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A characterization of the eigenvalues of Schrödinger operators with
Dirichlet and Neumann boundary conditions
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The eigenvalues of the selfadjoint Schrödinger operators on a bounded domain with Dirichlet and Neumann boundary condi-
tions are characterized by the singularities of an associated Dirichlet-to-Neumann map and its inverse, respectively.
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1 Introduction

A classical result from Sturm-Liouville theory states that the spectra of ordinary selfadjoint differential operators with cer-
tain boundary conditions can be completely described by the structure of singularities of an associated analytic object, the
Titchmarsh-Weyl coefficient, see, e.g., [4, 5, 13]. For example, the isolated eigenvalues of the selfadjoint realization of the ex-
pression −f ′′ + V f in L2(0,∞) with a Dirichlet boundary condition at 0, where the potential V is real-valued and bounded,
are exactly the poles of the mapping m(·), where m(λ)fλ(0) = f ′λ(0) holds for all solutions fλ ∈ L2(0,∞) of the equation
−f ′′λ + V fλ = λfλ and all nonreal λ. The aim of this note is to show that this result can be translated into Schrödinger
operators on a bounded domain Ω ⊆ Rn, n ≥ 2. The spectra (which in this case are discrete) of the selfadjoint realizations of
the differential expression−∆u+V u with Dirichlet and Neumann boundary conditions will be characterized by an appropri-
ate analogue of the Titchmarsh-Weyl coefficient, the Dirichlet-to-Neumann map, and its inverse, respectively. The result can
be extended to larger classes of selfadjoint Schrödinger operators with different, nonlocal boundary conditions. Other recent
approaches to spectral problems for partial differential equations using methods from operator and extension theory can be
found in, e.g., [1, 3, 8, 11].

2 A characterization of the eigenvalues of the Dirichlet and Neumann operators

Let Ω be a bounded C∞-domain in Rn, n ≥ 2. Denote by Hs(Ω) the Sobolev space of order s > 0 on Ω, by u|∂Ω the trace
of a Sobolev function u at the boundary ∂Ω of Ω, and by ∂νu|∂Ω the Neumann trace of u, that is, the derivative of u in the
direction of the outer normal vector ν at ∂Ω. Consider the Schrödinger differential expression L = −∆ + V in Ω, where
V ∈ L∞(Ω) is a real-valued, bounded potential. It is well known that the Dirichlet operator

ADu = Lu, domAD =
{
u ∈ H2(Ω) : u|∂Ω = 0

}
and the Neumann operator

ANu = Lu, domAN =
{
u ∈ H2(Ω) : ∂νu|∂Ω = 0

}
associated with L in the Hilbert space L2(Ω) are selfadjoint and have discrete spectra, see, e.g., [7, 10].

The central objects which will be used to characterize the spectra of the operators AD and AN will be introduced in the
following definition. Here for each fixed λ ∈ C, Nλ denotes the space of solutions uλ ∈ H2(Ω) of the equation Luλ = λuλ.

Definition 2.1 For λ ∈ ρ(AD) the linear mapping

MD(λ) : H3/2(∂Ω) → H1/2(∂Ω), uλ|∂Ω 7→ ∂νuλ|∂Ω, uλ ∈ Nλ,

is called Dirichlet-to-Neumann map associated with L. For λ ∈ ρ(AN ) the linear mapping

MN (λ) : H1/2(∂Ω) → H3/2(∂Ω), ∂νuλ|∂Ω 7→ uλ|∂Ω, uλ ∈ Nλ,

is called Neumann-to-Dirichlet map associated with L.
It follows from classical trace theorems that the mappings MD(λ) and MN (λ) are well-defined. Moreover, MD(·) and

MN (·) are strongly holomorphic, see [2], that is, MD(·)ϕ and MN (·)ψ are holomorphic on ρ(AD) and ρ(AN ), respectively,
for all ϕ ∈ H3/2(∂Ω) and ψ ∈ H1/2(∂Ω), respectively. For the following we agree to say that the mapping MD(·) has a pole
in λ ∈ R if there exists ϕ ∈ H3/2(∂Ω) such that MD(·)ϕ has a pole in λ. Analogously for MN (·).

It is obvious that each pole of MD(·) is an eigenvalue of AD and that each pole of MN (·) is an eigenvalue of AN . The
main objective of the present note is to show that also the reverse inclusions hold.
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Theorem 2.2 The eigenvalues of the Dirichlet operator AD coincide with the poles of the Dirichlet-to-Neumann map
ρ(AD) 3 λ 7→ MD(λ). The eigenvalues of the Neumann operator AN coincide with the poles of the Neumann-to-Dirichlet
map ρ(AN ) 3 λ 7→MN (λ).

P r o o f. Step 1. We will first show an identity which connects the Dirichlet-to-Neumann map with the resolvent of AD.
In the following we will make use of the Poisson operator γD(λ) : H3/2(∂Ω) → Nλ, uλ|∂Ω 7→ uλ, uλ ∈ Nλ, which is
well-defined for all λ ∈ ρ(AD). Let λ, µ ∈ ρ(AD). Take gλ ∈ Nλ with gλ|∂Ω = ϕ and hµ ∈ Nµ with hµ|∂Ω = ψ. By
Green’s identity

(Lf, g)L2(Ω) − (f,Lg)L2(Ω) = (f |∂Ω, ∂νg|∂Ω)L2(∂Ω) − (∂νf |∂Ω, g|∂Ω)L2(∂Ω), f, g ∈ H2(Ω),

see, e.g., [10], we obtain

(λ− µ̄)(γD(λ)ϕ, γD(µ)ψ)L2(Ω) = (ϕ,MD(µ)ψ)L2(∂Ω) − (MD(λ)ϕ,ψ)L2(∂Ω) ,

which implies (MD(µ̄)ϕ,ψ)L2(∂Ω) = (ϕ,MD(µ)ψ)L2(∂Ω) and leads to the equation

(λ− µ̄)γD(µ)∗γD(λ)ϕ = MD(µ̄)ϕ−MD(λ)ϕ, λ, µ ∈ ρ(AD), ϕ ∈ H3/2(∂Ω).

Here γD(µ)∗ has to be understood as the adjoint of γD(µ) regarded as a densely defined operator from L2(∂Ω) to L2(Ω).
Using this identity and the equation

γD(λ)ϕ =
(
I + (λ− η)(AD − λ)−1

)
γD(η)ϕ, λ, η ∈ ρ(AD), ϕ ∈ H3/2(∂Ω),

which can be verified easily by Green’s identity, we compute for λ, µ, η ∈ ρ(AD), η 6= µ̄, λ 6= η, λ 6= µ̄, and ϕ ∈ H3/2(∂Ω)

γD(µ)∗(AD − λ)−1γD(η)ϕ =
1

λ− η

MD(µ̄)ϕ−MD(λ)ϕ
λ− µ̄

− 1
λ− η

MD(µ̄)ϕ−MD(η)ϕ
η − µ̄

=
MD(λ)ϕ

(η − λ)(λ− µ̄)
− MD(µ̄)ϕ

(λ− µ̄)(η − µ̄)
+

MD(η)ϕ
(λ− η)(η − µ̄)

(1)

in the same way as in [6].
Step 2. In this step we will show that the span of the spaces Nλ = ran γD(λ), λ ∈ C \ R, is dense in L2(Ω). For this

consider the closed, symmetric restriction S of AD defined by S = L ¹ {u ∈ H2(Ω) : u|∂Ω = ∂νu|∂Ω = 0}. As is known,
the adjoint of S is given by the maximal operator S∗ = L ¹ {u ∈ L2(Ω) : Lu ∈ L2(Ω)}. Since Nλ is dense in the defect
space ker(S∗ − λ), it suffices to show that span{ker(S∗ − λ) : λ ∈ C \ R} is dense in L2(Ω). By [9] and the fact that AD

is a selfadjoint extension of S with discrete spectrum, it is sufficient to show that the operator S has no eigenvalues. Assume
there exists an eigenvalue λ ∈ R of S with corresponding eigenfunction u ∈ domS. Extend u by zero to ũ ∈ H2(Rn) and
extend V to a real-valued function Ṽ ∈ L∞(Rn). Then −∆ũ + Ṽ ũ = λũ implies the existence of a constant M such that
|∆ũ| ≤ M |ũ| holds. By known unique continuation theorems, see, e.g., [12, Theorem XIII.63], it follows that ũ is trivial,
which is a contradiction to the choice of u as an eigenfunction.

Step 3. In this last step we come back to the statement of the theorem. For this, choose µ, η in (1) as non-real numbers.
Assume that λ0 is an eigenvalue of AD. Then there exist g, h ∈ L2(Ω) such that ((AD − ·)−1g, h)L2(Ω) has a pole at λ0.
Since by step 2 D = span{ran γD(µ) : µ ∈ C \ R} is dense in L2(Ω), we can assume g, h ∈ D. In particular, there exist
µ, η ∈ C \ R and ϕ,ψ ∈ H3/2(∂Ω) such that ((AD − ·)−1γD(η)ϕ, γD(µ)ψ)L2(Ω) has a pole at λ0. Then (1) implies that
(MD(·)ϕ,ψ)L2(∂Ω) and hence also MD(·) has a pole at λ0. This completes the proof of the statement on the eigenvalues of
the Dirichlet operator.

The statement on the eigenvalues of the Neumann operator follows in the same way with an analogue of (1), where
ϕ ∈ H3/2(∂Ω), γD(·), AD, and MD(·) are replaced by ϕ ∈ H1/2(∂Ω), γN (·), AN , and MN (·), respectively, and γN (·) is
defined by γN (λ) : H1/2(∂Ω) → Nλ, ∂νuλ|∂Ω 7→ uλ, λ ∈ ρ(AN ).
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