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An L2 model for selfadjoint elliptic differential operators with constant
coefficients on bounded domains
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The selfadjoint realization of a second order elliptic differential expression with Dirichlet boundary conditions is shown to be
unitarily equivalent to the maximal multiplication operator with the independent variable in an explicit L2 model space.
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1 Introduction

It is well known that every selfadjoint operator in a Hilbert space is unitarily equivalent to a multiplication operator in an
abstract L2 space. For the case of a selfadjoint Sturm–Liouville differential operator on (0,∞), where, e.g.,∞ is in the limit
point case and 0 is a regular endpoint, the integral representation of the classical Titchmarsh–Weyl m-function gives rise to
a multiplication operator model in a more explicit L2 space; cf. [4, 10, 13, 14]. The main objective of the present note is to
construct an L2 model space in a similar way for the Dirichlet realization A of a second order elliptic differential expression
with constant coefficients on a bounded domain Ω ⊂ Rn, n > 1. It will be shown that the maximal multiplication operator in
this model space is unitarily equivalent to A. L2 models for other selfadjoint realizations can be constructed analogously.

2 An L2 model for a selfadjoint elliptic operator with Dirichlet boundary conditions

Let Ω ⊂ Rn, n > 1, be a bounded domain with a smooth boundary ∂Ω and denote byHs(Ω) andHs(∂Ω), s ∈ R, the Sobolev
spaces of order s on Ω and ∂Ω, respectively. The trace of u ∈ Hs(Ω), s > 1/2, on ∂Ω is denoted by u|∂Ω and belongs to the
space Hs−1/2(∂Ω). The inner product (·, ·) on L2(∂Ω) can be extended by continuity to H1/2(∂Ω)×H−1/2(∂Ω). Let ι± be
isomorphisms from H±1/2(∂Ω) onto L2(∂Ω) with (x, y)1/2×−1/2 = (ι+x, ι−y) for all x ∈ H1/2(∂Ω) and y ∈ H−1/2(∂Ω).
IfH,K are Hilbert spaces, the space of bounded linear operators fromH into K is denoted by L(H,K), or L(H) ifH = K.

Let ajk ∈ C, j, k = 1, . . . , n, suppose that the n × n-matrix (ajk)nj,k=1 is positive and let c > 0. In the following we
consider the elliptic differential expression Λ = −

∑n
j,k=1 ajk∂j∂k + c. It is well known that the operator

Au = Λu = −
n∑

j,k=1

ajk∂j∂ku+ cu, domA =
{
u ∈ H2(Ω) : u|∂Ω = 0

}
, (1)

is a positive selfadjoint operator in L2(Ω) with compact resolvent, see, e.g., [6]. Besides the selfadjoint operator A we shall
make use of the so-called minimal operator Aminu = Λu, domAmin = {u ∈ H2(Ω) : u|∂Ω = ∂Λ

ν u|∂Ω = 0}, where ∂Λ
ν u|∂Ω

denotes the conormal derivative of u, ∂Λ
ν u =

∑n
j,k=1 ajkνj∂ku and ν = (ν1, . . . , νn) is the normal vector pointing outwards.

Clearly, the minimal operator is a restriction of A and hence symmetric. Furthermore, domAmin is dense in L2(Ω) and Amin

is a closed operator with infinite deficiency indices. The adjoint A∗min is the maximal operator Amax associated to Λ which is
defined on domAmax = {u ∈ L2(Ω) : Λu ∈ L2(Ω)}. According to [9, Theorem 2.1] the trace map u 7→ u|∂Ω, u ∈ Hs(Ω),
s > 1/2, can be extended by continuity to a surjective mapping from domAmax onto H−1/2(∂Ω), where domAmax is
equipped with the graph norm. As A is positive and domAmax = domA+̇ kerAmax holds, it follows that for y ∈ L2(∂Ω)
there is a unique function u0(y) ∈ kerAmax such that y = ι−u0(y)|∂Ω.

Theorem 2.1 For λ from the resolvent set ρ(A) of A and y ∈ L2(∂Ω) we define

M(λ)y := −λ ι+
(
∂Λ
ν (A− λ)−1u0(y)

)
|∂Ω.

Then M(λ) is a bounded operator in L2(∂Ω), and the function M : ρ(A) → L(L2(∂Ω)), λ 7→ M(λ) is an operator-valued
Nevanlinna function, which admits an integral representation

M(λ) = α+
∫

R

( 1
t− λ

− t

1 + t2

)
dΣ(t), (2)

where α ∈ L(L2(∂Ω)) is a selfadjoint operator and Σ : R→ L(L2(∂Ω)) is a nondecreasing operator function which satisfies∫
R(1 + t2)−1dΣ(t) ∈ L(L2(∂Ω)).

The proof of Theorem 2.1 will be published elsewhere. It makes use of the notion of boundary triplets and Weyl functions
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associated to symmetric operators from [5, 7], see also [1, 3, 8] for the elliptic case.
Let Σ : R → L(L2(∂Ω)) be the nondecreasing operator function from the integral representation (2). The space

L2
Σ(L2(∂Ω)) is defined as in [2, 7, 12]. Very roughly speaking it consists of L2(∂Ω)-valued functions on R which are square-

integrable with respect to the measure dΣ. The next theorem is the main result in this note.
Theorem 2.2 The Dirichlet operator A in (1) is unitarily equivalent to the maximal multiplication operator with the

independent variable in L2
Σ(L2(∂Ω)).

P r o o f. The proof of Theorem 2.2 consists of two steps. In the first step it will be shown that the span of the defect spaces
of the minimal operator Amin is dense in L2(Ω). In the second step a unitary operator U : L2(Ω) → L2

Σ(L2(∂Ω)) will be
constructed, which fulfills A = U∗AΣU , where AΣ is the maximal multiplication operator with the independent variable in
the model space L2

Σ(L2(∂Ω)).
Step 1. We claim that Amin has no eigenvalues. In fact, assume that u ∈ domAmin is a solution of Aminu = λu for some

λ ∈ R and define the function ũ to be the extension of u by 0 on Rn\Ω. Then u|∂Ω = ∂Λ
ν u|∂Ω = 0 and the equivalence of

the graph norm induced by Amin to the H2 norm imply ũ ∈ H2(Rn). It follows that ũ satisfies the equation Λũ = λũ on Rn.
Hence ũ is an eigenfunction of the selfadjoint operator Ã associated to Λ in L2(Rn) defined on dom Ã = H2(Rn). But Ã
has no eigenvalues (this can be seen, for example, with the help of the Fourier transform), and therefore ũ = 0. This implies
u = 0 and hence Amin has no eigenvalues.

Since the spectrum of the selfadjoint operator A in (1) consists only of eigenvalues it follows that Amin does not contain a
nontrivial selfadjoint part, i.e., there is no nontrivial subspace H ⊂ L2(Ω) which is invariant for the operator Amin such that
the restriction Amin � (domAmin ∩H) is selfadjoint inH. It is well known (see, e.g., [11]) that this is equivalent to

L2(Ω) = span
{

ker(A∗min − λ) : λ ∈ C\R
}

= span
{

ker(Amax − λ) : λ ∈ C\R
}
. (3)

Step 2. Let AΣ be the maximal multiplication operator with the independent variable in L2
Σ(L2(∂Ω)) and denote the

restriction of AΣ onto the dense subspace {f ∈ domAΣ :
∫

R fdΣ = 0} by SΣ. For further details and the precise definition
of domSΣ we refer to [12, §7]. For λ ∈ C\R we define γ(λ) ∈ L(L2(∂Ω), L2(Ω)) and γ̃(λ) ∈ L(L2(∂Ω), L2

Σ(L2(∂Ω))) by

γ(λ)y = (I + λ(A− λ)−1)u0(y) and γ̃(λ)y = (ṫ− λ)−1y, y ∈ L2(∂Ω),

where u0(y) is the unique function in kerAmax such that ι−u0(y)|∂Ω = y. Then we have ran γ(λ) = ker(Amax − λ) and
ran γ̃(λ) = ker(S∗Σ − λ), λ ∈ C\R. Moreover, the equation

γ(µ)∗γ(λ) =
M(λ)−M(µ)∗

λ− µ
= γ̃(µ)∗γ̃(λ), λ, µ ∈ C\R, (4)

holds, and γ(λ) = (I + (λ− i)(A− λ)−1)γ(i) and γ̃(λ) = (I + (λ− i)(AΣ − λ)−1)γ̃(i) for all λ ∈ C\R. It follows from
(3) and (4) that

V

( l∑
j=0

γ(λj)yj

)
=

l∑
j=0

γ̃(λj)yj , domV =
{ l∑
j=0

γ(λj)yj : λj ∈ C\R, yj ∈ L2(∂Ω), j = 0, . . . , l, l ∈ N
}
,

is a well-defined isometric operator with dense domain in L2(Ω). As a consequence of [12, Proposition 7.9 (i)] ranV is dense
in L2

Σ(L2(∂Ω)) and hence V admits a unique unitary extension U : L2(Ω) → L2
Σ(L2(∂Ω)). For λ ∈ C\R the equation

Uγ(λ) = γ̃(λ) holds by definition of U and for λ 6= i we obtain

U(A− λ)−1γ(i) = U
1

λ− i
(
γ(λ)− γ(i)

)
=

1
λ− i

(
γ̃(λ)− γ̃(i)

)
= (AΣ − λ)−1γ̃(i) = (AΣ − λ)−1Uγ(i).

This implies AΣUu = UAu for all u ∈ domA, that is, A and AΣ are unitarily equivalent.
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