is closed in L2(R−) and therefore ran (S−−λ)
is also closed and moreover (S− − λ) is injective. This implies fn,− → 0 as n → ∞ and
we obtain

lim inf
n→∞

[fn, fn] = lim inf
n→∞

[fn,+, fn,+] = 1,

that is, by the remark below Definition 2.2 (cf. [2, Proposition 6]) we have λ ∈ σπ+
(A).

The same argument shows σ(A) ∩ (−∞, q+
∞) ⊂ σπ

−

(A).

Proposition 6.2. Let q and A be as in Proposition 6.1 and assume that −q−∞ < q+
∞.

Then the operator A is definitizable.

Proof. As in the proof of Proposition 6.1 we identify the elements f ∈ L2(R) with the
elements {f+, f−} ∈ L2(R+) × L2(R−). We consider the operator

B{f+, f−} =
{
−f ′′

+ + q+f+, f ′′
− − q−f−

}
,

D(B) =
{
{f+, f−} ∈ D(T+) ×D(T−)

}
,

in L2(R, sgn) which is the direct sum of the operators T+ and T− from (6.3) and
(6.4), respectively. Since T+ is self-adjoint in (L2(R+), (·, ·)) and T− is self-adjoint in
(L2(R−),−(·, ·)) the operator B is self-adjoint in L2(R, sgn) and B is a so-called funda-
mentally reducible operator. Here we have σ++(B) = σ(T+) and σ−−(B) = σ(T−).

We fix some point µ0 ∈ (−q−∞, q+
∞) which belongs to ρ(T+) ∩ ρ(T−) and consider the

self-adjoint operator B − µ0 in L2(R, sgn). We have 0 ∈ ρ(B − µ0) and the assumption
−q−∞ < q+

∞ implies that with the exception of at most finitely many positive (negative)
eigenvalues with onedimensional negative (resp. positive) eigenspaces all positive (nega-
tive) spectral points belong to σ++(B − µ0) (resp. σ−−(B − µ0)). Hence B − µ0 is an
operator with finitely many negative squares (see [11], [4]). If S denotes the symmetric
restriction of B as in the proof of Proposition 6.1 then S − µ0 has also finitely many
negative squares and it follows from [4, Proposition 1.1] that A − µ0 has finitely many
negative squares and a nonempty resolvent set. Hence A − µ0 and A are definitizable
(see [11]).
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tions, Ion Colojoară Anniversary Volume, Theta, 2003, 95-127.
8. P. Jonas and H. Langer, Compact perturbations of definitizable operators, J. Operator Theory

2, (1979), 63-77.
9. T. Kato, Perturbation Theory for Linear Operators, Second Edition, Springer, 1976.

10. P. Lancaster, A. Markus, and V. Matsaev, Definitizable operators and quasihyperbolic operator

polynomials, J. Funct. Anal. 131 (1995), 1-28.
11. H. Langer, Spectral functions of definitizable operators in Krein spaces, in: Functional Analysis:

Proceedings of a Conference Held at Dubrovnik, Yugoslavia, November 2-14, 1981, Lecture

Notes in Mathematics, 948, Springer, 1982, 1-46.
12. H. Langer, A. Markus and V. Matsaev, Locally definite operators in indefinite inner product

spaces, Math. Ann. 308 (1997), 405-424.
13. J. Weidmann, Lineare Operatoren in Hilberträumen Teil II, Teubner, 2003.
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