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Abstract Ordinary and partial differential operators with an indefinite weight func-
tion can be viewed as bounded perturbations of non-negative operators in Krein
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1 Introduction

We consider linear operators associated with an indefinite differential expression

L =
1
w
`, (1.1)
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where |w| 6= 0 a.e. is a real-valued, locally integrable weight function which changes
its sign and ` is an ordinary or partial differential expression of the form

`=− d
dx

p
d
dx

+q or `=−
n

∑
j,k=1

∂

∂x j
a jk

∂

∂xk
+a

acting on a real interval or domain Ω ⊂ Rn, respectively. In the first case p, q are
real, p > 0 a.e., and p−1 and q are assumed to be locally integrable. In the second
case a ∈ L∞(Ω) is real and a jk are C∞-coefficients such that ` is formally symmet-
ric and uniformly elliptic on Ω ⊂ Rn, and, additionally, the weight function w and
its inverse are essentially bounded. Together with appropriate boundary conditions
(if necessary) the differential expression ` gives rise to a selfadjoint operator T in
an L2 Hilbert space. Multiplication with 1/w leads to the corresponding indefinite
differential operator

A =
1
w

T

associated with L in (1.1), which is selfadjoint in a weighted L2 Krein space.
Most of the existing literature for differential operators with an indefinite weight

focuses on regular or left-definite problems. The spectral properties of the operators
associated to L in the case of a regular Sturm-Liouville expression ` were inves-
tigated in detail, we refer to [20], the monograph [57] and the detailed references
therein. Also singular left-definite Sturm-Liouville problems are well studied. Here
the selfadjoint operator T associated with ` is uniformly positive and, hence, the
corresponding indefinite differential operator A associated with L in (1.1) has real
spectrum with a gap around zero, cf. e.g., [15–17,42,43] and [57]. In the case T ≥ 0
it is of particular interest whether the operator A is similar to a selfadjoint operator;
necessary and sufficient similarity criteria can be found in, e.g., [37,38]. The slightly
more general situation where the indefinite Sturm-Liouville operator A has finitely
many negative squares or is quasi-uniformly positive is discussed in, e.g., [12,14,22].
The general non-left-definite case is more difficult, especially the situation where the
essential spectrum of the selfadjoint operator T associated with ` is no longer con-
tained in R+. In this case subtle problems appear, as, e.g., accumulation of non-real
eigenvalues to the real axis, see [8,11,13,39]. The spectral properties of indefinite
elliptic partial differential operators have been investigated in, e.g., [25–27,50–52]
on bounded domains and in [9,21] on unbounded domains.

In the non-left-definite situation the indefinite differential operator A typically
possesses non-real spectrum. General perturbation results for selfadjoint operators
in Krein spaces from [4,7,30] ensure that the non-real spectrum is contained in a
compact set. To the best of our knowledge, explicit bounds on the size of this set
do not exist in the literature. For singular indefinite Sturm-Liouville operators it is
conjectured in [41, Remark 4.4] and [57, Remark 11.4.1] that the lower bound of
the spectrum of T is related to a bound for the non-real eigenvalues; the numerical
examples contained in [11,12] support this conjecture. It is one of our main objectives
to confirm this conjecture in the case p = 1, w = sgn, q ∈ L∞(R) and to provide in
this case explicit bounds on the non-real eigenvalues; cf. also Remark 4.3 below.



Bounds on the non-real spectrum of differential operators with indefinite weights 3

For this, we develop here an abstract Krein space perturbation approach which
is designed for applications to differential operators with indefinite weights. Besides
bounds on the non-real spectrum, our general perturbation results Theorem 3.1 and
Theorem 3.3 in Section 3 provide also quantitative estimates for intervals containing
only spectrum of positive/negative type in terms of the norm of the perturbation and
some resolvent integral, as well as information on the critical point ∞ of the perturbed
operator. The basic idea of our approach is simple: If T is a semibounded selfadjoint
operator in a Hilbert space with some negative lower bound γ , then the operator T +γ

is non-negative or uniformly positive. Hence

A0 := A+
γ

w
=

1
w
(T + γ)

(or, more generally, A0 = G−1(T + γ) with some Gram operator G connecting the
Hilbert and Krein space inner product) is a non-negative operator in a Krein space
and therefore the spectrum of A0 is real. Moreover, the difference of A0 and A is a
bounded operator. In general, a bounded perturbation of A0 may lead to unbounded
non-real spectrum, but under the additional assumption that 0 and ∞ are not singular
critical points of A0, the influence of the perturbation on the non-real spectrum can
be controlled. The proofs of Theorem 3.1 and 3.3 are based on general Krein space
perturbation techniques, norm estimates and local spectral theory; they are partly
inspired by methods developed in [9,49].

The abstract perturbation results from Section 3 are applied to ordinary and partial
differential operators with indefinite weights in Section 4. First we investigate the
singular indefinite Sturm-Liouville operator A with p = 1, a real potential q ∈ L∞(R)
and the particularly simple weight function w(x)= sgn(x). It turns out in Theorem 4.2
that the nonreal spectrum of A is contained in the set{

λ ∈ C : dist
(
λ ,(−d,d)

)
≤ 5‖q‖∞, | Imλ | ≤ 2‖q‖∞

}
,

where −d = ess infx∈R q(x) is assumed to be negative, and estimates on real spectral
points of positive and negative type are obtained as well. Our second example is a
second order uniformly elliptic operator defined on an unbounded domain Ω ⊂ Rn

with bounded coefficients and an essentially bounded weight function w having an
essentially bounded inverse. We emphasize that the estimates for the non-real spec-
trum of indefinite differential operators seem to be the first ones in the mathematical
literature.

Notation: As usual, C+ (C−) denotes the open upper half-plane (the open lower half-
plane, respectively), R+ := (0,∞) and R− := (−∞,0). The compactification R∪{∞}
of R is denoted by R, the compactification C∪{∞} by C. By L(H ,K ) we denote the
set of all bounded and everywhere defined linear operators from a Hilbert space H
to a Hilbert space K . We write L(H ) for L(H ,H ). For a closed, densely defined
linear operator T in H we denote the spectrum and the resolvent set by σ(T ) and
ρ(T ), respectively. A point λ ∈C belongs to the approximate point spectrum σap(T )
of T if there exists a sequence ( fn) in domT with ‖ fn‖= 1 for n∈N and (T−λ ) fn→
0 as n→ ∞. The essential spectrum of T is the set {λ ∈ C : A−λ is not Fredholm}.
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2 Selfadjoint operators in Krein spaces

Let (H , [· , ·]) be a Krein space, let J be a fixed fundamental symmetry in H and
denote by (· , ·) the Hilbert space scalar product induced by J, i.e. (· , ·) = [J · , ·]. The
induced norm is denoted by ‖ ·‖. For a detailed treatment of Krein spaces and opera-
tors therein we refer to the monographs [5] and [18].

For a densely defined linear operator A in H the adjoint with respect to the Krein
space inner product [·, ·] is denoted by A+. We mention that A+ = JA∗J, where A∗

denotes the adjoint of A with respect to the scalar product (· , ·). The operator A is
called selfadjoint in the Krein space (H , [· , ·]) (or [· , ·]-selfadjoint) if A = A+. This
is equivalent to the selfadjointness of the operator JA in the Hilbert space (H ,(· , ·)).
The spectrum of a selfadjoint operator A in a Krein space is in general not contained
in R, but its real spectral points belong to the approximate point spectrum (see, e.g.,
[18, Corollary VI.6.2]),

σ(A)∩R⊂ σap(A).

A selfadjoint operator A in (H , [· , ·]) is said to be non-negative if ρ(A) 6= ∅ and if
[A f , f ]≥ 0 holds for all f ∈ domA. If, for some γ > 0, [A f , f ]≥ γ‖ f‖2 holds for all
f ∈ domA, then A is called uniformly positive. A selfadjoint operator A in (H , [· , ·])
is uniformly positive if and only if A is non-negative and 0 ∈ ρ(A).

It is well-known that the spectrum of a non-negative operator A in a Krein space
(H , [· , ·]) is real. Moreover, A possesses a spectral function EA on R which is defined
for all Borel sets ∆ ⊂ R whose boundary does not contain the points 0 and ∞. The
corresponding spectral projection EA(∆) is bounded and [· , ·]-selfadjoint; see [3,31,
44,46,47] for further details. The point 0 (∞) is called a critical point of A if for each
Borel set ∆ ⊂R with 0∈ ∆ (∞∈ ∆ , respectively) such that EA(∆) is defined the inner
product [· , ·] is indefinite on the subspace EA(∆)H . Moreover, if the point 0 (∞) is a
critical point of A, it is called regular if there exists C > 0 such that ‖EA([−ε,ε])‖ ≤
C (‖EA([−ε−1,ε−1])‖ ≤ C, respectively) holds for each ε ∈ (0,1). Otherwise, the
critical point 0 or ∞ is called singular.

In this paper we will investigate operators which are non-negative outside of some
compact set K with 0 ∈ K, see Definition 2.1 below1. This notion is a generalization
of the above concept of non-negative operators in Krein spaces and will be used in
the study of additive bounded perturbations of non-negative operators in Section 3
and 4. For a set ∆ ⊂ C we denote by ∆ ∗ the set which is obtained by reflecting ∆ in
the real axis, that is, ∆ ∗ = {λ : λ ∈ ∆}.

Definition 2.1 Let K =K∗⊂C be a compact set such that 0∈K and C+\K is simply
connected. A selfadjoint operator A in the Krein space (H , [·, ·]) is said to be non-
negative over C\K if for any bounded open neighborhood U of K in C there exists
a bounded [· , ·]-selfadjoint projection E∞ such that with respect to the decomposition

H = (I−E∞)H [u]E∞H (2.1)

1 Definition 2.1 is slightly more general than the definition used in [10, Definition 3.1]. Contrary to the
definition in [10], a spectral projector for an operator non-negative over C \K in the sense of Definition
2.1 corresponding to the set C\K does, in general, not exist.
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the operator A can be written as a diagonal operator matrix

A =

(
A0 0
0 A∞

)
, (2.2)

where A0 is a bounded selfadjoint operator in the Krein space ((I − E∞)H , [· , ·])
whose spectrum is contained in U and A∞ is a non-negative operator in (E∞H , [· , ·])
with U ⊂ ρ(A∞).

Relations (2.1) and (2.2) encode the non-negativity outside of the set K, which
can also be seen in the following example.

Example 2.2 Let A be the direct sum of a bounded selfadjoint operator A1 in the Krein
space (H1, [· , ·]1) and of a non-negative operator A2 in the Krein space (H2, [· , ·]2),

A := A1×A2.

Let Kr1 be the closed disc around zero whose radius is the spectral radius r1 of A1,
then for a bounded open neighborhood U of Kr1 in C we set E∞ := E2(R\U ), where
E2 is the spectral function of A2. We obtain a decomposition of the form (2.1) and the
operator A can be written as in (2.2), where A0 and A∞ have the properties stated in
Definition 2.1. Therefore, the operator A is non-negative over C\Kr1 .

Let A be non-negative over C\K. Then from the representation (2.2) it is seen that
for each bounded open neighborhood U of K the non-real spectrum of A is contained
in U . Therefore,

σ(A)\R⊂ K. (2.3)
By (2.2) the spectral properties of A and A∞ in R\K are the same. Therefore, we say
that ∞ is a singular (regular) critical point of A if ∞ is a singular (regular, respec-
tively) critical point of A∞. The following proposition is a direct consequence of [19,
Theorem 3.2] and the representation (2.2).

Proposition 2.3 Let A be a selfadjoint operator in the Krein space (H , [· , ·]) and
assume that A is non-negative over C \K. Then ∞ is not a singular critical point
of A if and only if there exists a uniformly positive operator W in the Krein space
(H , [· , ·]) such that W domA⊂ domA.

In order to characterize operators which are non-negative over C\K in Theorem
2.6 below we recall the notions of the spectral points of positive and negative type of
selfadjoint operators in Krein spaces. The following definition can be found in, e.g.,
[36,45,49].

Definition 2.4 Let A be a selfadjoint operator in the Krein space (H , [· , ·]). A point
λ ∈ σap(A) is called a spectral point of positive (negative) type of A if for every
sequence ( fn) in domA with ‖ fn‖= 1 and (A−λ ) fn→ 0 as n→ ∞ we have

liminf
n→∞

[ fn, fn]> 0
(

limsup
n→∞

[ fn, fn]< 0, respectively
)
.

The set of all spectral points of positive (negative) type of A will be denoted by
σ+(A) (σ−(A), respectively). A set ∆ ⊂ C is said to be of positive (negative) type
with respect to A if each spectral point of A in ∆ is of positive type (negative type,
respectively).
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The sets σ+(A) and σ−(A) are contained in R, open in σ(A) and the non-real
spectrum of A cannot accumulate to σ+(A)∪σ−(A). Moreover, at a spectral point λ0
of positive or negative type the growth of the resolvent is of order one in the sense of
the following definition, see also [6,36,49].

Definition 2.5 Let A be a selfadjoint operator in the Krein space H and assume
that λ0 ∈ R is not an accumulation point of σ(A)\R. We say that the growth of the
resolvent of A at λ0 is of order m≥ 1 if there exist an open neighborhood U of λ0 in
C and M > 0 such that U \R⊂ ρ(A) and

‖(A−λ )−1‖ ≤M
(1+ |λ |)2m−2

| Imλ |m
(2.4)

holds for all λ ∈U \R.

Clearly, if λ0 6= ∞, Definition 2.5 can be formulated equivalently by replacing the
enumerator in (2.4) by 1. Moreover, if the growth of the resolvent of A at λ0 is of order
m, then it is of order n for each n > m. The following theorem gives an equivalent
characterization for non-negative operators in a neighbourhood of ∞.

Theorem 2.6 Let A be a selfadjoint operator in the Krein space H and let K =
K∗ ⊂ C be a compact set such that 0 ∈ K and C+ \K is simply connected. Then A is
non-negative over C\K if and only if the following conditions are satisfied:

(i) σ(A)\R⊂ K and (σ(A)\K)∩R± ⊂ σ±(A).
(ii) The growth of the resolvent of A at ∞ is of finite order.

Proof Let A be non-negative over C \K. It is well-known that the growth of the
resolvent of a non-negative operator in a Krein space is of finite order for all λ0 ∈ R
and that spectral points in R+ (R−) are of positive (resp. negative) type, see, e.g.,
[47, Proposition II.2.1 and Proposition II.3.1] and [33, Section 2.1]. Therefore, the
statements (i) and (ii) are consequences of the representation (2.2); cf. (2.3).

Conversely, assume that (i) and (ii) are satisfied. Then the operator A is definitiz-
able over C\K, see [36]. In particular A possesses a local spectral function E which
is defined on all Borel sets ∆ ⊂ R \K for which neither ∞ nor points of K ∩R are
boundary points. For such a set ∆ the following holds:

(a) E(∆) is a bounded [· , ·]-selfadjoint projection and commutes with every bounded
operator which commutes with the resolvent of A;

(b) σ(A|E(∆)H ) ⊂ σ(A)∩∆ ;
(c) σ(A|(I−E(∆))H ) ⊂ σ(A) \ int(∆), where int(∆) is the interior of ∆ with re-

spect to the topology of R;
(d) If, in addition, ∆ is a neighbourhood of ∞ (with respect to the topology of R),

then A|(I−E(∆))H is a bounded operator;

cf. [36, Definition 3.13, Theorems 3.15 and 4.8, Remark 4.9] and note that (d) fol-
lows from the definition of the local spectral function [36, Definition 3.13] and the
definition of the extended spectrum σ̃(A) in [36].
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Let U be a bounded open neighborhood of K in C and set E∞ := E(R\U ). By
(a), with respect to the decomposition

H = (I−E∞)H [u]E∞H ,

the operator A is represented by

A =

(
A0 0
0 A∞

)
,

and by (b) the spectrum of the operator A∞ is real, σ(A∞) ⊂ R \U . According to
(i) and (ii), the operator A∞ is definitizable over C and thus definitizable, see [36,
Theorem 4.7]. Therefore, [47, Corollary 3 of Proposition II.5.2] implies that A−1

∞

(and thus A∞) is non-negative in E∞H . By (d), the operator A0 = A|(I−E∞)H is
bounded and, by (c), σ(A0)⊂ σ(A)\ int(R\U )⊂U . ut

3 Bounded selfadjoint perturbations of non-negative operators

In this section we prove two abstract results on additive bounded perturbations of non-
negative (and some closely connected class of) operators in Krein spaces that lead
to perturbed operators which are non-negative over some neighborhood of infinity.
In both cases the neighborhood is given in quantitative terms. The results will be
applied in Section 4 to singular indefinite Sturm-Liouville operators and to second
order elliptic operators with indefinite weights.

3.1 Two perturbation results

The following notation will be useful when formulating our main results below: For
a set ∆ ⊂ R and r > 0 we define

Kr(∆) := {z ∈ C : dist(z,∆) ≤ r}.

Our first main theorem concerns bounded selfadjoint perturbations of non-negative
operators in Krein spaces.

Theorem 3.1 Let (H , [· , ·]) be a Krein space with fundamental symmetry J and
norm ‖ ·‖= [J·, ·]1/2. Let A0 be a non-negative operator in (H , [· , ·]) such that 0 and
∞ are not singular critical points of A0, and 0 /∈ σp(A0). Furthermore, let V ∈ L(H )
be a selfadjoint operator in (H , [· , ·]). Then the following holds:

(i) If V is non-negative, then A0 +V is a non-negative operator in (H , [· , ·]).
(ii) If V is not non-negative, then A0 +V is non-negative over C\Kr((−d,d)), where

r =
1+ τ0

2
‖V‖, d =−1+ τ0

2
minσ(JV ), (3.1)

and

τ0 =
1
π

limsup
n→∞

∥∥∥∥∫ n

1/n

(
(A0 + it)−1 +(A0− it)−1) dt

∥∥∥∥< ∞. (3.2)
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Moreover, in both cases ∞ is not a singular critical point of A0 +V .

The following simple example shows that without further assumptions a bounded
selfadjoint perturbation V of a non-negative or uniformly positive A0 in (H , [· , ·])
may lead to an operator A0 +V with unbounded non-real spectrum.

Example 3.2 Let (K ,(·, ·)) be a Hilbert space and let H be an unbounded selfadjoint
operator in K such that σ(H)⊂ (0,∞). Equip H := K ⊕K with the Krein space
inner product[(

k1
k2

)
,

(
l1
l2

)]
:= (k1, l2)+(k2, l1),

(
k1
k2

)
,

(
l1
l2

)
∈H ,

and consider the operators

A0 =

(
0 I
H 0

)
, V =

(
0 −I
0 0

)
, and A0 +V =

(
0 0
H 0

)
.

It is easy to see that A0 is a non-negative operator and V is a bounded selfadjoint
operator in the Krein space (H , [· , ·]). Moreover, as dom(A0 +V ) = domH⊕K we
conclude ran(A0 +V −λ ) 6= H for every λ ∈ C, that is, σ(A0 +V ) = C.

Our second main result applies to operators of the form A = G−1T , where T is
a semibounded selfadjoint operator in a Hilbert space (H ,(· , ·)) and G is a selfad-
joint bounded and boundedly invertible operator in the Hilbert space (H ,(· , ·)). In
other words, A is selfadjoint in the Krein space (H ,(G·, ·)) and A+ηG−1 is uni-
formly positive for suitable η . Such a situation arises, e.g., when considering elliptic
differential operators with an indefinite weight function; cf. Section 4.2.

Theorem 3.3 Let (H ,(· , ·)) be a Hilbert space, ‖ ·‖= (· , ·)1/2 and [· , ·] = (G·, ·) be
as above. Let A be a selfadjoint operator in the Krein space (H , [· , ·]) such that for
some γ > 0 we have

[A f , f ]≥−γ‖ f‖2 for all f ∈ domA.

Assume furthermore that for some η > γ

τη :=
1
π

limsup
n→∞

∥∥∥∥∫ n

−n
(A+ηG−1− it)−1 dt

∥∥∥∥< ∞,

holds. Then A is non-negative over C\Kr((−r,r)), where

r = η
1+ τη

2
‖G−1‖.

Moreover, ∞ is not a singular critical point of A.

Remark 3.4 Setting A0 := A+ηG−1 in Theorem 3.3 and V :=−ηG−1 we have A =
A0 +V and hence Theorem 3.3 can also be seen as a variant of Theorem 3.1. Here
A0 = A+ηG−1 is uniformly positive so that 0 ∈ ρ(A0) is not a critical point of A0
and the entire imaginary axis belongs to ρ(A+ηG−1). It follows from [56, Theorem
1.2] and [32, Lemma 1] that τη < ∞ is equivalent to ∞ not being a singular critical
point of A0.
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In what follows we describe the structure of the proofs of Theorem 3.1 (ii) and
Theorem 3.3. Let E denote the spectral function of the non-negative operator A0. As
0 and ∞ are not singular critical points of A0, the spectral projections E+ := E((0,∞))
and E− := E((−∞,0)), and the corresponding spectral subspaces H± := E±H of A0
exist. From 0 /∈ σp(A0) it follows that

H = H+ [u]H− (3.3)

and (H±,±[· , ·]) are Hilbert spaces, see, e.g., [47, Proposition 5.2 and Theorem 5.7].
Therefore (3.3) is a fundamental decomposition of the Krein space (H , [· , ·]). With
respect to this decomposition the operator A0 and the fundamental symmetry J̃ cor-
responding to (3.3) can be written as operator matrices:

A0 =

(
A0,+ 0

0 A0,−

)
and J̃ =

(
I 0
0 −I

)
. (3.4)

Note that the operator ±A0,± is a selfadjoint non-negative operator in the Hilbert
space (H±,±[· , ·]). Hence, A0 is selfadjoint in the Hilbert space (H ,(· , ·)∼), where

( f ,g)∼ := [J̃ f ,g] = [E+ f ,g]− [E− f ,g], f ,g ∈H . (3.5)

Now, let V ∈ L(H ) be a bounded selfadjoint operator in the Krein space (H , [· , ·]).
Then, with respect to the decomposition (3.3) it admits an operator matrix represen-
tation

V =

(
V+ B
C V−

)
. (3.6)

From the selfadjointness of V in (H , [· , ·]) one concludes that V± is selfadjoint in the
Hilbert space (H±,±[· , ·]) = (H±,(· , ·)∼) and

C =−B∗̃, (3.7)

where B∗̃ denotes the adjoint of B with respect to the scalar product (· , ·)∼. Hence,
the perturbed operator A := A0 +V is represented by

A =

(
A0,++V+ B
−B∗̃ A0,−+V−

)
. (3.8)

For operators as in (3.8) we show in Theorem 3.5 below that

– R\K‖B‖∼(σ(A0,−+V−)) is of positive type,
– R\K‖B‖∼(σ(A0,++V+)) is of negative type,
– the non-real spectrum of A is contained in

K := K‖B‖∼
(
σ(A0,++V+)

)
∩K‖B‖∼

(
σ(A0,−+V−)

)
, (3.9)

– and the growth of the resolvent of A at ∞ is of order one.

Here ‖ ·‖∼ stands for the operator norm induced by (3.5). Then, by Theorem 2.6, the
operator A is non-negative over C\K, where K is as in (3.9). In a final step it remains
to bound the quantities

‖B‖∼ and K‖B‖∼(σ(A0,±+V±))

by the quantities r and τ0 as in the statement of Theorem 3.1.
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3.2 Some auxiliary statements

In this section we formulate and prove some auxiliary statements which will be used
in the proofs Theorems 3.1 and 3.3. For the special case of bounded operators the first
part of the following theorem was already proved in [49, Theorem 4.2], see also [48]
and [54, Proposition 2.6.8], [55, Theorem 5.5] for similar results with unbounded
entries on the diagonal.

Theorem 3.5 Let S+ and S− be selfadjoint operators in some Hilbert spaces H+ and
H−, respectively, let M ∈ L(H−,H+) and define the operators

S :=
(

S+ M
−M∗ S−

)
and J :=

(
I 0
0 −I

)
in the Hilbert space H := H+⊕H−. Then the operator S is selfadjoint in the Krein
space (H,(J·, ·)) and with ν := ‖M‖ the following statements hold:

(i) σ(S)\R ⊂ Kν(σ(S+))∩Kν(σ(S−)).
(ii) R\Kν(σ(S−)) is of positive type with respect to S.

(iii) R\Kν(σ(S+)) is of negative type with respect to S.

Moreover, if S+ is bounded from below and S− is bounded from above (or vice versa),
the non-real spectrum of S is bounded and the growth of the resolvent of S at ∞ is of
order one.

Proof We set [· , ·] := (J·, ·). Let λ ∈C\Kν(σ(S−)) and α := ν/dist(λ ,σ(S−))< 1.
We claim that for some r(α)> 0 and all f ∈ domS the following implication

‖(S−λ ) f‖ ≤ 1−α2

4α
ν‖ f‖ =⇒ [ f , f ] ≥ r(α)‖ f‖2 (3.10)

holds. In fact, set ε := 1−α2

4α
and let f ∈ domS with

‖(S−λ ) f‖ ≤ εν‖ f‖.

With respect to the decomposition H = H+⊕H− we write f and g := (S−λ ) f as
column vectors

f =
(

f+
f−

)
∈ domS+⊕domS−, g =

(
g+
g−

)
.

Then g− =−M∗ f++(S−−λ ) f−, or, equivalently,

f− = (S−−λ )−1g−+(S−−λ )−1M∗ f+.

As ‖g−‖ ≤ ‖g‖= ‖(S−λ ) f‖ ≤ εν‖ f‖ and ‖(S−−λ )−1‖= α/ν this yields

‖ f−‖ ≤ αε‖ f‖+α‖ f+‖

and hence ‖ f−‖2 ≤ α2
(
ε2‖ f‖2 + 2ε‖ f‖2 + ‖ f+‖2

)
. Using ‖ f+‖2 = ‖ f‖2−‖ f−‖2

we conclude

‖ f−‖2 ≤ α2

1+α2 (1+ ε)2‖ f‖2.
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Hence, as [ f , f ] = ‖ f+‖2−‖ f−‖2 = ‖ f‖2− 2‖ f−‖2, we obtain [ f , f ] ≥ r(α)‖ f‖2,
where

r(α) := 1− 2α2

1+α2 (1+ ε)2 =
(1−α)2(1+α)(7−α)

8(1+α2)
> 0, (3.11)

i.e., the implication (3.10) holds. It follows that (C\Kν(σ(S−)))∩σap(S)⊂ σ+(S).
Hence (ii) is proved and, as σ+(S) is real, the non-real spectrum of S satisfies

σ(S)\R ⊂ Kν(σ(S−)). (3.12)

Similarly, as in the proof of (3.10), one proves that for λ ∈ C \Kν(σ(S+)), f ∈
domS, and for β := ν/dist(λ ,σ(S+))< 1 the implication

‖(S−λ ) f‖ ≤ 1−β 2

4β
ν‖ f‖ =⇒ [ f , f ] ≤ −r(β )‖ f‖2

holds with r(β ) > 0 as in (3.11). This shows (iii) and σ(S) \R ⊂ Kν(σ(S+)). To-
gether with (3.12) we obtain (i).

Assume now that S+ is bounded from below and S− is bounded from above. Then
the non-real spectrum of S is bounded by (i) and it remains to show that the growth
of the resolvent of S is of order one at ∞. Note first that for

S0 =

(
S+ 0
0 S−

)
and V =

(
0 M
−M∗ 0

)
,

and λ ∈ C such that | Imλ | ≥ 2‖V‖= 2ν we have ‖(S0−λ )−1V‖ ≤ 1
2 and

‖(S−λ )−1‖=
∥∥((S0−λ )(I +(S0−λ )−1V )

)−1∥∥≤ 2
| Imλ |

. (3.13)

For λ ∈C with | Imλ |< 2ν and dist(λ ,σ(S−))> ν +δ with some fixed δ > 0 again
define the value α = ν/dist(λ ,σ(S−)). Then α ∈ (0,δ ′), where δ ′ = ν/(ν + δ ) ∈
(0,1), and for f ∈ domS we either have

‖(S−λ ) f‖ ≥ 1−α2

4α
ν‖ f‖> 1−α2

8α
| Imλ |‖ f‖, (3.14)

or, by (3.10),

r(α)| Imλ |‖ f‖2 ≤ | Im[λ f , f ]|= | Im[(S−λ ) f , f ]| ≤ ‖(S−λ ) f‖‖ f‖,

and hence
‖(S−λ ) f‖ ≥ r(α)| Imλ |‖ f‖. (3.15)

For λ ∈ C with | Imλ | < 2ν and dist(λ ,σ(S+)) > ν + δ the estimates (3.14) and
(3.15) hold in a similar form. Therefore, (3.13)-(3.15) imply that for λ ∈ C\R with
dist(λ ,σ(S−))> ν +δ or dist(λ ,σ(S+))> ν +δ we have

‖(S−λ )−1‖ ≤ C
| Imλ |

with some C > 0 which does not depend on λ . This shows that the growth of the
resolvent (S−λ )−1 is of order one at ∞. ut
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Remark 3.6 If dist(σ(S+),σ(S−)) ≥ 2‖M‖, then the spectrum of S in Theorem 3.5
is real. This result can be improved in certain special cases, cf. [1] and also [2],
where sharp norm bounds on the operator angles between reducing subspaces of S
and S+⊕ S− are given. We mention here also [34,35] for comparable results in the
study of operators of Klein-Gordon type, where bounded perturbations of operators
with unbounded off-diagonal entries are investigated.

The following simple example shows that the bounds on the non-real spectrum of
S in Theorem 3.5 are sharp.

Example 3.7 Let H+ = H− = C and S± =±1, M = z ∈ C and hence

S =

(
1 z
−z −1

)
.

Then dist(σ(S+),σ(S−)) = 2. If |z| ≤ 1, then σ(S) = {±
√

1−|z|2} is real; cf. Re-
mark 3.6. If |z|> 1, then σ(S) = {±i

√
|z|2−1} and in this case the eigenvalues of S

lie on the boundary of K|z|({1})∩K|z|({−1}).

Lemma 3.8 Let T be a selfadjoint operator in the Hilbert space (H,(· , ·)) with 0 /∈
σp(T ) and let E be its spectral function. If (an) and (bn) are sequences in [0,∞) such
that an ↓ 0 and bn ↑ ∞ as n→ ∞, and 0 ∈ ρ(T ) if ak = 0 for some k ∈ N, then

E(R+)−E(R−) =
1
π

s-lim
n→∞

∫ bn

an

(
(T + it)−1 +(T − it)−1) dt .

Proof First of all we observe that

(T + it)−1 +(T − it)−1 = 2T (T 2 + t2)−1.

For all f ,g ∈ H we have∫ bn

an

(
T (T 2 + t2)−1 f ,g

)
dt =

∫ bn

an

∫
R

s
s2 + t2 d(Es f ,g)dt

=
∫
R

∫ bn

an

s
s2 + t2 dt d(Es f ,g)

=
∫
R

(
arctan(bn/s)− arctan(an/s)

)
d(Es f ,g).

=
(

arctan(bnT−1) f − arctan(anT−1) f ,g
)
.

Fubini’s theorem can be applied here since on R× [an,bn] the integrand is bounded
and the measure d(Es f ,g)⊗dt considered as a measure in R× [an,bn] is finite. Hence,∫ bn

an

2T (T 2 + t2)−1 f dt = 2arctan(bnT−1) f −2arctan(anT−1) f .

Now, we apply [53, Theorem VIII.5] and observe that 2arctan(anT−1) f tends to zero
and 2arctan(bnT−1) f tends to

π sgn(T−1) f = π sgn(T ) f = π(E(R+)−E(R−)) f

as n→ ∞. ut
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A subspace L of a Krein space (H, [· , ·]) is called uniformly positive if there exists
δ > 0 such that

[ f , f ] ≥ δ‖ f‖2 for all f ∈ L.

Here ‖ · ‖ is a Hilbert space norm on H with respect to which [· , ·] is continuous. All
such norms are equivalent, see [47, Proposition I.1.2].

Lemma 3.9 Let G be a bounded and boundedly invertible selfadjoint operator in a
Hilbert space (H,(· , ·)) and set [· , ·] := (G·, ·). Let L be a closed uniformly positive
subspace in the Krein space (H, [· , ·]). If P (E) denotes the orthogonal projection in
the Hilbert space (H,(· , ·)) (in the Krein space (H, [· , ·]), respectively) onto L, then
P(G|L) is a uniformly positive selfadjoint operator in (L,(· , ·)), and its inverse is
given by (

P(G|L)
)−1

= E
(
G−1|L

)
.

Proof As L is uniformly positive, for all f ∈ L we have(
P(G|L) f , f

)
= (G f , f ) = [ f , f ] ≥ δ‖ f‖2

with some δ > 0. Thus, P(G|L) is a uniformly positive operator in (L,(· , ·)) and, in
particular, 0∈ ρ(P(G|L)). Let g∈L and set f := E(G−1|L)g∈L. Since for all h∈L

(g−G f ,h) =
(
G(I−E)G−1g,h

)
=
[
(I−E)G−1g,h

]
= 0,

we conclude g−G f ∈ L⊥ and hence g = PG f = P(G|L) f . Therefore,(
P(G|L)

)−1g = f = E
(
G−1|L

)
g,

which proves the lemma. ut

3.3 Proof of Theorem 3.1

Assertion (i) in Theorem 3.1 is simple: As both A0 and V are non-negative in the
Krein space (H , [· , ·]) we have

[(A0 +V ) f , f ]≥ 0 for all f ∈ dom(A0 +V ) = domA0.

The operator A0 is selfadjoint in the Hilbert space (H ,(· , ·)∼) (cf. (3.4) and (3.5))
and, as V is bounded, ρ(A0+V ) is nonempty. Thus A0+V is a non-negative operator
in (H , [· , ·]) and (i) in Theorem 3.1 is proved.

Let E be the spectral function of the non-negative operator A0, define the projec-
tions E+ :=E((0,∞)), E− :=E((−∞,0)) and the subspaces H± :=E±H . Then with
respect to the fundamental decomposition (3.3) the operators A0 and V have the form
in (3.4) and (3.6), respectively. The fundamental symmetry J̃ associated with the de-
composition (3.3) is also given in (3.4). The inner product (· , ·)∼ is defined as in (3.5).
Moreover, A0,± and V± from (3.4) are selfadjoint in (H±,(· , ·)∼) = (H±,±[· , ·]),
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σ(A0,±)⊂R±∪{0} and (3.7) holds. We apply Lemma 3.8 to the non-negative oper-
ators ±A0,± and obtain

±IH± =
1
π

s-lim
n→∞

∫ n

1/n

(
(A0,±+ it)−1 +(A0,±− it)−1) dt.

Therefore,

J̃ =
1
π

s-lim
n→∞

∫ n

1/n

(
(A0 + it)−1 +(A0− it)−1) dt, (3.16)

where the strong limit is with respect to the norm ‖ · ‖∼ := (· , ·)1/2
∼ . But as ‖ · ‖∼ and

‖ · ‖ are equivalent norms, the limit on the right hand side of (3.16) also exists with
respect to the norm ‖ · ‖, and coincides with J̃. The uniform boundedness principle
now yields that τ0 in (3.2) is finite and that

‖J̃‖ ≤ τ0 < ∞. (3.17)

Define the constants

ν := ‖B‖∼, a := minσ(V+) and b := maxσ(V−). (3.18)

Then A0,++V+ is bounded from below by a and σ(A0,++V+)⊂ [a,∞), and A0,−+
V− is bounded from above by b and σ(A0,− +V−) ⊂ (−∞,b]. Making use of the
representation (3.8) of A = A0 +V and Theorem 3.5 we conclude:

(a) σ(A)\R⊂ Kν((−∞,b])∩Kν([a,∞)).
(b) (b+ν ,∞) is of positive type with respect to A.
(c) (−∞,a−ν) is of negative type with respect to A.
(d) The growth of the resolvent of A at ∞ of order one, and hence of finite order.

The statement in Theorem 3.1 (ii) follows from Theorem 2.6 if we show that the
constants ν , a and b in (3.18) satisfy

ν ≤ r, a≥−d, b≤ d,

where r and d are as in (3.1), because in that case the properties (a)-(d) above hold
with ν , a and b replaced by r, −d and d, respectively, and

Kν((−∞,d])∩Kν([−d,∞)) = Kν((−d,d)).

First we check ν ≤ r. Denote by (· , ·) the scalar product corresponding to the
Hilbert space norm ‖ · ‖. Using the well-known fact that the spectrum of a bounded
operator is always a subset of the closure of its numerical range we obtain

ν
2 = ‖B‖2

∼ = ‖B∗̃B‖∼ = sup{|λ | : λ ∈ σ(B∗̃B)}
≤ sup{|(B∗̃B f , f )| : ‖ f‖= 1} ≤ ‖B∗̃‖‖B‖
= ‖E−(V |H+)‖‖E+(V |H−)‖ ≤ ‖E+‖‖E−‖‖V‖2.

(3.19)

As E± = 1
2 (I± J̃), it follows from (3.17) that ‖E±‖ ≤ 1+τ0

2 which shows ν ≤ r.
Next we verify a ≥ −d. Denote by P± the orthogonal projection onto H± with

respect to (· , ·). Then, according to Lemma 3.9, the operator P+(J|H+) is selfadjoint



Bounds on the non-real spectrum of differential operators with indefinite weights 15

and uniformly positive in the Hilbert space (H+,(· , ·)). Hence, the same holds for its
inverse E+(J|H+); cf. Lemma 3.9. This implies

minσ(P+(J|H+)) =
(

maxσ(E+(J|H+))
)−1

= ‖E+(J|H+)‖−1

≥ ‖E+J‖−1 ≥ ‖E+‖−1 ≥ 2
1+ τ0

.

Hence, for f+ ∈H+ we have

[ f+, f+] = (J f+, f+) = (P+(J|H+) f+, f+) ≥
2

1+ τ0
‖ f+‖2.

We also use

(V+ f+, f+)∼ = [V+ f+, f+] = [V+ f+−B∗̃ f+, f+] = [V f+, f+] = (JV f+, f+)

for f ∈H+ to conclude

a = minσ(V+) = inf{(V+ f+, f+)∼ : ‖ f+‖∼ = 1, f+ ∈H+}
≥ inf{(V+ f+, f+)∼ : ‖ f+‖∼ ≤ 1, f+ ∈H+}
= inf{(JV f+, f+) : [ f+, f+]≤ 1, f+ ∈H+}

≥ inf
{
(JV f+, f+) : ‖ f+‖2 ≤ 1+τ0

2 , f+ ∈H+

}
≥ inf

{
(JV f , f ) : ‖ f‖2 ≤ 1+τ0

2 , f ∈H
}
.

By assumption V is not non-negative in (H , [· , ·]) and hence

0 > inf
{
(JV f , f ) : ‖ f‖2 ≤ 1+τ0

2 , f ∈H
}
= inf

{
(JV f , f ) : ‖ f‖2 = 1+τ0

2 , f ∈H
}
.

Therefore we finally obtain

a = minσ(V+)≥ inf
{
(JV f , f ) : ‖ f‖2 = 1+τ0

2 , f ∈H
}

=
1+ τ0

2
inf{(JV f , f ) : ‖ f‖= 1, f ∈H }

=
1+ τ0

2
minσ(JV ) =−d.

The proof of the inequality b≤ d is analogous and is left to the reader. This completes
the proof of (ii).

As ∞ is not a singular critical point of A0, the last statement in Theorem 3.1 on
the critical point ∞ of A0 +V follows in both cases (i) and (ii) from Proposition 2.3
and domA = dom(A0 +V ). ut
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3.4 Proof of Theorem 3.3

Let γ and η be as in Theorem 3.3. Then the operator A0 := A+ηG−1 is uniformly
positive in the Krein space (H , [· , ·]), [· , ·] = (G·, ·), since for f ∈ domA we have

[A0 f , f ] = [A f , f ]+η [G−1 f , f ]≥−γ‖ f‖2 +η‖ f‖2 = (η− γ)‖ f‖2.

We will show that A is non-negative over C \Kr((−r,r)). In particular, 0 ∈ ρ(A0)
is not a singular critical point of A0 and, as τη < ∞, the point ∞ is not a a singular
critical point of A0, see Remark 3.4. With V :=−ηG−1 we have

A = A0 +V and ‖V‖= η‖G−1‖.

As in the proof of Theorem 3.1 let E be the spectral function of the operator A0.
Then the fundamental decomposition H =E+H [u]E−H in (3.3) generates matrix
representations of A0, V and the corresponding fundamental symmetry J̃ as in (3.4)
and (3.6). The operator A0 is selfadjoint in the Hilbert space (H ,(· , ·)∼), where
(· , ·)∼ is defined in (3.5). With the help of Lemma 3.8 we obtain

J̃ =
1
π

s-lim
n→∞

∫ n

0

(
(A0 + it)−1 +(A0− it)−1)dt

=
1
π

s-lim
n→∞

∫ n

−n
(A+ηG−1− it)−1 dt .

This yields
‖J̃‖ ≤ τη .

Following the lines of the proof of Theorem 3.1, it suffices to show the inequalities

ν ≤
1+ τη

2
‖V‖, minσ(V+)≥−

1+ τη

2
‖V‖ and maxσ(V−)≤

1+ τη

2
‖V‖,

where ν = ‖E∓(V |H±)‖∼. The first relation is proved as in (3.19) and the remaining
two inequalities follow from the selfadjointness of V± in (H±,(· , ·)∼) and

max{|minσ(V±)|, |maxσ(V±)|}= ‖V±‖∼ = sup{|λ | : λ ∈ σ(V±)}
≤ sup{|(V± f±, f±)| : ‖ f±‖= 1, f ∈H±}

≤ ‖V±‖= ‖E±(V |H±)‖ ≤
1+ τη

2
‖V‖.

Hence, A is non-negative over C\Kr((−r,r)). As domA= domA0, we conclude from
Proposition 2.3 that ∞ is also not a critical point of A. This completes the proof of
Theorem 3.3. ut

Remark 3.10 If, in addition to the assumptions in Theorem 3.3, the point 0 is neither
an eigenvalue nor a singular critical point of the non-negative operator A0 := A+
γG−1, then the operator A is non-negative over the set C\Kr((−r,r)), where

r = γ
1+ τγ

2
‖G−1‖ (3.20)
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and

τγ :=
1
π

limsup
n→∞

∥∥∥∥∫ n

1/n

(
(A0 + it)−1 +(A0− it)−1)dt

∥∥∥∥ .
Indeed, under the assumptions of Theorem 3.3 for any ε > 0 the operator A+(γ +
ε)G−1 is selfadjoint in some Hilbert space, and thus the resolvent set of A0 is non-
empty as A+(γ + ε)G−1 and A0 differ just by a bounded operator. Therefore, A0 is
a non-negative operator in the Krein space (H , [· , ·]). Moreover, the point ∞ is not a
singular critical point of the operator A+(γ +ε)G−1, see Remark 3.4, and by Propo-
sition 2.3 ∞ is not a singular critical point of A0. Therefore, the operator A0 admits
a matrix representation as in (3.4) and the corresponding fundamental symmetry J̃
satisfies ‖J̃‖ ≤ τγ (see the proof of Theorem 3.3). Then by a similar reasoning as in
the proof of Theorem 3.3 we see that A is non-negative over C\Kr((−r,r)), where r
is as in (3.20).

4 Differential operators with indefinite weights

In this section we apply the results from the previous section to ordinary and partial
differential operators with indefinite weights.

4.1 Indefinite Sturm-Liouville operators

We consider Sturm-Liouville differential expressions of the form

L ( f )(x) = sgn(x)
(
− f ′′(x)+q(x) f (x)

)
, x ∈ R ,

with a real-valued potential q ∈ L∞(R) and the indefinite weight function sgn(·). The
corresponding differential operator in L2(R) is defined by

A f := L ( f ), domA := H2(R).

Here H2(R) stands for the usual L2-based second order Sobolov space. By (· , ·) and
‖ · ‖ we denote the usual scalar product and its corresponding norm in L2(R). Let J
be the operator of multiplication with the function sgn(x). This operator is obviously
selfadjoint and unitary in L2(R). Since the definite Sturm-Liouville operator

T f := JA f =− f ′′+q f , domT := H2(R),

is selfadjoint in L2(R), it follows that the indefinite Sturm Liouville operator A is
selfadjoint in the Krein space (L2(R), [· , ·]), where

[ f ,g] := (J f ,g) =
∫
R

f (x)g(x)sgn(x)dx, f ,g ∈ L2(R).

It is known that the operator A is non-negative over some neighborhood of ∞, but
no explicit bounds on the size of this neighborhood exist in the literature. We first
recall a theorem on the qualitative spectral properties of A which can be found in a
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slightly different form in [8,13,39]. For this, denote by m± the minimum of the es-
sential spectrum of the selfadjoint operator T± f± :=− f ′′±+q± f± in L2(R±) defined
on domT± := { f± ∈H2(R±) : f±(0) = 0}, where q± is the restriction of the function
q to R±. The quantities m+ and m− can be expressed in terms of the potential q; if,
e.g., q admits limits at ±∞, then

m± = lim
x→±∞

q(x).

Theorem 4.1 The essential spectrum of the indefinite Sturm-Liouville operator A
is the union of the essential spectra of T+ and −T−, the non-real spectrum of A is
bounded and consists of isolated eigenvalues with finite algebraic multiplicity. Fur-
thermore the following holds.

(i) If m+ >−m− then σ(A)\R is finite;
(ii) If m+ ≤−m− then σ(A)\R may only accumulate to points in [m+,−m−].

To the best of our knowledge explicit bounds on the non-real spectrum of indefi-
nite Sturm-Liouville operators in terms of the potential q do not exist in the literature.
One may expect that there is a relationship between the maximal magnitude of the
non-real eigenvalues of A and the lower bound of the selfadjoint operator T = JA,
see, e.g., the numerical examples in [12] and the conjecture in [41, Remark 4.4] and
[57, Remark 11.4.1]. The following theorem confirms this conjecture in the present
situation and provides explicit bounds on the non-real eigenvalues of A in terms of the
potential q; cf. also Remark 4.3. Here only the nontrivial case ess infq < 0 is treated
which corresponds to Theorem 3.1 (ii).

Theorem 4.2 Assume that ess infq < 0 holds. Then the indefinite Sturm-Liouville
operator A is non-negative over C\Kr((−d,d)), where

r := 5‖q‖∞, and d :=−5 ess inf
x∈R

q(x)> 0.

The non-real spectrum of A is contained in

Kr((−d,d))∩{λ ∈ C : | Imλ | ≤ 2‖q‖∞}.

Proof The proof of Theorem 4.2 is split into 4 parts. The first step is preparatory
and connects the present problem with the abstract setting in Theorem 3.1. In the
second part a Krein type resolvent formula is provided which is essential for the
main estimates in the last two parts of the proof.

1. Preparation: The operator A0,

A0 f :=−sgn(·) f ′′, domA0 = H2(R),

is selfadjoint and non-negative in the Krein space (L2(R), [·, ·]). Furthermore, we have
σ(A0) = R, and neither 0 nor ∞ is a singular critical point of A0, see [23]. Hence A0
satisfies the assumptions in Theorem 3.1. Define V as

V f := sgn(·)q f , domV = L2(R),
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so that V is a bounded selfadjoint operator in (L2(R), [·, ·]) with

minσ(JV ) = ess inf
x∈R

q(x) and ‖V‖= ‖q‖∞.

By Theorem 3.1 the operator
A = A0 +V

is non-negative over C\Kr((−d,d)), where

r =
1+ τ0

2
‖q‖∞, d =−1+ τ0

2
ess inf

x∈R
q(x),

and

τ0 =
1
π

limsup
n→∞

∥∥∥∥∫ n

1/n

(
(A0 + it)−1 +(A0− it)−1) dt

∥∥∥∥ .
Therefore, we have to show

τ0 ≤ 9 (4.1)

and
σ(A)\R ⊂ {λ ∈ C : | Imλ | ≤ 2‖q‖∞}. (4.2)

2. Krein’s resolvent formula: In the following the resolvent of A0 will be expressed
via a Krein type resolvent formula in terms of the resolvent of the diagonal operator
matrix

B0 :=
(

B+ 0
0 B−

)
in L2(R) = L2(R+)×L2(R−),

where B± f± := ∓ f ′′± are the selfadjoint Dirichlet operators in L2(R±) defined on
domB± = { f± ∈H2(R±) : f±(0) = 0}. Here and in the following we will denote the
restrictions of a function f defined on R to R± by f±. For λ = reit , r > 0, t ∈ [0,2π),
we set

√
λ :=

√
reit/2. For λ ∈ C\R define the function

fλ (x) :=

{
ei
√

λx, x > 0,
e−i
√
−λx, x < 0.

The function fλ is a solution of the equations ∓ f ′′± = λ f± in L2(R±). From
√

λ =

−
√

λ it follows that f
λ
= fλ holds for all λ ∈ C \R. Let us now prove that for all

f ∈ L2(R) and λ ∈ C\R we have

(A0−λ )−1 f = (B0−λ )−1 f −
[ f , f

λ
]

i(
√

λ +
√
−λ )

fλ . (4.3)

Since σ(A0) = R and B0 is selfadjoint in the Hilbert space L2(R) it follows that
the resolvents of A0 and B0 in (4.3) are defined for all λ ∈ C \R. In particular, for
λ ∈C\R there exists g ∈ domB0 such that f = (B0−λ )g holds. The right hand side
in (4.3) has the form

h := g−
[(B0−λ )g, f

λ
]

i(
√

λ +
√
−λ )

fλ (4.4)
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and we will show that the function h belongs to domA0 = H2(R). As g± and fλ ,± are
elements of H2(R±) the same is true for h±. Moreover, g and fλ are continuous at 0
and so is h. Hence it remains to check that h′ is continuous at 0. For this note first that

[(B0−λ )g, f
λ
] =

∫
∞

0
(−g′′+−λg+) f

λ ,+ dx−
∫ 0

−∞

(g′′−−λg−) f
λ ,− dx

and since f
λ ,± are solutions of ∓ f ′′± = λ f±, integration by parts yields

[(B0−λ )g, f
λ
] = g′+(0) f

λ ,+(0)−g+(0) f ′
λ ,+

(0)−g′−(0) f
λ ,−(0)+g−(0) f ′

λ ,−
(0).

As g ∈ domB0 we have g±(0) = 0 and together with f
λ ,±(0) = 1 we find

[(B0−λ )g, f
λ
] = g′+(0)−g′−(0).

Therefore we obtain for the derivatives h′± on R± of the function h from (4.4):

h′± = g′±−
g′+(0)−g′−(0)

i(
√

λ +
√
−λ )

f ′
λ ,±

and as f ′
λ ,+(0) = i

√
λ and f ′

λ ,−(0) =−i
√
−λ we conclude

h′+(0)−h′−(0) =
(
g′+(0)−g′−(0)

)
−

g′+(0)−g′−(0)

i(
√

λ +
√
−λ )

(
f ′
λ ,+(0)− f ′

λ ,−(0)
)
= 0,

that is, h′ is continuous at 0 and therefore h ∈ domA0.
Now a straightforward computation shows that (A0−λ )h = (B0−λ )g = f holds

and hence the resolvent of A0 is given by (4.3).

3. Proof of (4.1): Let f ∈ L2(R) and t > 0. Then (4.3) and
√

it +
√
−it = i

√
2t yield

[(A0 + it)−1 f +(A0− it)−1 f , f ] =[(B0 + it)−1 f +(B0− it)−1 f , f ]

+
2√
2t

Re([ f , fit ][ f−it , f ]).
(4.5)

With g(x) := | f (x)|+ | f (−x)|, x ∈ R+, we have

∣∣[ f , fit ][ f−it , f ]
∣∣ ≤ (∫ ∞

0
e−x
√

t/2g(x)dx
)2

and thus for n ∈ N∫ n

1/n

|[ f , fit ][ f−it , f ]|√
2t

dt ≤
∫ n

1/n

∫
∞

0

∫
∞

0
g(x)g(y)

e−(x+y)
√

t/2
√

2t
dydxdt

= 2
∫

∞

0

∫
∞

0

g(x)g(y)
x+ y

(
e−

x+y√
2n − e−

√
n(x+y)√

2

)
dydx

≤ 2
∫

∞

0

∫
∞

0

g(x)g(y)
x+ y

dydx.
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From Hilbert’s inequality (see, e.g., [29]) it follows that∫ n

1/n

|[ f , fit ][ f−it , f ]|√
2t

dt ≤ 2π‖g‖2
L2(R+) ≤ 4π‖ f‖2.

and therefore we have
1
π

∫ n

1/n

2√
2t

Re([ f , fit ][ f−it , f ])dt ≤ 8‖ f‖2. (4.6)

Denote by E0 (E±) the spectral function of the operator A0 (B±, respectively).
Moreover define

Jn,± :=
1
π

∫ n

1/n

(
(B±+ it)−1 +(B±− it)−1) dt,

and, in addition,

Jn,0 :=
1
π

∫ n

1/n

(
(A0 + it)−1 +(A0− it)−1) dt.

As ±B± is non-negative, it follows that Jn,± converges strongly to ±IL2(R±) when
n→ ∞, cf. Lemma 3.8. Moreover, by

(B±+ it)−1 +(B±− it)−1 = 2B±(B±+ it)−1(B±− it)−1

the sequence ±Jn,± is an increasing sequence of non-negative selfadjoint operators
in L2(R±). This implies

1
π

∫ n

1/n
[(B0 + it)−1 f +(B0− it)−1 f , f ]dt = (Jn,+ f+, f+)− (Jn,− f−, f−)

≤ ‖ f+‖2
L2(R+)+‖ f−‖2

L2(R−) = ‖ f‖2.

Now, from (4.5) and (4.6) it follows that

[Jn,0 f , f ] ≤ ‖ f‖2 +8‖ f‖2 = 9‖ f‖2, f ∈ L2(R).

Hence, as J = sgn(·) is unitary in L2(R), we finally obtain ‖Jn,0‖ = ‖JJn,0‖ ≤ 9 and
thus τ0 = limsupn→∞ ‖Jn,0‖ ≤ 9. That is, (4.1) holds.

4. Proof of (4.2): Let λ ∈ C+. Using (4.3), for f ∈ L2(R) we obtain

‖(A0−λ )−1 f‖ ≤ ‖(B0−λ )−1 f‖+
|[ f , f

λ
]|‖ fλ‖

|
√

λ +
√
−λ |

≤ ‖ f‖
| Imλ |

+
‖ fλ‖2‖ f‖√

2|λ |
.

Here we have used the identity f
λ
= fλ . Let r > 0 and t ∈ (0,π) such that λ = reit .

Then

‖ fλ‖2 =
∫

∞

0

∣∣∣ei
√

reit/2x
∣∣∣2 dx+

∫ 0

−∞

∣∣∣e−i
√

rei(t+π)/2x
∣∣∣2 dx

=
∫

∞

0
e−2
√

r sin(t/2)x dx+
∫ 0

−∞

e2
√

r cos(t/2)x dx

=
cos(t/2)+ sin(t/2)√

r sin(t)
≤

√
2√

r Im(λ/r)
=

√
2|λ |
| Imλ |

.
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Therefore,

‖(A0−λ )−1‖ ≤ 2
| Imλ |

.

The same estimate holds for λ ∈ C−. Now, assume that | Imλ | > 2‖q‖∞ = 2‖V‖.
Then ‖V (A0−λ )−1‖< 1, and hence

A−λ = A0−λ +V =
(
I +V (A0−λ )−1)(A0−λ )

is boundedly invertible, which proves (4.2). ut

Remark 4.3 We mention that the abstract perturbation results from Section 3 can also
be applied to more general indefinite Sturm-Liouville expressions of the form

1
w

(
− d

dx
p

d
dx

+q
)
,

where |w| 6= 0 a.e. is a real-valued, locally integrable weight function which changes
its sign, p > 0 a.e., and p−1 and q are real and locally integrable; cf. the Introduction.
If in that case the operator T associated to the corresponding definite Sturm-Liouville
expression is selfadjoint and bounded from below Theorem 3.3 may be applied and
yields (less explicit) bounds on the nonreal spectrum in terms of the norm of an
operator integral; cf. also Theorem 4.4 in the next subsection.

4.2 Second order elliptic operators

Let Ω ⊂ Rn be a domain and let ` be the ”formally symmetric” uniformly elliptic
second order differential expression

`( f )(x) :=−
n

∑
j,k=1

(
∂

∂x j
a jk

∂ f
∂xk

)
(x)+a(x) f (x), x ∈Ω ,

with bounded coefficients a jk ∈C∞(Ω) satisfying a jk(x) = ak j(x) for all x ∈ Ω and
j,k = 1, . . . ,n, the function a ∈ L∞(Ω) is real valued and

n

∑
j,k=1

a jk(x)ξ jξk ≥C
n

∑
k=1

ξ
2
k

holds for some C > 0, all ξ = (ξ1, . . . ,ξn)
> ∈ Rn and x ∈ Ω . With the differential

expression ` we associate the elliptic differential operator

T f := `( f ), domT =
{

f ∈ H1
0 (Ω) : `( f ) ∈ L2(Ω)

}
,

where H1
0 (Ω) stands for the closure of C∞

0 (Ω) in the Sobolev space H1(Ω). It is well
known that T is an unbounded selfadjoint operator in the Hilbert space (L2(Ω),(·, ·))
with spectrum semibounded from below by ess inf a; cf. [24].

Let w be a real valued function such that w,w−1 ∈ L∞(Ω) and each of the sets

Ω+ :=
{

x ∈Ω : w(x)> 0
}

and Ω− :=
{

x ∈Ω : w(x)< 0
}
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has positive Lebesgue measure. We define a second order elliptic differential expres-
sion L with the indefinite weight w by

L ( f )(x) :=
1

w(x)
`( f )(x), x ∈Ω .

The multiplication operator Gw f = w f , f ∈ L2(Ω), is an isomorphism in L2(Ω) with
inverse G−1

w f = w−1 f , f ∈ L2(Ω), and gives rise to the Krein space inner product

[ f ,g] := (Gw f ,g) =
∫

Ω

f (x)g(x)w(x)dx, f ,g ∈ L2(Ω).

The differential operator associated with L is defined as

A f = L ( f ), domA =
{

f ∈ H1
0 (Ω) : L ( f ) ∈ L2(Ω)

}
. (4.7)

Since for f ∈ H1
0 (Ω) we have `( f ) ∈ L2(Ω) if and only if L ( f ) ∈ L2(Ω) it follows

that domA = domT and A = G−1
w T hold. Hence A is a selfadjoint operator in the

Krein space (L2(Ω), [·, ·]).
In order to illustrate Theorem 3.3 for the indefinite elliptic operator A we assume

from now on that
minσess(T )≤ 0

holds. This also implies that the domain Ω is unbounded as otherwise σess(T ) = ∅.
A discussion of the cases σess(T ) = ∅ and minσess(T ) > 0 is contained in [9], see
also [26,50]. Fix some η > 0 such that −η < minσ(T ) and define the spaces Hs,
s ∈ [0,2], as the domains of the s

2 -th powers of the uniformly positive operator T +η

in L2(Ω),
Hs := dom

(
(T +η)

s
2
)
, s ∈ [0,2].

Note that H = H0, domT = H2 and the form domain of T is H1. The spaces Hs
become Hilbert spaces when they are equipped with the usual inner products, the
induced topologies do not depend on the particular choice of η ; cf. [40].

The following theorem is a direct consequence of Theorem 3.3 and the consider-
ations in [21, Theorem 2.1 (iii)] and [19]; cf. [9, Theorem 4.4].

Theorem 4.4 Let A be the indefinite elliptic operator in (4.7), η > 0 as above, and
assume that there exists a bounded uniformly positive operator W in (L2(Ω), [·, ·])
such that WHs ⊂ Hs holds for some s ∈ (0,2]. Then A is non-negative over C \
Kr((−r,r)), where

r = η
1+ τη

2
‖w−1‖∞ and τη :=

1
π

limsup
n→∞

∥∥∥∥∫ n

−n
(A+ηG−1

w − it)−1 dt
∥∥∥∥ < ∞.

Moreover, ∞ is not a singular critical point of A.

In the next corollary the special case Ω =Rn is treated; cf. [9, Theorem 5.4]. From
now on we assume that Ω = Rn and Ω± = {x ∈ Rn : ±w(x) > 0} consist of finitely
many connected components with compact smooth boundaries, and that the coef-
ficients a jk ∈ C∞(Rn) and their derivatives are uniformly continuous and bounded.
Note that either Ω+ or Ω− is bounded.
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Corollary 4.5 Suppose that for some s ∈ (0, 1
2 ) the Sobolev spaces Hs(Ω±) are in-

variant under multiplication with w �Ω± . Then the indefinite elliptic operator A is
non-negative over C\Kr((−r,r)), where r is as in in Theorem 4.4. Moreover, ∞ is not
a singular critical point of A.

A sufficient criterion for the invariance of Hs(Ω±) in the above corollary can be
deduced from [28, Theorem 1.4.1.1].

Corollary 4.6 Suppose that the weight function w�Ω± belongs to some Hölder space
C0,α(Ω±), α ∈ (0, 1

2 ), and that outside of some bounded set w is equal to a constant.
Then the claim in Corollary 4.5 holds.

Proof of Corollary 4.5 The assumptions on the coefficients a jk imply

domA = domT = H2(Rn) and Hs = Hs(Rn), s ∈ [0,2],

by elliptic regularity and interpolation. Since the Sobolev spaces Hs(Ω±) are as-
sumed to be invariant under multiplication with the functions w �Ω± for some s ∈
(0, 1

2 ) it follows from [9, Lemma 5.1] that also Hs(Rn) is invariant under multipli-
cation with w, that is, GwHs ⊂Hs holds. Furthermore, Gw is uniformly positive in
(L2(Ω), [·, ·]) since

[Gw f , f ] = (G2
w f , f )≥ ess infw2‖ f‖2

and w−1 ∈ L∞(Rn). Now the assertion follows from Theorem 4.4. ut
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23. B. Ćurgus and B. Najman, The operator sgn(x) d2

dx2 is similar to a selfadjoint operator in L2(R), Proc.
Amer. Math. Soc., 123, 1125–1128 (1995)

24. D.E. Edmunds and W.D. Evans, Spectral theory and differential operators, Oxford Mathematical
Monographs, Oxford University Press, New York, 1987.

25. M. Faierman, Elliptic problems involving an indefinite weight, Trans. Amer. Math. Soc., 320, 253–
279 (1990)

26. M. Faierman, Nonselfadjoint elliptic problems involving an indefinite weight, Comm. Partial Differ-
ential Equations, 15, 939–982 (1990)

27. M. Faierman and H. Langer, Elliptic problems involving an indefinite weight function, Oper. Theory
Adv. Appl., 87, 105–124 (1996)

28. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24,
Pitman, Boston, MA, 1985.
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56. K. Veselić, On spectral properties of a class of J-selfadjoint operators I, Glas. Math., III. Ser., 7,
229–248 (1972)

57. A. Zettl, Sturm-Liouville theory, AMS, Providence, RI, 2005.


