
Advances in Mathematics 285 (2015) 1301–1338
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Spectral analysis of selfadjoint elliptic differential 
operators, Dirichlet-to-Neumann maps, and 

abstract Weyl functions

Jussi Behrndt ∗, Jonathan Rohleder
Technische Universität Graz, Institut für Numerische Mathematik, Steyrergasse 30, 
8010 Graz, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 June 2014
Received in revised form 13 July 
2015
Accepted 23 August 2015
Available online xxxx
Communicated by N.G. Makarov

Keywords:
Elliptic differential operator
Dirichlet-to-Neumann map
Spectral analysis
Weyl function
Boundary triple
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operator in L2(Rn) is described in terms of the limiting 
behavior of Dirichlet-to-Neumann maps, which arise in a 
multi-dimensional Glazman decomposition and correspond to 
an interior and an exterior boundary value problem. This leads 
to PDE analogs of renowned facts in spectral theory of ODEs. 
The main results in this paper are first derived in the more 
abstract context of extension theory of symmetric operators 
and corresponding Weyl functions, and are applied to the PDE 
setting afterwards.
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1. Introduction

The Titchmarsh–Weyl function is an indispensable tool in direct and inverse spectral 
theory of ordinary differential operators and more general systems of ordinary differen-
tial equations; see the classical monographs [15,60] and [9,16,28–30,37,41,47,56,57] for a 
small selection of more recent contributions. For a singular second order Sturm–Liouville 
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differential operator of the form L+ = − d2

dx2 + q+ on R+ with a real-valued, bounded 
potential q+ the Titchmarsh–Weyl function m+ can be defined as

m+(λ) = f ′
λ(0)
fλ(0) , λ ∈ C \ R, (1.1)

where fλ is a square-integrable solution of L+f = λf on R+; cf. [60,61]. The function 
m+ : C \ R → C belongs to the class of Nevanlinna (or Riesz–Herglotz) functions and 
it is a celebrated fact that it reflects the complete spectral properties of the selfadjoint 
realizations of L+ in L2(R+). E.g. the eigenvalues of the Dirichlet realization AD are 
precisely those λ ∈ R, where limη↘0 iηm+(λ + iη) �= 0, the isolated eigenvalues among 
them coincide with the poles of m+, and the absolutely continuous spectrum of AD

(roughly speaking) consists of all λ with the property 0 < Imm+(λ + i0) < +∞.
If L = − d2

dx2 + q is a singular Sturm–Liouville expression on R with q real-valued 
and bounded, it is most natural to use decomposition methods of Glazman type for 
the analysis of the corresponding selfadjoint operator in L2(R); cf. [31]. More precisely, 
the restriction of L to R+ gives rise to the Titchmarsh–Weyl function m+ in (1.1), and 
similarly a Titchmarsh–Weyl function m− associated to the restriction of L to R− is 
defined. In that case usually the functions

m(λ) = −
(
m+(λ) + m−(λ)

)−1 and m̃(λ) =
(
−m+(λ) 1

1 m−(λ)−1

)−1

(1.2)

are employed for the description of the spectrum. Whereas the scalar function m seems to 
be more convenient it will in general not contain the complete spectral data, a drawback 
that is overcome when using the 2 × 2-matrix function m̃. Some of these observations 
were already made in [39,60], similar ideas can also be found in [36,38,42] for Hamiltonian 
systems, and more recently in an abstract operator theoretical framework in [17,19], see 
also [6].

One of the main objectives of this paper is to extend the classical spectral analysis 
of ordinary differential operators via the Titchmarsh–Weyl functions in (1.2) to the 
multidimensional setting. For this consider the second order partial differential expression

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a (1.3)

with smooth, bounded coefficients ajk, aj : Rn → C and a : Rn → R bounded, and as-
sume that L is formally symmetric and uniformly elliptic on Rn. Let A be the selfadjoint 
operator associated to (1.3) in L2(Rn). Our main goal is to describe the spectral data 
of A, that is, isolated and embedded eigenvalues, continuous, absolutely continuous and 
singular continuous spectral points, in terms of the limiting behavior of appropriate mul-
tidimensional counterparts of the functions in (1.2). Note first that the multidimensional 
analogue of the Titchmarsh–Weyl function (1.1) is the Dirichlet-to-Neumann map, and 
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in order to define suitable analogues of the functions in (1.2) we proceed as follows: Split 
R

n into a bounded domain Ωi with smooth boundary Σ and its exterior Ωe = R
n \ Ωi. 

For λ ∈ C \ R the Dirichlet-to-Neumann maps for L in Ωi and Ωe, respectively, on the 
compact interface Σ are given by

Λi(λ)uλ,i|Σ := ∂uλ,i

∂νLi

∣∣∣
Σ

and Λe(λ)uλ,e|Σ := ∂uλ,e

∂νLe

∣∣∣
Σ
, λ ∈ C \ R,

where uλ,j ∈ H2(Ωj) solve Luλ,j = λuλ,j , j = i, e, and uλ,j |Σ and ∂uλ,j

∂νLj
|Σ denote 

the trace and the conormal derivative, respectively; cf. Section 4.1 for further details. 
Both λ �→ Λi(λ) and λ �→ Λe(λ) are viewed as functions whose values are operators in 
L2(Σ) defined on the dense subspace H3/2(Σ). The multidimensional counterparts of the 
functions in (1.2) are

M(λ) =
(
Λi(λ) + Λe(λ)

)−1 and M̃(λ) =
(

Λi(λ) 1
1 −Λe(λ)−1

)−1

(1.4)

(the differences in the signs are due to the definition of the conormal derivative, where 
the normals of Ωi and Ωe point into opposite directions). Observe that, in contrast to the 
one-dimensional situation described above, Rn is split into a bounded domain and an 
unbounded domain. This yields that Λi is meromorphic, which in turn essentially allows 
us to give an almost complete characterization of the spectrum of A with the function M
in (1.4) in Theorem 4.1; the only possible spectral points that cannot be detected with 
M are eigenvalues of A with vanishing traces on Σ, and possible accumulation points 
of such eigenvalues. A complete picture of the spectrum of A in terms of the limiting 
behavior of Dirichlet-to-Neumann maps is obtained with help of the 2 ×2-block operator 
matrix function M̃ in (1.4) in Theorem 4.7.

We mention that in connection with Schrödinger operators in R3 the function M in 
(1.4) was already used in [2] for the extension of a classical convergence property of the 
Titchmarsh–Weyl function to the three-dimensional case, see also [5,55]. We also remark 
that for Schrödinger operators on exterior domains with C2-boundaries the connection 
of the spectrum to the limits of the Dirichlet-to-Neumann map was already investigated 
by the authors in [8]. Furthermore, we refer to [11,13,25–27,33,34,48,52–54] for recent 
related work on spectral problems for elliptic differential operators.

In this paper our approach to Titchmarsh–Weyl functions and their connection to 
spectral properties of corresponding selfadjoint differential operators is more abstract 
and of general nature, based on the concepts of (quasi) boundary triples and their Weyl 
functions. Recall first that for a symmetric operator S in a Hilbert space H a boundary 
triple {G, Γ0, Γ1} consists of a “boundary space” G and two linear mappings Γ0, Γ1 :
domS∗ → G, which satisfy an abstract Green identity

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G , f, g ∈ domS∗, (1.5)
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and a maximality condition. The corresponding Weyl function M is defined as

M(λ)Γ0fλ = Γ1fλ, λ ∈ C \ R, (1.6)

where fλ ∈ H solves the equation S∗f = λf ; the values M(λ) of the Weyl function M are 
bounded operators in the Hilbert space G. The example of the Sturm–Liouville expression 
L+ in the beginning of the introduction fits into this scheme: There H = L2(R+), S is 
the minimal operator associated with the differential expression L+ in L2(R+), G = C, 
and the mappings Γ0, Γ1 are given by

Γ0f = f(0) and Γ1f = f ′(0), f ∈ domS∗,

where S∗ is the maximal operator associated with L+ in L2(R+). Then the corresponding 
Weyl function is m+ in (1.1), the selfadjoint Dirichlet operator AD coincides with the 
restriction S∗ � ker Γ0, and the spectrum can be described with the help of the limits of 
the Weyl function. The correspondence between the spectrum of the particular selfadjoint 
extension

A0 := S∗ � ker Γ0

and the limits of the Weyl function is not a special feature of the boundary triple for 
the above Sturm–Liouville equation. In fact, it holds as soon as the symmetric restric-
tion S (and, thus, the boundary mappings Γ0 and Γ1) is chosen properly. More abstract 
considerations from [20,44–46] yield that the operator A0 (and hence its spectrum) is 
determined up to unitary equivalence by the Weyl function if and only if the symmetric 
operator S is simple or completely non-selfadjoint, that is, there exists no nontrivial sub-
space of H which reduces S to a selfadjoint operator. This condition can be reformulated 
equivalently as

H = clsp
{
γ(ν)g : ν ∈ C \ R, g ∈ G

}
, (1.7)

where γ(ν) = (Γ0 � ker(S∗ − ν))−1 is the so-called γ-field and clsp denotes the closed 
linear span; cf. [43]. Under the assumption that S is simple a description of the absolutely 
continuous and singular continuous spectrum in the framework of boundary triples and 
their Weyl functions was given in [10]; for more recent related work see also [12,14,35,
49,51,58].

The concept of boundary triples and their Weyl functions was extended in [3] in such 
a way that it is conveniently applicable to PDE problems. For that one defines boundary 
mappings Γ0, Γ1 on a suitable, smaller subset of the domain of the maximal operator 
and requires Green’s identity (1.5) only to hold on this subset; the definition of the Weyl 
function associated to such a quasi boundary triple {G, Γ0, Γ1} is as in (1.6), except that 
only solutions in the domain of the boundary maps are used; cf. Section 2.1. For the 
second order elliptic operator L in (1.3) restricted to the smooth domain Ωi ⊂ R

n one 
may choose G = L2(Σ),
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Γ0u = u|Σ and Γ1u = − ∂u

∂νLi

∣∣∣
Σ
, u ∈ H2(Ωi),

in which case the corresponding Weyl function is (minus) the Dirichlet-to-Neumann 
map −Λi. Based on orthogonal couplings of symmetric operators and extending abstract 
ideas in [17] also the functions M and M̃ in (1.4) can be interpreted as Weyl functions 
associated to properly chosen quasi boundary triples; e.g., M corresponds to the pair of 
boundary mappings

Γ0u = ∂ui

∂νLi

∣∣∣
Σ

+ ∂ue

∂νLe

∣∣∣
Σ
, Γ1u = u|Σ, u = ui ⊕ ue, ui|Σ = ue|Σ, (1.8)

where uj ∈ H2(Ωj), j = i, e. Moreover, ker Γ0 is the domain of the unique selfadjoint 
operator A associated with L in L2(Rn). When trying to link the spectral properties of A
to the limiting behavior of the function M it is necessary to extend the known results for 
boundary triples to the more general notion of quasi boundary triples. Moreover, a subtle 
difficulty arises: The symmetric operator S corresponding to the boundary mappings in 
(1.8) may possess eigenvalues and thus in general is not simple.

In the abstract part of the present paper we show how this difficulty can be overcome. 
In the general setting of quasi boundary triples and their Weyl functions we show that 
a local simplicity condition on an open interval (or, more generally, a Borel set) Δ ⊂ R

suffices to characterize the spectrum of A0 in Δ. To be more specific, we assume that

E(Δ)H = clsp
{
E(Δ)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
, (1.9)

where E(Δ) denotes the spectral projection of A0 = S∗ � ker Γ0 on Δ; this is a local 
version of the condition (1.7). Under this assumption we provide characterizations of 
the isolated and embedded eigenvalues and the corresponding eigenspaces, as well as the 
continuous, absolutely continuous and singular continuous spectrum of A0 in Δ in terms 
of the limits of M(λ) when λ approaches the real axis. For instance, we prove that the 
eigenvalues of A0 in Δ are those λ, where limη↘0 iηM(λ + iη)g �= 0 for some g ∈ ran Γ0, 
and that the absolutely continuous spectrum of A0 can be characterized by means of the 
points λ where 0 < Im(M(λ + i0)g, g)G < ∞. Moreover, we prove inclusions and provide 
conditions for the absence of singular continuous spectrum. Afterwards we apply the 
obtained results to the selfadjoint elliptic differential operator associated to L in (1.3) in 
L2(Rn). We prove that, despite the fact that the underlying symmetric operator fails to 
be simple in general, the whole absolutely continuous spectrum of A0 can be recovered 
from the mapping M in (1.4). Moreover, we prove that the eigenvalues of A0 and the 
corresponding eigenfunctions can be characterized by limiting properties of M as far as 
the eigenfunctions do not vanish on the interface Σ. A complete picture of the spectrum 
of A0 is obtained when using the function M̃ in (1.4).

This paper is organized in the following way. In Section 2 we recall the basic facts on 
quasi boundary triples and corresponding Weyl functions and discuss the local simplicity 
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property (1.9) in detail. In Section 3 the connection between the spectra of selfadjoint 
operators and corresponding abstract Weyl functions is investigated. Section 4 contains 
the application of the abstract results to the mentioned PDE problems.

Finally, let us fix some notation. For a selfadjoint operator A in a Hilbert space H we 
denote by σ(A) (σp(A), σc(A), σac(A), σsc(A), σs(A), respectively) the spectrum (set of 
eigenvalues, continuous, absolutely continuous, singular continuous, singular spectrum, 
respectively) of A and by ρ(A) = C \ σ(A) its resolvent set.

2. Quasi boundary triples, associated Weyl functions, and a local simplicity condition

In this preliminary section we first recall the concepts of quasi boundary triples, their 
γ-fields and their Weyl functions. Afterwards we discuss a local simplicity property of 
symmetric operators, which will be assumed to hold in most of the results in Section 3.

2.1. Quasi boundary triples

The notion of quasi boundary triples was introduced in [3] as a generalization of the 
notions of boundary triples and generalized boundary triples, see [18,20,21,32,40]. The 
basic definition is the following.

Definition 2.1. Let S be a closed, densely defined, symmetric operator in a separable 
Hilbert space H and let T ⊂ S∗ be an operator whose closure coincides with S∗, i.e., 
T = S∗. A triple {G, Γ0, Γ1} consisting of a Hilbert space G and two linear mappings 
Γ0, Γ1 : domT → G is called a quasi boundary triple for S∗ if the following conditions 
are satisfied.

(i) The range of the mapping Γ := (Γ0, Γ1)� : domT → G × G is dense.
(ii) The identity

(Tu, v)H − (u, Tv)H = (Γ1u,Γ0v)G − (Γ0u,Γ1v)G (2.1)

holds for all u, v ∈ domT .
(iii) The operator A0 := T � ker Γ0 is selfadjoint in H.

In the following we suppress the indices in the scalar products and simply write (·, ·), 
when no confusion can arise.

We recall some facts on quasi boundary triples, which can be found in [3,4]. Let S be a 
closed, densely defined, symmetric operator in H. A quasi boundary triple {G, Γ0, Γ1} for 
S∗ exists if and only if the defect numbers of S are equal. What we will use frequently is 
that if {G, Γ0, Γ1} is a quasi boundary triple for S∗ then domS = ker Γ0 ∩ ker Γ1. Recall 
also that a quasi boundary triple with the additional property ran(Γ0, Γ1)� = G × G
becomes an (ordinary) boundary triple and that, in particular, in this case the boundary 
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mappings Γ0, Γ1 are defined on domS∗ and (2.1) holds with T replaced by S∗. In 
particular, in the case of finite defect numbers the notions of quasi boundary triples and 
(ordinary) boundary triples coincide. For more details on quasi boundary triples we refer 
to [3,4].

In order to prove that a triple {G, Γ0, Γ1} is a quasi boundary triple for the adjoint 
S∗ of a given symmetric operator S it is not necessary to know S∗ explicitly, as the 
following useful proposition shows; cf. [3, Theorem 2.3] for a proof.

Proposition 2.2. Let T be a linear operator in a separable Hilbert space H, let G be a 
further Hilbert space, and let Γ0, Γ1 : domT → G be linear mappings which satisfy the 
following conditions.

(i) The range of the map Γ = (Γ0, Γ1)� : domT → G × G is dense in G × G and ker Γ
is dense in H.

(ii) The identity (2.1) holds for all u, v ∈ domT .
(iii) There exists a selfadjoint restriction A0 of T in H with domA0 ⊂ ker Γ0.

Then S := T � ker Γ is a closed, densely defined, symmetric operator in H, T = S∗ holds, 
and {G, Γ0, Γ1} is a quasi boundary triple for S∗ with T � ker Γ0 = A0.

2.2. Weyl functions and γ-fields

Let S be a closed, densely defined, symmetric operator in H and let {G, Γ0, Γ1} be a 
quasi boundary triple for T = S∗ with A0 = T � ker Γ0. In order to define the γ-field and 
the Weyl function corresponding to {G, Γ0, Γ1} note that the direct sum decomposition

domT = domA0 � ker(T − λ) = ker Γ0 � ker(T − λ)

holds for each λ ∈ ρ(A0) and that, in particular, the restriction of Γ0 to ker(T − λ) is 
injective. The following definition is formally the same as for ordinary and generalized 
boundary triples.

Definition 2.3. Let {G, Γ0, Γ1} be a quasi boundary triple for T = S∗ and let A0 = T �
ker Γ0. Then the γ-field γ and the Weyl function M associated with {G, Γ0, Γ1} are given 
by

γ(λ) =
(
Γ0 � ker(T − λ)

)−1 and M(λ) = Γ1γ(λ), λ ∈ ρ(A0),

respectively.

It follows immediately from the definition that for each λ ∈ ρ(A0) the operator M(λ)
satisfies the equality
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M(λ)Γ0uλ = Γ1uλ, uλ ∈ ker(T − λ),

and that ran γ(λ) = ker(T − λ) holds. We summarize some properties of the γ-field and 
the Weyl function. For the proofs of items (i)–(iv) in the next lemma we refer to [3, 
Proposition 2.6], item (v) is a simple consequence of (ii) and (iii).

Lemma 2.4. Let {G, Γ0, Γ1} be a quasi boundary triple for T = S∗ with γ-field γ and Weyl 
function M and let A0 = T � ker Γ0. Then for λ, μ, ν ∈ ρ(A0) the following assertions 
hold.

(i) γ(λ) is a bounded operator from G to H defined on the dense subspace ran Γ0. The 
adjoint γ(λ)∗ : H → G is everywhere defined on H and is bounded. It is given by

γ(λ)∗ = Γ1(A0 − λ)−1.

(ii) The identity

γ(λ)g =
(
I + (λ− μ)(A0 − λ)−1) γ(μ)g

holds for all g ∈ ran Γ0.
(iii) The γ-field and the Weyl function are connected via

(λ− μ)γ(μ)∗γ(λ)g = M(λ)g −M(μ)∗g, g ∈ ran Γ0,

and M(λ) ⊂ M(λ)∗ holds.
(iv) M(λ) is an operator in G defined on the dense subspace ranΓ0 and satisfies

M(λ)g = ReM(μ)g

+ γ(μ)∗
(
(λ− Reμ) + (λ− μ)(λ− μ)(A0 − λ)−1) γ(μ)g (2.2)

for all g ∈ ran Γ0. In particular, for every g ∈ ran Γ0 the function λ �→ M(λ)g is 
holomorphic on ρ(A0) and each isolated singularity of λ �→ M(λ)g is a pole of first 
order. Moreover, limη↘0 iηM(ζ + iη)g exists for all g ∈ ran Γ0 and all ζ ∈ R.

(v) The identity

γ(μ)∗(A0 − λ)−1γ(ν)g = M(λ)g
(λ− ν)(λ− μ) + M(μ)g

(λ− μ)(ν − μ) + M(ν)g
(ν − λ)(ν − μ)

holds for all g ∈ ran Γ0 if λ �= ν, λ �= μ and ν �= μ.

2.3. Simple symmetric operators and local simplicity

Let S be a closed, densely defined, symmetric operator in the separable Hilbert 
space H. Recall that S is said to be simple or completely non-selfadjoint if there is 
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no nontrivial S-invariant subspace H0 of H which reduces S to a selfadjoint operator in 
H0, see [1, Chapter VII-81]. According to [43] the simplicity of S is equivalent to the 
density of the span of the defect spaces of S in H, i.e., S is simple if and only if

H = clsp
{
ker(S∗ − ν) : ν ∈ C \ R

}
(2.3)

holds; here clsp stands for the closed linear span. Assume that {G, Γ0, Γ1} is a quasi 
boundary triple for T = S∗ with A0 = T � ker Γ0. Then it follows that S is simple if and 
only if (2.3) holds with ker(S∗ − ν) replaced by ker(T − ν). Moreover, if γ is the γ-field 
corresponding to the quasi boundary triple {G, Γ0, Γ1} we conclude that S is simple if 
and only if

H = clsp
{
γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
(2.4)

holds. We also mention that the set C \ R in (2.4) can be replaced by any set 
G ⊂ ρ(A0) which has an accumulation point in each connected component of ρ(A0); 
cf. Lemma 2.5 (v) below.

Our aim is to generalize the notion of simplicity and to replace it by some weaker, 
local condition, which is satisfied in, e.g., the applications in Section 4. Instead of (2.4)
we will assume that

E(Δ)H = clsp
{
E(Δ)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
(2.5)

holds on a Borel set (later on usually an open interval) Δ; here E(·) denotes the spectral 
measure of A0. This condition will be imposed in many of the general results in Section 3. 
In the next lemma we discuss this condition and some consequences of it.

Lemma 2.5. Let S be a closed, densely defined, symmetric operator in H and let 
{G, Γ0, Γ1} be a quasi boundary triple for T = S∗ with A0 = T � ker Γ0. Then the 
following holds.

(i) If S is simple then (2.5) is satisfied for every Borel set Δ ⊂ R.
(ii) If (2.5) holds for some Borel set Δ ⊂ R then

E(Δ′)H = clsp
{
E(Δ′)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
(2.6)

holds for every Borel set Δ′ ⊂ Δ.
(iii) If δ1, δ2, . . . are disjoint open intervals such that

E(δj)H = clsp
{
E(δj)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
for all j (2.7)

then (2.5) holds for Δ =
⋃

j δj.
(iv) If (2.5) holds for some Borel set Δ ⊂ R then Δ ∩ σp(S) = ∅.
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(v) If (2.5) holds and G is a subset of ρ(A0) which has an accumulation point in each 
connected component of ρ(A0) then

E(Δ)H = clsp
{
E(Δ)γ(ν)g : ν ∈ G, g ∈ ran Γ0

}
. (2.8)

Proof. Assertion (i) is a consequence of item (ii) since (2.5) holds with Δ = R when S
is simple.

For (ii) note that the inclusion ⊃ in (2.6) clearly holds. For the converse inclusion let 
u ∈ E(Δ′)H. As Δ′ ⊂ Δ we have u ∈ E(Δ)H and hence there exists a sequence (vn)
in the linear span of {E(Δ)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0} which converges to u. Then 
(E(Δ′)vn) is a sequence in the linear span of {E(Δ′)γ(ν)g : ν ∈ C \R, g ∈ ran Γ0} which 
converges to E(Δ′)u = u.

In order to prove (iii) let δj be as in the assumptions and let Δ =
⋃

j δj . The inclusion 
⊃ in (2.5) again is obvious. For the converse inclusion let u ∈ E(Δ)H and define

H̃ := clsp
{
E(Δ)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
. (2.9)

Since

u = E(Δ)u =
∑
j

E(δj)u

it is sufficient to show E(δj)u ∈ H̃ for all j. Note first that by assumption (2.7) we have

E(δj)u ∈ clsp
{
E(δj)γ(μ)h : μ ∈ C \ R, h ∈ ran Γ0

}
and hence the assertion follows if we verify

E(δj)γ(μ)h ∈ H̃ (2.10)

for all μ ∈ C \R, h ∈ ran Γ0, and all j. For this purpose consider some fixed E(δj)γ(μ)h. 
According to Lemma 2.4 (ii) we have

γ(ν)g = γ(μ)g + (ν − μ)(A0 − ν)−1γ(μ)g

for all ν ∈ C \ R and all g ∈ ran Γ0, and hence H̃ in (2.9) can be rewritten in the form

H̃ = clsp
{
E(Δ)γ(μ)g,E(Δ)(A0 − ν)−1γ(μ)g : ν ∈ C \ R, g ∈ ran Γ0

}
.

It follows that for η, ε > 0 the element

βj−η∫
E(Δ)

(
(A0 − (λ + iε))−1 − (A0 − (λ− iε))−1)γ(μ)h dλ
αj+η
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belongs to H̃, where we have written δj = (αj , βj). From this and Stone’s formula it 
follows

E(δj)γ(μ)h = E(δj)E(Δ)γ(μ)h ∈ H̃,

which proves (2.10) and, hence, yields the inclusion ⊂ in (2.5). Item (iii) is proved.
In order to verify (iv), assume that Su = λu for some u ∈ domS and λ ∈ Δ. Then 

A0u = λu and hence u ∈ E(Δ)H. On the other hand, for g ∈ ran Γ0 and ν ∈ C \ R it 
follows together with Lemma 2.4 (i) that

(u,E(Δ)γ(ν)g) = (γ(ν)∗u, g) =
(
Γ1(A0 − ν)−1u, g

)
= (λ− ν)−1(Γ1u, g) = 0,

as u ∈ domS ⊂ ker Γ1. Hence, u ∈ E(Δ)H is orthogonal to the linear span of the 
elements E(Δ)γ(ν)g, ν ∈ C \ R, g ∈ ran Γ0, which is dense in E(Δ)H by (2.5). This 
implies u = 0 and thus S does not possess eigenvalues in Δ.

It remains to show (v). The inclusion ⊃ in (2.8) is obvious. In order to prove the 
inclusion ⊂ it suffices to verify that the vectors E(Δ)γ(ν)g, g ∈ ran Γ0, ν ∈ G, span a 
dense set in E(Δ)H. Suppose that E(Δ)u is orthogonal to this set, that is,

0 = (E(Δ)γ(ν)g,E(Δ)u) (2.11)

holds for all g ∈ ran Γ0 and all ν ∈ G. Since ρ(A0) � ν �→ γ(ν)g is analytic for each 
g ∈ ran Γ0 (see Lemma 2.4 (ii)) it follows that for each g ∈ ranΓ0 the function ν �→
(E(Δ)γ(ν)g, E(Δ)u) is analytic on ρ(A0), and hence (2.11) implies that this function is 
identically equal to zero. Now (2.5) yields E(Δ)u = 0 and (v) follows. �
3. Spectral properties of selfadjoint operators and corresponding Weyl functions

This section contains the main abstract results of this paper. We describe the spectral 
properties of a given selfadjoint operator by means of a corresponding Weyl function. 
For this we fix the following setting.

Assumption 3.1. Let S be a closed, densely defined, symmetric operator in the separable 
Hilbert space H and let {G, Γ0, Γ1} be a quasi boundary triple for T = S∗ with corre-
sponding γ-field γ and Weyl function M . Moreover, let A0 = T � ker Γ0 and denote by 
E(·) the spectral measure of A0.

3.1. Eigenvalues and corresponding eigenspaces

Let us start with a characterization of the isolated and embedded eigenvalues as well 
as the corresponding eigenspaces of a selfadjoint operator by means of an associated 
Weyl function. We write s-lim for the strong limit of an operator function.
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Theorem 3.2. Let Assumption 3.1 be satisfied. Then λ ∈ R is an eigenvalue of A0 such 
that K := ker(A0−λ) ker(S−λ) �= {0} if and only if RλM := s- limη↘0 iηM(λ +iη) �= 0. 
If dimK < ∞ then the mapping

τ : K → ranRλM, u �→ Γ1u, (3.1)

is bijective; if dimK = ∞ then the mapping

τ : K → clτ
(
ranRλM

)
, u �→ Γ1u, (3.2)

is bijective, where clτ denotes the closure in the normed space ran τ , equipped with the 
norm in G.

Remark 3.3. Recall that the limit (RλM)g = limη↘0 iηM(λ + iη)g exists for all λ ∈ R

and all g ∈ ran Γ0 by Lemma 2.4 (iv). Moreover, if λ is an isolated singularity of M , 
that is, there exists an open neighborhood O of λ such that M is strongly holomorphic 
on O \ {λ} then RλM �= 0 if and only if for some g ∈ ran Γ0 the G-valued function 
ζ �→ M(ζ)g has a pole at λ. In this case RλM coincides with the residue Resλ M of M
at λ in the strong sense, i.e.,

(RλM)g = (Resλ M)g = 1
2πi

∫
C

M(z)g dz, g ∈ ran Γ0,

where C denotes the boundary of an open ball B such that M is strongly holomorphic 
in a neighborhood of B except the point λ. We also remark that without additional 
assumptions the Weyl function is not able to distinguish between isolated and embedded 
eigenvalues of A0; cf. Proposition 3.6 below.

Proof of Theorem 3.2. Let λ ∈ R be fixed. Note first that the mapping Γ1 � K is injective. 
Indeed, for u ∈ K = ker(A0−λ) ker(S−λ) with Γ1u = 0 we have u ∈ ker Γ0∩ker Γ1 =
domS and Su = λu; hence u = 0. It is our aim to prove the inclusions

ranRλM ⊂ ran(Γ1 � K) ⊂ ranRλM. (3.3)

Note that the closure clτ (ranRλM) of ranRλM in the normed space ran τ , equipped 
with the norm of G, coincides with ranRλM∩ran τ . Hence (3.3) implies that the mapping 
τ in (3.1) and (3.2) is well-defined and bijective.

In order to verify (3.3) let g ∈ ran Γ0 and denote by E(·) the spectral measure of A0. 
Then∥∥iη(A0− (λ + iη))−1γ(ν)g + E({λ})γ(ν)g

∥∥2

=
∫ ∣∣∣∣ iη

t− (λ + iη) + 1{λ}(t)
∣∣∣∣2d(E(t)γ(ν)g, γ(ν)g) → 0 as η ↘ 0 (3.4)
R
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holds for all ν ∈ C \R. Since by Lemma 2.4 (i) the operator γ(ν)∗ is bounded, it follows 
from (3.4) that

lim
η↘0

iηγ(ν)∗(A0 − (λ + iη))−1γ(ν)g = −γ(ν)∗E({λ})γ(ν)g (3.5)

holds for all ν ∈ C \ R. Together with Lemma 2.4 (v) we conclude that the limit on the 
left hand side of (3.5) coincides with

lim
η↘0

iη
M(λ + iη)g

((λ + iη) − ν)((λ + iη) − ν) = (RλM)g
(λ− ν)(λ− ν) . (3.6)

With the help of Lemma 2.4 (i), (3.5) and (3.6) we obtain

Γ1E({λ})γ(ν)g = Γ1(A0 − ν)−1(A0 − ν)E({λ})γ(ν)g

= (λ− ν)γ(ν)∗E({λ})γ(ν)g

= −(λ− ν) lim
η↘0

iηγ(ν)∗(A0 − (λ + iη))−1γ(ν)g

= 1
ν − λ

(RλM)g

for all ν ∈ C \R. Denoting by P the orthogonal projection in H onto K = ker(A0 −λ) 
ker(S − λ) it follows

Γ1Pγ(ν)g = 1
ν − λ

(RλM)g, (3.7)

where we have used Γ1(ker(S − λ)) = {0}. From this the first inclusion in (3.3) follows 
immediately.

For the second inclusion in (3.3) note that the mapping Γ1 � K is continuous as 
Γ1u = γ(μ)∗(A0 − μ)u = (λ −μ)γ(μ)∗u holds for all u ∈ K by Lemma 2.4 (i). Moreover, 
for each ν ∈ C \ R the linear space {Pγ(ν)g : g ∈ ran Γ0} is dense in K. In fact, fix 
ν ∈ C \ R and let u ∈ K be orthogonal to Pγ(ν)g for all g ∈ ran Γ0. Then

0 = (u, Pγ(ν)g) = (γ(ν)∗u, g) = (Γ1(A0 − ν)−1u, g) = (λ− ν)−1(Γ1u, g)

by Lemma 2.4 (i), which implies Γ1u = 0 as ran Γ0 is dense. Hence we have u ∈ ker Γ0 ∩
ker Γ1 = domS and this implies u ∈ K ∩ ker(S − λ), so that u = 0. Now the second 
inclusion in (3.3) follows together with (3.7) and the fact that Γ1 � K is continuous. Hence 
the mapping τ in (3.2) is well-defined and bijective. If K is finite-dimensional then clearly 
the closure in (3.2) can be omitted and we end up with the bijectivity of (3.1). �

As an immediate consequence of Theorem 3.2 all eigenvalues of A0 which are not 
eigenvalues of S can be characterized as “generalized poles” of the Weyl function.
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Corollary 3.4. Let Assumption 3.1 be satisfied, and assume that λ ∈ R is not an 
eigenvalue of the symmetric operator S. Then λ is an eigenvalue of A0 if and only 
if RλM := s- limη↘0 iηM(λ + iη) �= 0. If the multiplicity of the eigenvalue λ is finite 
then the mapping

τ : ker(A0 − λ) → ranRλM, u �→ Γ1u,

is bijective; if the multiplicity of the eigenvalue λ is infinite then the mapping

τ : ker(A0 − λ) → clτ
(
ranRλM

)
, u �→ Γ1u,

is bijective, where clτ denotes the closure in the normed space ran τ , equipped with the 
norm in G.

3.2. Continuous, absolutely continuous, and singular continuous spectra

In this subsection we describe the continuous, absolutely continuous, and singular 
continuous spectrum of a selfadjoint operator A0 by means of the limits of an associated 
Weyl function M . Again we fix the setting in Assumption 3.1. It is clear that an ad-
ditional minimality or simplicity condition must be imposed. Usually one assumes that 
the underlying symmetric operator S is simple; cf. [10]. However, for our purposes the 
weaker assumption of local simplicity in Section 2.3 is more appropriate: in order to 
characterize the spectrum of A0 in an open interval Δ ⊂ R we assume that

E(Δ)H = clsp
{
E(Δ)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
. (3.8)

For instance, in Theorem 3.2 it turned out that an eigenvalue λ of A0 with its full 
multiplicity can only be detected by the Weyl function if λ /∈ σp(S). This condition 
corresponds to the identity (3.8) with Δ replaced by {λ}; cf. Lemma 2.5 (iv).

In the next theorem we agree to say that the Weyl function M can be continued 
analytically to some point λ ∈ R if there exists an open neighborhood O of λ in C such 
that ζ �→ M(ζ)g can be continued analytically to O for all g ∈ ran Γ0. We mention that 
the proof of (i) is similar to the proof of [23, Theorem 1.1].

Theorem 3.5. Let Assumption 3.1 be satisfied, and let Δ ⊂ R be an open interval such 
that the condition (3.8) is satisfied. Then the following assertions hold for each λ ∈ Δ.

(i) λ ∈ ρ(A0) if and only if M can be continued analytically into λ.
(ii) λ ∈ σc(A0) if and only if s- limη↘0 iηM(λ + iη) = 0 and M cannot be continued 

analytically into λ.

If S is simple then (i) and (ii) hold for all λ ∈ R.
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Proof. (i) Recall first that by Lemma 2.4 (iv) the function λ �→ M(λ)g is analytic on 
ρ(A0) for each g ∈ ran Γ0, which proves the implication (⇒). In order to verify the 
implication (⇐) in (i), let us assume that M can be continued analytically to some 
λ ∈ Δ, that is, there exists an open neighborhood O of λ in C with O ∩ R ⊂ Δ such 
that ζ �→ M(ζ)g can be continued analytically to O for each g ∈ ran Γ0. Choose a, b ∈ R

with λ ∈ (a, b), [a, b] ⊂ O, and a, b /∈ σp(A0). The spectral projection E((a, b)) of A0
corresponding to the interval (a, b) is given by Stone’s formula

E((a, b)) = s- lim
δ↘0

1
2πi

b∫
a

(
(A0 − (t + iδ))−1 − (A0 − (t− iδ))−1) dt, (3.9)

where the integral on the right-hand side is understood in the strong sense. Using the 
identity in Lemma 2.4 (v) and (3.9) a straight forward calculation leads to

‖E((a, b))γ(ν)g‖2 =
(
γ(ν)∗E((a, b))γ(ν)g, g

)
= lim

δ↘0

1
2πi

b∫
a

((
γ(ν)∗(A0 − (t + iδ))−1γ(ν)g, g

)
−

(
γ(ν)∗(A0 − (t− iδ))−1γ(ν)g, g

))
dt = 0

for all g ∈ ran Γ0 and all ν ∈ C \R, since ζ �→ (M(ζ)g, g) admits an analytic continuation 
into O for all g ∈ ran Γ0. Thus the assumption (3.8) and [a, b] ⊂ Δ together with 
Lemma 2.5 (ii) imply E((a, b)) = 0. In particular, λ ∈ ρ(A0).

(ii) According to Lemma 2.5 (iv) the condition (3.8) implies that S does not have 
eigenvalues in Δ. Hence item (ii) follows immediately from item (i) and Corollary 3.4.

If S is simple then by Lemma 2.5 (i) the assumption (3.8) is satisfied for Δ = R. 
Hence (i) and (ii) hold for all λ ∈ R. �

Now we return to the characterization of eigenvalues. We formulate a sufficient condi-
tion under which the Weyl function is able to distinguish between isolated and embedded 
eigenvalues.

Proposition 3.6. Let Assumption 3.1 be satisfied and let Δ ⊂ R be an open interval. 
Assume that the condition (3.8) is satisfied and let λ ∈ Δ. Then all assertions of Corol-
lary 3.4 hold for λ. Moreover, λ is an isolated eigenvalue of A0 if and only if λ is a pole 
in the strong sense of M . In this case RλM is the residue of M in the strong sense at λ; 
cf. Remark 3.3.

Proof. Let λ ∈ R and let Δ ⊂ R be an open interval with λ ∈ Δ such that (3.8) holds. 
Then λ /∈ σp(S) by Lemma 2.5 (iv) and hence the assertions in Corollary 3.4 hold for λ. 
Moreover, if λ is an isolated eigenvalue of A0 then by Lemma 2.4 (iv) there exists an open 
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neighborhood O of λ such that ζ �→ M(ζ)g is holomorphic on O \ {λ} for all g ∈ ran Γ0. 
From Corollary 3.4 we conclude that there exists g ∈ ran Γ0 such that

lim
η↘0

iηM(λ + iη)g �= 0. (3.10)

Hence Lemma 2.4 (iv) implies that M has a pole of first order in the strong sense at λ. 
Conversely, if M has a pole (of first order) in the strong sense at λ then there exists 
g ∈ ran Γ0 such that (3.10) holds. According to Lemma 2.4 (iv) the order of the pole is 
one and, hence,

lim
η↘0

iηM(λ + iη)g = (Resλ M)g �= 0.

It follows with the help of Corollary 3.4 that λ is an eigenvalue of A0. Moreover, The-
orem 3.5 (i) implies that there exists an open neighborhood O of λ in C such that 
O\{λ} ⊂ ρ(A0). Hence λ is isolated in the spectrum of A0. This completes the proof. �

Next we discuss the relation of the function M to the absolutely continuous and 
singular continuous spectrum of A0. In the special case of ordinary boundary triples and 
Δ = R the following results reduce to those in [10]. For our purposes a localized version 
and an extension to quasi boundary triples is necessary. The proofs presented here are 
somewhat more direct than those in [10]; in particular, the integral representation of 
Nevanlinna functions and the corresponding measures are avoided.

In the following for a finite Borel measure μ on R we denote the set of all growth 
points of μ by suppμ, that is,

suppμ =
{
x ∈ R : μ((x− ε, x + ε)) > 0 for all ε > 0

}
.

Note that suppμ is closed with μ(R \ suppμ) = 0 and that suppμ is minimal with this 
property, that is, each closed set S ⊂ R with μ(R \S) = 0 satisfies suppμ ⊂ S. Moreover, 
for a Borel set χ ⊂ R we define the absolutely continuous closure (also called essential 
closure) by

clac(χ) :=
{
x ∈ R : |(x− ε, x + ε) ∩ χ| > 0 for all ε > 0

}
,

where | · | denotes the Lebesgue measure, and the continuous closure by

clc(χ) :=
{
x ∈ R : (x− ε, x + ε) ∩ χ is not countable for all ε > 0

}
. (3.11)

Observe that clac(χ) and clc(χ) both are closed and that clac(χ) ⊂ clc(χ) ⊂ χ holds, but 
in general the converse inclusions are not true. In fact, clac(χ) = ∅ if and only if |χ| = 0, 
and clc(χ) = ∅ if and only if χ is countable.

The following lemma can partly be found in, e.g., the monographs [24] or [59].
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Lemma 3.7. Let μ be a finite Borel measure on R and denote by F its Stieltjes transform,

F (λ) =
∫
R

1
t− λ

dμ(t), λ ∈ C \ R.

Then the limit ImF (x +i0) = limy↘0 ImF (x +iy) exists and is finite for Lebesgue almost 
all x ∈ R. Let μac and μs be the absolutely continuous and singular part, respectively, 
of μ in the Lebesgue decomposition μ = μac + μs, and decompose μs into the singular 
continuous part μsc and the pure point part. Then the following assertions hold.

(i) suppμac = clac({x ∈ R : 0 < ImF (x + i0) < +∞}).
(ii) suppμs ⊂ {x ∈ R : ImF (x + i0) = +∞}.
(iii) suppμsc ⊂ clc({x ∈ R : ImF (x + i0) = +∞, limy↘0 yF (x + iy) = 0}).

Proof. From [59, Lemma 3.14 and Theorem 3.23] it follows immediately that assertion (i) 
is true, that the limit ImF (x + i0) exists and is finite for Lebesgue almost all x ∈ R, and 
that

μs
(
R \ {x ∈ R : ImF (x + i0) = +∞}

)
= 0, (3.12)

which implies (ii). In order to verify (iii) note first that limy↘0 yF (x + iy) = iμ({x})
holds for all x ∈ R since

∣∣yF (x + iy) − iμ({x})
∣∣ ≤ ∫

R

∣∣∣∣ y

t− (x + iy) − i1{x}(t)
∣∣∣∣ dμ(t) → 0, y ↘ 0.

In particular, μ({x}) �= 0 if and only if limy↘0 yF (x +iy) �= 0. Hence it follows from (3.12)
and the definition of μsc that

μsc(R \Msc) = 0, (3.13)

where

Msc :=
{
x ∈ R : ImF (x + i0) = +∞, lim

y↘0
yF (x + iy) = 0

}
.

For x ∈ R \ clc(Msc) by definition there exists ε > 0 such that (x − ε, x + ε) ∩ Msc is 
countable; thus μsc((x − ε, x + ε) ∩Msc) = 0. With the help of (3.13) it follows

μsc((x− ε, x + ε)) ≤ μsc((x− ε, x + ε) ∩Msc) + μsc(R \Msc) = 0,

that is, x /∈ suppμsc. �
The absolutely continuous spectrum of a selfadjoint operator in some interval Δ can 

be characterized in the following way.
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Theorem 3.8. Let Assumption 3.1 be satisfied and let Δ ⊂ R be an open interval such 
that the condition

E(δ)H = clsp
{
E(δ)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
(3.14)

is satisfied for each open interval δ ⊂ Δ with δ ∩ σp(S) = ∅. Then the absolutely contin-
uous spectrum of A0 in Δ is given by

σac(A0) ∩ Δ =
⋃

g∈ran Γ0

clac
({

x ∈ Δ : 0 < Im(M(x + i0)g, g) < +∞
})

. (3.15)

If S is simple then (3.15) holds for each open interval Δ, including the case Δ = R.

Proof. The proof of Theorem 3.8 consists of two separate steps in which the assertions 
(3.17) and (3.19) below will be shown. The identity (3.15) is then an immediate conse-
quence of (3.17) and (3.19) (note that the right hand side in (3.19) does not depend on 
ζ ∈ C \ R). We fix some notation first. Let us set

DΔ :=
{
E(Δ)γ(ζ)g : ζ ∈ C \ R, g ∈ ran Γ0

}
(3.16)

and define the measures μu := (E(·)u, u) for u ∈ H. Denote by Pac the orthogonal 
projection in H onto the absolutely continuous subspace Hac of A0. Observe that the 
spectral measure of the absolutely continuous part of A0 is E(·)Pac and that the abso-
lutely continuous measures μu,ac are given by μu,ac = (E(·)Pacu, Pacu) = μPacu.

Step 1. In this step the identity

σac(A0) ∩ Δ =
⋃

u∈DΔ

suppμu,ac (3.17)

will be verified. First of all the open set Δ′ := Δ\σp(S) is the disjoint union of open 
intervals δj , 1 ≤ j < N , N ∈ N ∪ {∞}, and for each δj we have

E(δj)H = clsp
{
E(δj)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
by assumption. With the help of Lemma 2.5 (iii) we conclude

E(Δ′)H = clsp
{
E(Δ′)γ(ν)g : ν ∈ C \ R, g ∈ ran Γ0

}
.

Since Δ′ ⊂ Δ it follows immediately that E(Δ′)H ⊂ clspDΔ. Moreover, we have

PacE(Δ)H = PacE(Δ′)H ⊂ Pac
(
clspDΔ

)
⊂ clspPacDΔ ⊂ PacE(Δ)H

and therefore
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PacE(Δ)H = clspPacDΔ. (3.18)

In order to verify (3.17), assume first that x does not belong to the left hand side of 
(3.17), that is, x /∈ σac(A0) ∩ Δ. Then there exists ε > 0 such that (x − ε, x + ε) ∩ Δ
contains no absolutely continuous spectrum of A0. This yields

E((x− ε, x + ε) ∩ Δ)Pac = 0

and for u ∈ E(Δ)H one obtains

μu,ac((x− ε, x + ε)) =
(
E((x− ε, x + ε))Pacu, Pacu

)
=

(
E((x− ε, x + ε))PacE(Δ)u, Pacu

)
=

(
E((x− ε, x + ε) ∩ Δ)Pacu, Pacu

)
= 0.

Therefore (x − ε, x + ε) ∩ suppμu,ac = ∅ for all u ∈ E(Δ)H, in particular, for all u ∈ DΔ. 
Thus

x /∈
⋃

u∈DΔ

suppμu,ac

and the inclusion ⊃ in (3.17) follows. For the converse inclusion assume that x does not 
belong to the right hand side of (3.17). Then there exists ε > 0 such that (x − ε, x + ε) ⊂
R \ suppμu,ac for all u ∈ DΔ, that is,

‖E((x− ε, x + ε))Pacu‖2 = μu,ac((x− ε, x + ε)) = 0

for all u ∈ DΔ, and hence also for all u ∈ clspDΔ. With the help of (3.18) it follows

E((x− ε, x + ε) ∩ Δ)Pacu = E((x− ε, x + ε))PacE(Δ)u = 0

for all u ∈ H. This shows that (x − ε, x + ε) ∩ Δ does not contain absolutely continuous 
spectrum of A0, in particular, x /∈ σac(A0) ∩ Δ and the inclusion ⊂ in (3.17) follows.

Step 2. In this step we show that the identity

suppμu,ac = clac
({

x ∈ Δ : 0 < Im
(
M(x + i0)g, g

)
< +∞

})
(3.19)

holds for all u = E(Δ)γ(ζ)g ∈ DΔ. Indeed, with the help of the formula (2.2) we compute

Im(M (x + iy)g, g)

= y‖γ(ζ)g‖2 +
(
|x− ζ|2 − y2) Im

(
(A0 − (x + iy))−1γ(ζ)g, γ(ζ)g

)
+ 2(x− Re ζ)yRe

(
(A0 − (x + iy))−1γ(ζ)g, γ(ζ)g

)
, (3.20)
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for all x ∈ R, y > 0, g ∈ ran Γ0, and ζ ∈ C \R. Moreover, dominated convergence implies 
that

yRe
(
(A0 − (x + iy))−1γ(ζ)g, γ(ζ)g

)
=

∫
R

y(t− x)
(t− x)2 + y2 d(E(t)γ(ζ)g, γ(ζ)g)

converges to zero as y ↘ 0. Therefore for x ∈ R (3.20) implies

Im(M(x + i0)g, g) = |x− ζ|2 Im
(
(A0 − (x + i0))−1γ(ζ)g, γ(ζ)g

)
, (3.21)

in the sense that one of the limits exists if and only if the other limit exists, where +∞
is allowed as (improper) limit.

For u ∈ H, x ∈ R, and y > 0 the imaginary part of the Stieltjes transform Fu of the 
measure μu = (E(·)u, u) is given by

ImFu(x + iy) = Im
∫
R

1
t− (x + iy)d(E(t)u, u)

= Im
(
(A0 − (x + iy))−1u, u

)
, (3.22)

and for u ∈ E(Δ)H we obtain

ImFu(x + i0) =
{

Im
(
(A0 − (x + i0))−1u, u

)
if x ∈ Δ,

0 if x /∈ Δ,

in particular, if u = E(Δ)γ(ζ)g ∈ DΔ then

ImFu(x + i0) =
{

Im
(
(A0 − (x + i0))−1γ(ζ)g, γ(ζ)g

)
if x ∈ Δ,

0 if x /∈ Δ.

Taking into account (3.21) we then find

ImFu(x + i0) =
{
|x− ζ|−2 Im(M(x + i0)g, g) if x ∈ Δ,

0 if x /∈ Δ,
(3.23)

for u = E(Δ)γ(ζ)g ∈ DΔ. From Lemma 3.7 (i) we conclude together with (3.23) that

suppμu,ac = clac
({

x ∈ Δ : 0 < ImFu(x + i0) < +∞
})

= clac
({

x ∈ Δ : 0 < Im(M(x + i0)g, g) < +∞
})

holds for u = E(Δ)γ(ζ)g ∈ DΔ, which shows (3.19). �
Theorem 3.8 immediately implies the following two corollaries.
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Corollary 3.9. Let Assumption 3.1 be satisfied and assume that (3.14) holds for each open 
interval δ ⊂ R such that δ ∩ σp(S) = ∅. Then

σac(A0) =
⋃

g∈ran Γ0

clac
({

x ∈ R : 0 < Im(M(x + i0)g, g) < +∞
})

.

Corollary 3.10. Let Assumption 3.1 be satisfied and let Δ ⊂ R be an open interval such 
that the condition (3.8) holds. Then the absolutely continuous spectrum of A0 in Δ is 
given by

σac(A0) ∩ Δ =
⋃

g∈ran Γ0

clac
({

x ∈ Δ : 0 < Im(M(x + i0)g, g) < +∞
})

.

In the next corollary a necessary and sufficient condition for the absence of absolutely 
continuous spectrum is given.

Corollary 3.11. Let Assumption 3.1 be satisfied and let Δ ⊂ R be an open interval. 
Assume that the condition (3.14) holds for each open interval δ ⊂ Δ with δ ∩ σp(S) = ∅. 
Then σac(A0) ∩ Δ = ∅ if and only if for each g ∈ ran Γ0 one has Im(M(x + i0)g, g) = 0
for almost all x ∈ Δ.

Proof. We make use of the fact that for g ∈ ran Γ0

clac
(
{x ∈ Δ : 0 < Im(M(x + i0)g, g) < +∞}

)
= ∅ (3.24)

if and only if ∣∣ {x ∈ Δ : 0 < Im(M(x + i0)g, g) < +∞}
∣∣ = 0. (3.25)

Assume first that σac(A0) ∩Δ = ∅. Then (3.15) yields (3.24) for all g ∈ ran Γ0, and hence 
(3.25) holds for all g ∈ ran Γ0. Moreover, for u = γ(ζ)g and x ∈ R by (3.21) and (3.22)
we have

Im(M(x + i0)g, g) = |x− ζ|2 ImFu(x + i0),

and by Lemma 3.7 this limit exists and is finite for Lebesgue almost all x ∈ R. 
Hence (3.25) implies that for all g ∈ ran Γ0 one has Im(M(x + i0)g, g) = 0 for al-
most all x ∈ Δ. For the converse implication assume that for every g ∈ ran Γ0 one has 
Im(M(x + i0)g, g) = 0 for almost all x ∈ Δ. Then (3.25) and hence also (3.24) holds for 
all g ∈ ran Γ0. Thus (3.15) yields σac(A0) ∩ Δ = ∅. �

Let us prove next inclusions for the singular and singular continuous spectra of A0. 
Recall the definition of the continuous closure clc(χ) of a Borel set χ in (3.11).
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Theorem 3.12. Let Assumption 3.1 be satisfied, and let Δ ⊂ R be an open interval. Then 
the following assertions hold.

(i) If the condition (3.8) holds then the singular spectrum of A0 in Δ satisfies

(
σs(A0) ∩ Δ

)
⊂

⋃
g∈ran Γ0

{
x ∈ Δ : Im(M(x + i0)g, g) = +∞

}
.

(ii) If the condition (3.14) is satisfied for each open interval δ ⊂ Δ with δ ∩ σp(S) = ∅
then the singular continuous spectrum of A0 in Δ, σsc(A0) ∩ Δ, is contained in the 
set ⋃

g∈ran Γ0

clc
({

x ∈ Δ : Im(M(x + i0)g, g) = +∞, lim
y↘0

y(M(x + iy)g, g) = 0
})

.

If S is simple then (i) and (ii) hold for each open interval Δ, including the case Δ = R.

Proof. We show the statements (i) and (ii) at once. Let us define

DΔ :=
{
E(Δ)γ(ζ)g : ζ ∈ C \ R, g ∈ ran Γ0

}
.

Note first that the same arguments as in Step 1 of the proof of Theorem 3.8 imply

σi(A0) ∩ Δ =
⋃

u∈DΔ

suppμu,i, i = s, sc. (3.26)

In order to apply Lemma 3.7 (ii) and (iii), respectively, we calculate the limits that 
appear there. In fact, it follows from (2.2) that for each g ∈ ran Γ0 and each ζ ∈ C \ R

lim
y↘0

Im(M(x + iy)g, g) = |x− ζ|2 lim
y↘0

Im
(
(A0 − (x + iy))−1γ(ζ)g, γ(ζ)g

)
(3.27)

and

lim
y↘0

y(M(x + iy)g, g) = |x− ζ|2 lim
y↘0

y
(
(A0 − (x + iy))−1γ(ζ)g, γ(ζ)g

)
(3.28)

hold; cf. (3.21) for the first identity and the text below (3.21) for its interpretation as a 
possibly improper limit. Let u = E(Δ)γ(ζ)g ∈ DΔ and let

Fu(x + iy) =
∫
R

1
t− (x + iy)d(E(t)u, u) =

(
(A0 − (x + iy))−1u, u

)
be the Stieltjes transform of μu = (E(·)u, u). Then

ImFu(x + i0) = Im
(
(A0 − (x + i0))−1E(Δ)γ(ζ)g,E(Δ)γ(ζ)g

)
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for all x ∈ R. From this we conclude with the help of (3.27) that

ImFu(x + i0) =
{
|x− ζ|−2 Im(M(x + i0)g, g) if x ∈ Δ,

0 if x /∈ Δ.
(3.29)

Similarly, from (3.28) we obtain

lim
y↘0

yFu(x + iy) =
{
|x− ζ|−2 limy↘0 y(M(x + iy)g, g) if x ∈ Δ,

0 if x /∈ Δ.
(3.30)

It follows from (3.29), (3.30), and Lemma 3.7 that

suppμu,s ⊂
{
x ∈ Δ : Im(M(x + i0)g, g) = +∞

}
and

suppμu,sc ⊂ clc
({

x ∈ Δ : Im(M(x + i0)g, g) = +∞, lim
y↘0

y(M(x + iy)g, g) = 0
})

for u = E(Δ)γ(ζ)g ∈ DΔ. Thus the assertions of the theorem follow from (3.26). �
We formulate two immediate corollaries which concern the singular continuous spec-

trum.

Corollary 3.13. Let Assumption 3.1 be satisfied and assume that (3.14) holds for each 
open interval δ ⊂ R such that δ ∩ σp(S) = ∅. Then the singular continuous spectrum 
σsc(A0) of A0 is contained in the set⋃

g∈ran Γ0

clc
({

x ∈ R : Im(M(x + i0)g, g) = +∞, lim
y↘0

y(M(x + iy)g, g) = 0
})

.

Corollary 3.14. Let Assumption 3.1 be satisfied, let Δ ⊂ R be an open interval, and 
assume that the condition (3.8) holds. Then the singular continuous spectrum of A0 in 
Δ, σsc(A0) ∩ Δ, is contained in the set⋃

g∈ran Γ0

clc
({

x ∈ Δ : Im(M(x + i0)g, g) = +∞, lim
y↘0

y(M(x + iy)g, g) = 0
})

.

As a further immediate corollary of Theorem 3.12 we formulate a sufficient criterion 
for the absence of singular continuous spectrum in terms of the limiting behavior of the 
function M . The corresponding result for ordinary boundary triples (in the special case 
Δ = R) can be found in [10].

Corollary 3.15. Let Assumption 3.1 be satisfied and let Δ ⊂ R be an open interval such 
that the condition (3.14) is satisfied for each open interval δ ⊂ Δ with δ ∩ σp(S) = ∅. If 
for each g ∈ ran Γ0 there exist at most countably many x ∈ Δ such that
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Im(M(x + iy)g, g) → +∞ and y(M(x + iy)g, g) → 0 as y ↘ 0

then σsc(A0) ∩ Δ = ∅. If S is simple the assertion holds for each open interval Δ, 
including the case Δ = R.

As a further corollary of the theorems of this section we provide sufficient criteria for 
the spectrum of the operator A0 to be purely absolutely continuous or purely singular 
continuous, respectively, in some set.

Corollary 3.16. Let Assumption 3.1 be satisfied, let Δ ⊂ R be an open interval such that 
the condition (3.8) is satisfied, and assume that

lim
y↘0

yM(x + iy)g = 0 (3.31)

for all g ∈ ran Γ0 and all x ∈ Δ. Then the following assertions hold.

(i) If for each g ∈ ran Γ0 there exist at most countably many x ∈ Δ such that Im(M(x +
i0)g, g) = +∞ then σ(A0) ∩ Δ = σac(A0) ∩ Δ.

(ii) If for each g ∈ ran Γ0 one has Im(M(x + i0)g, g) = 0 for almost all x ∈ Δ then 
σ(A0) ∩ Δ = σsc(A0) ∩ Δ.

In particular, if S is simple and Δ is an arbitrary open interval such that (3.31) holds 
for all g ∈ ran Γ0 and all x ∈ Δ then (i) and (ii) are satisfied.

4. Second order elliptic differential operators on RRRn

In this section we show how the spectrum of a selfadjoint second order elliptic dif-
ferential operator on Rn, n ≥ 2, can be described with the help of a Titchmarsh–Weyl 
function acting on an n − 1-dimensional compact interface Σ which splits Rn into a 
bounded domain Ωi and an unbounded domain Ωe with common boundary Σ.

We consider the differential expression

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a,

where ajk, aj ∈ C∞(Rn) together with their derivatives are bounded and satisfy ajk(x) =
akj(x) for all x ∈ R

n, 1 ≤ j, k ≤ n, and a ∈ L∞(Rn) is real valued. Moreover, we assume 
that L is uniformly elliptic on Rn, that is, there exists E > 0 with

n∑
j,k=1

ajk(x)ξjξk ≥ E
n∑

k=1

ξ2
k, x ∈ R

n, ξ = (ξ1, . . . , ξn)� ∈ R
n. (4.1)
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The selfadjoint operator associated with L in L2(Rn) is given by

A0u = Lu, domA0 = H2(Rn), (4.2)

where H2(Rn) is the usual L2-based Sobolev space of order 2 on Rn. In Sections 4.1 and 
4.2 two different choices of Titchmarsh–Weyl functions for the differential expression L
are studied.

4.1. A Weyl function corresponding to a transmission problem

We first consider a Weyl function for the operator A0 which appears in transmission 
problems in connection with single layer potentials (see, e.g. [50, Chapter 6]) and which 
was also used in [2] to generalize the classical limit point/limit circle analysis from 
singular Sturm–Liouville theory to Schrödinger operators in R3.

Let Σ be the boundary of a bounded C∞-domain Ωi ⊂ R
n and denote by Ωe the 

corresponding exterior domain, that is, Ωe = R
n \ Ωi. In the following we make use of 

operators induced by L in L2(Ωi) and L2(Ωe), respectively. For j = i, e we write Lj

for the restriction of the differential expression L to functions on Ωj . For functions in 
L2(Ωj) we use the index j and we write u = ui ⊕ ue for u ∈ L2(Rn). As Σ is smooth, 
the selfadjoint Dirichlet operator associated with Lj in L2(Ωj) is given by

AD,juj = Ljuj , domAD,j =
{
uj ∈ H2(Ωj) : uj |Σ = 0

}
, j = i, e,

where uj |Σ denotes the trace of uj at Σ = ∂Ωj . Let Hs(Σ) be the Sobolev spaces of 
orders s ≥ 0 on Σ. We recall that for each λ ∈ ρ(AD,j) and each g ∈ H3/2(Σ) there 
exists a unique solution uλ,j ∈ H2(Ωj) of the boundary value problem Ljuj = λuj , 
uj |Σ = g. This implies that for each λ ∈ ρ(AD,j) the Dirichlet-to-Neumann map

Λj(λ) : H3/2(Σ) → H1/2(Σ), uλ,j |Σ �→ ∂uλ,j

∂νLj

∣∣∣
Σ
, (4.3)

is well-defined; here the conormal derivative with respect to Lj in the direction of the 
outer unit normal νj = (νj,1, . . . , νj,n)� at Σ = ∂Ωj is defined by

∂u

∂νLj

∣∣∣
Σ

=
n∑

k,l=1

aklνj,k
∂u

∂xl

∣∣∣
Σ

+
n∑

k=1

akνj,ku|Σ.

Note that the outer unit normals at ∂Ωi and ∂Ωe coincide up to a minus sign. It will turn 
out below that the operator Λi(λ) +Λe(λ) is invertible for all λ ∈ ρ(A0) ∩ρ(AD,i) ∩ρ(AD,e)
and, hence, the operator function

λ �→ M(λ) =
(
Λi(λ) + Λe(λ)

)−1 (4.4)
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is well-defined on ρ(A0) ∩ρ(AD,i) ∩ρ(AD,e). We remark that the values M(λ) are bounded 
operators in L2(Σ) with domain H1/2(Σ); cf. Lemma 4.2 below for the details.

The following theorem is the main result of this section. It states that the abso-
lutely continuous spectrum of A0 can be recovered completely from the knowledge of the 
function M in (4.4), while the eigenvalues and corresponding eigenspaces may be only 
partially visible for the function M . This depends on the choice of the interface Σ and 
the fact that the symmetric operator

Su = Lu, domS =
{
u ∈ H2(Rn) : u|Σ = 0

}
, (4.5)

may have eigenvalues. In particular, in general S is not simple; cf. Example 4.5 and 
Example 4.6 below.

Theorem 4.1. Let A0, Σ, S, and M be as above, let λ, μ ∈ R such that λ /∈ σp(S), 
μ /∈ σp(S), and let Δ ⊂ R be an open interval. Then the following assertions hold.

(i) μ ∈ σp(A0) if and only if RμM := s- limη↘0 iηM(μ + iη) �= 0; if the multiplicity of 
the eigenvalue μ is finite then the mapping

τ : ker(A0 − μ) → ranRμM, u �→ u|Σ, (4.6)

is bijective; if the multiplicity of the eigenvalue μ is infinite then the mapping

τ : ker(A0 − μ) → clτ
(
ranRμM

)
, u �→ u|Σ, (4.7)

is bijective, where clτ denotes the closure in the normed space ran τ , equipped with 
the norm in L2(Σ).

(ii) λ is an isolated eigenvalue of A0 if and only if λ is a pole in the strong sense of M . 
In this case (4.6) and (4.7) with μ = λ are bijective mappings and RλM = Resλ M .

(iii) λ ∈ ρ(A0) if and only if M can be continued analytically into λ.
(iv) λ ∈ σc(A0) if and only if s- limη↘0 iηM(λ + iη) = 0 and M cannot be continued 

analytically into λ.
(v) The absolutely continuous spectrum σac(A0) of A0 in Δ is given by

σac(A0) ∩ Δ =
⋃

g∈H1/2(Σ)

clac
({

x ∈ Δ : 0 < Im(M(x + i0)g, g) < +∞
})

and, in particular, σac(A0) ∩ Δ = ∅ if and only if for each g ∈ H1/2(Σ) one has 
Im(M(x + i0)g, g) = 0 for almost all x ∈ Δ.

(vi) The singular continuous spectrum of A0 in Δ, σsc(A0) ∩ Δ, is contained in

⋃
1/2

clc
({

x ∈ Δ : Im(M(x + i0)g, g) = +∞, lim
y↘0

y(M(x + iy)g, g) = 0
})

,

g∈H (Σ)
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and, in particular, if for each g ∈ H1/2(Σ) there exist at most countably many 
x ∈ Δ such that Im(M(x + iy)g, g) → +∞ and y(M(x + iy)g, g) → 0 as y ↘ 0 then 
σsc(A0) ∩ Δ = ∅.

The proof of Theorem 4.1 makes use of the following two lemmas and is given at the 
end of this subsection.

Lemma 4.2. Let S be defined as in (4.5) and let

Tu = Liui ⊕ Leue,

domT =
{
ui ⊕ ue ∈ H2(Ωi) ⊕H2(Ωe) : ui|Σ = ue|Σ

}
. (4.8)

Then {L2(Σ), Γ0, Γ1}, where

Γ0,Γ1 : domT → L2(Σ), Γ0u = ∂ui

∂νLi

∣∣∣
Σ

+ ∂ue

∂νLe

∣∣∣
Σ
, Γ1u = u|Σ,

is a quasi boundary triple for S∗ such that A0 = T � ker Γ0 and ran Γ0 = H1/2(Σ). For 
all λ ∈ ρ(A0) ∩ ρ(AD,i) ∩ ρ(AD,e) the corresponding Weyl function coincides with the 
function M in (4.4), and domM(λ) = H1/2(Σ).

Proof. The proof is similar to the proof of [5, Proposition 3.2]. For the convenience of the 
reader we provide the details. In order to show that {L2(Σ), Γ0, Γ1} is a quasi boundary 
triple for S∗ we verify (i)–(iii) in the assumptions of Proposition 2.2. Recall first that by 
the classical trace theorem the mapping

H2(Ωj) → H3/2(Σ) ×H1/2(Σ), uj �→
{
uj |Σ,

∂uj

∂νLj

∣∣∣
Σ

}
, j = i, e,

is onto. Hence, for given ϕ ∈ H1/2(Σ) and ψ ∈ H3/2(Σ) there exist uj ∈ H2(Ωj) such 
that

∂ui

∂νLi

∣∣∣
Σ

= ϕ,
∂ue

∂νLe

∣∣∣
Σ

= 0, and ui|Σ = ψ = ue|Σ,

and it follows ui ⊕ ue ∈ domT , Γ0(ui ⊕ ue) = ϕ, and Γ1(ui ⊕ ue) = ψ. This implies 
that ran(Γ0, Γ1)� = H1/2(Σ) ×H3/2(Σ). In particular, ran(Γ0, Γ1)� is dense in L2(Σ) ×
L2(Σ). Furthermore, C∞

0 (Rn\Σ) is a dense subspace of L2(Rn) which is contained in 
ker Γ0 ∩ ker Γ1. Thus (i) in Proposition 2.2 holds. Next we verify the identity (2.1) for 
u = ui ⊕ ue, v = vi ⊕ ve ∈ domT . With the help of Green’s identity and u|Σ = uj |Σ, 
v|Σ = vj |Σ, j = i, e, we compute
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(Tu, v) − (u,Tv) = (Leue, ve) − (ue,Leve) + (Liui, vi) − (ui,Livi)

=
(
ue|Σ,

∂ve

∂νLe

∣∣∣
Σ

)
−
(

∂ue

∂νLe

∣∣∣
Σ
, ve|Σ

)

+
(
ui|Σ,

∂vi

∂νLi

∣∣∣
Σ

)
−

(
∂ui

∂νLi

∣∣∣
Σ
, vi|Σ

)

=
(
u|Σ,

∂vi

∂νLi

∣∣∣
Σ

+ ∂ve

∂νLe

∣∣∣
Σ

)
−
(

∂ui

∂νLi

∣∣∣
Σ

+ ∂ue

∂νLe

∣∣∣
Σ
, v|Σ

)
= (Γ1u,Γ0v) − (Γ0u,Γ1v).

We have shown that (ii) in Proposition 2.2 holds. Finally it is not difficult to see that 
domA0 = H2(Rn) is contained in ker Γ0, that is, assumption (iii) in Proposition 2.2 is 
satisfied. Therefore we obtain from Proposition 2.2 that T � (ker Γ0∩ker Γ1) is a densely 
defined, closed, symmetric operator in L2(Rn), that {L2(Σ), Γ0, Γ1} is a quasi boundary 
triple for its adjoint and that A0 = T � ker Γ0. In particular, T � ker Γ0 is defined on 
H2(Rn). Hence T � (ker Γ0 ∩ ker Γ1) coincides with the symmetric operator S in (4.5)
and {L2(Σ), Γ0, Γ1} is a quasi boundary triple for T = S∗. It remains to check that the 
corresponding Weyl function has the form (4.4). For this let λ ∈ ρ(A0) ∩ρ(AD,i) ∩ρ(AD,e)
and let uλ = uλ,i ⊕ uλ,e ∈ ker(T − λ), that is, uλ,j ∈ H2(Ωj), j = i, e, uλ,i|Σ = uλ,e|Σ, 
and Ljuλ,j = λuλ,j , j = i, e. Then we have

(
Λi(λ) + Λe(λ)

)
Γ1uλ = ∂uλ,i

∂νLi

∣∣∣
Σ

+ ∂uλ,e

∂νLe

∣∣∣
Σ

= Γ0uλ. (4.9)

Note further that Λi(λ) +Λe(λ) is injective for all λ ∈ ρ(A0) ∩ ρ(AD,i) ∩ ρ(AD,e). In fact, 
assume Γ1uλ ∈ ker(Λi(λ) + Λe(λ)). Then (4.9) implies uλ ∈ ker Γ0 = domA0, and it fol-
lows uλ ∈ ker(A0−λ). Since λ ∈ ρ(A0) we obtain uλ = 0 and, hence, Γ1uλ = 0. Therefore 
it follows from (4.9) that the Weyl function corresponding to {G, Γ0, Γ1} coincides with 
the function M in (4.4). �

In the next lemma it is shown that S satisfies the local simplicity in the assumptions 
of the results in Section 3.

Lemma 4.3. Let A0 be the selfadjoint elliptic operator in (4.2) with spectral measure E(·)
and let S be the symmetric operator in (4.5). Let {L2(Σ), Γ0, Γ1} be the quasi boundary 
triple in Lemma 4.2 and let γ be the corresponding γ-field. Then

E(δ)L2(Rn) = clsp
{
E(δ)γ(ν)g : g ∈ H1/2(Σ), ν ∈ C \ R

}
holds for every open interval δ ⊂ R such that δ ∩ σp(S) = ∅.
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Proof. For j = i, e we consider the densely defined, closed, symmetric operators

Sjuj = Ljuj , domSj =
{
uj ∈ H2(Ωj) : uj |Σ = ∂uj

∂νLj

∣∣∣
Σ

= 0
}
,

in L2(Ωj) and the operators

Tjuj = Ljuj , domTj = H2(Ωj),

in L2(Ωj). It is not difficult to verify that {L2(Σ), Γj
0, Γ

j
1}, where

Γj
0,Γ

j
1 : domTj → L2(Σ), Γj

0uj = uj |Σ, Γj
1uj = − ∂uj

∂νLj

∣∣∣
Σ
,

is a quasi boundary triple for S∗
j , j = i, e; cf. [3, Proposition 4.1]. For λ ∈ ρ(AD,j), 

j = i, e, the corresponding γ-fields are given by

γj(λ) : L2(Σ) ⊃ H3/2(Σ) → L2(Ωj), ϕ �→ γj(λ)ϕ = uλ,j ,

where uλ,j is the unique solution in H2(Ωj) of Ljuj = λuj , uj |Σ = ϕ. It follows in the 
same way as in [8, Proposition 2.2] that Se is simple; the simplicity of Si follows from a 
unique continuation argument, see, e.g. [7, Proposition 2.5]. Therefore we have

L2(Ωj) = clsp
{
γj(ν)g : g ∈ H3/2(Σ), ν ∈ C \ R

}
, j = i, e,

and hence

L2(Rn) = L2(Ωi) ⊕ L2(Ωe)

= clsp
{
γi(μ)g ⊕ γe(ν)h : g, h ∈ H3/2(Σ), μ, ν ∈ C \ R

}
. (4.10)

Here and in the following ⊕ denotes the orthogonality of L2(Ωi) and L2(Ωe) in L2(Rn).
Let now δ ⊂ R be an open interval such that δ ∩ σp(S) = ∅ and let T be as in (4.8). 

Since {
γi(ν)g ⊕ γe(ν)g : g ∈ H3/2(Σ)

}
= ker(T − ν) = ran γ(ν), ν ∈ C \ R, (4.11)

we have to verify that

Hδ := clsp
{
E(δ)(γi(ν)g ⊕ γe(ν)g) : g ∈ H3/2(Σ), ν ∈ C \ R

}
= E(δ)L2(Rn).

We note first that the inclusion Hδ ⊂ E(δ)L2(Rn) is obviously true. For the opposite 
inclusion we conclude from (4.10) that it suffices to verify

E(δ)(γi(μ)g ⊕ 0) ∈ Hδ, g ∈ H3/2(Σ), μ ∈ C \ R, (4.12)
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and

E(δ)(0 ⊕ γe(ν)h) ∈ Hδ, h ∈ H3/2(Σ), ν ∈ C \ R. (4.13)

Let us show the statements in (4.12)–(4.13). We start with (4.13). Let us fix μ ∈ C \R. 
By Lemma 2.4 (ii) we have

γj(ν)h =
(
I + (ν − μ)(AD,j − ν)−1)γj(μ)h, h ∈ H3/2(Σ), ν ∈ C \ R,

j = i, e. From this it follows

Hδ = clsp
{
E(δ)(γi(ν)h⊕ γe(ν)h) : h ∈ H3/2(Σ), ν ∈ C \ R

}
= clsp

{
E(δ)(γi(μ)h⊕ γe(μ)h),

E(δ)
(
(AD,i − ν)−1γi(μ)h⊕ (AD,e − ν)−1γe(μ)h

)
: h ∈ H3/2(Σ), ν ∈ C \ R

}
.

Since AD,i and AD,e are both semibounded from below we may choose λ0 ∈ R such that 
σ(AD,j) ⊂ (λ0, ∞), j = i, e. Recall that the spectrum of AD,i is purely discrete and let 
λ1 < λ2 < · · · be the distinct eigenvalues of AD,i. Then for all η, ε > 0 and k = 0, 1, 2, . . .
the function

E(δ)
[ λk+1−η∫

λk+η

(
(AD,i − (λ + iε))−1 − (AD,i − (λ− iε))−1)γi(μ)h dλ

⊕
λk+1−η∫
λk+η

(
(AD,e − (λ + iε))−1 − (AD,e − (λ− iε))−1)γe(μ)h dλ

]

belongs to Hδ, and as (λk, λk+1) ⊂ ρ(AD,i), Stone’s formula implies

E(δ)
(
0 ⊕ Ee((λk, λk+1))γe(μ)h

)
∈ Hδ, (4.14)

where Ee(·) is the spectral measure of AD,e. Next we show that for the eigenvalues λk, 
k = 1, 2, . . ., of AD,i the property

E(δ)
(
0 ⊕Ee({λk})γe(μ)h

)
∈ Hδ (4.15)

holds. For this consider the element

u = 0 ⊕ Ee({λk})γe(μ)h

for some fixed h ∈ H3/2(Σ). Clearly, as u ∈ ker((AD,i ⊕AD,e) −λk) and as AD,i ⊕AD,e is 
a selfadjoint extension of the symmetric operator S in (4.5) we may write u in the form 
u = uD⊕̃uS with uS ∈ ker(S − λk) and
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uD ∈ ker
(
(AD,i ⊕AD,e) − λk

)
̃ ker(S − λk), (4.16)

where ⊕̃ and ̃ indicate the orthogonality of subspaces in ker((AD,i ⊕AD,e) −λk). Then 
for each v ∈

⋂
ν∈C\R ran(S − ν) and each ν ∈ C \ R one has

(v, uD) = ((S − ν)(S − ν)−1v, uD)

=
(
(S − ν)−1v, ((AD,i ⊕AD,e) − ν)uD

)
= (λk − ν)((S − ν)−1v, uD). (4.17)

Since the limit

y := lim
η↘0

η
(
S − (λk + iη)

)−1
v = lim

η↘0
η
(
(AD,i ⊕AD,e) − (λk + iη)

)−1
v

exists and (
y, (S∗ − λk)w

)
= lim

η↘0
η
((
S − (λk + iη)

)−1
v, (S∗ − λk)w

)
= lim

η↘0
η
(
(S − λk)

(
S − (λk + iη)

)−1
v, w

)
= lim

η↘0
η
[
(v, w) +

(
iη
(
S − (λk + iη)

)−1
v, w

)]
= 0

holds for all w ∈ domS∗ we conclude that

y = lim
η↘0

η
(
S − (λk + iη)

)−1
v ∈

(
ran(S∗ − λk)

)⊥ = ker(S − λk).

In particular, (4.16) implies (y, uD) = 0. Therefore we obtain from the identity (4.17)
with ν = λk + iη in the limit

(v, uD) = −i lim
η↘0

η
((
S − (λk + iη)

)−1
v, uD

)
= −i(y, uD) = 0.

This shows that uD is orthogonal to 
⋂

ν∈C\R ran(S − ν) and hence

uD ∈ clsp
{
ker(S∗ − ν) : ν ∈ C \ R

}
= clsp

{
ker(T − ν) : ν ∈ C \ R

}
.

Therefore (4.11) implies

uD ∈ clsp
{
γi(ν)h⊕ γe(ν)h : h ∈ H3/2(Σ), ν ∈ C \ R

}
. (4.18)

Note that if the eigenvalue λk of AD,i is contained in the interval δ then by assumption 
λk /∈ σp(S) and hence u = uD in this case. If λk /∈ δ then uS ∈ ker(S−λk) ⊂ ker(A0−λk)
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implies that uS is orthogonal to ranE(δ), so that E(δ)uS = 0. Summing up we have for 
any eigenvalue λk, k = 1, 2, . . ., of AD,i that

E(δ)
(
0 ⊕ Ee({λk})γe(μ)h

)
= E(δ)u = E(δ)(uS⊕̃uD) = E(δ)uD ∈ Hδ

by (4.18). We have shown (4.15).
Let m ∈ N. Then we have

Ee((−∞, λm))γe(μ)h =
m−1∑
k=1

Ee({λk})γe(μ)h +
m−1∑
k=0

Ee((λk, λk+1))γe(μ)h

and from (4.14) and (4.15) we conclude

E(δ)
(
0 ⊕Ee(−∞, λm)γe(μ)h

)
∈ Hδ.

Taking the limit m ↗ +∞ we obtain E(δ)(0 ⊕ γe(μ)h) ∈ Hδ. We have proved (4.13).
For (4.12) observe that for μ ∈ C \ R fixed, g ∈ H3/2(Σ) and k = 1, 2, . . .

E(δ)
(
Ei({λk})γi(μ)g ⊕ 0

)
∈ Hδ

can be verified in the same way as (4.15), where Ei(·) is the spectral measure of AD,i. 
Hence for m ∈ N we conclude

E(δ)
(
Ei((−∞, λm))γi(μ)g ⊕ 0

)
∈ Hδ

and in the limit m ↗ +∞ we obtain (4.12).
Now (4.12)–(4.13) together with (4.10) imply the inclusion E(δ)L2(Rn) ⊂ Hδ. This 

completes the proof of Lemma 4.3. �
As a consequence of Lemma 4.3 we obtain the following corollary.

Corollary 4.4. The operator S in (4.5) is simple if and only if σp(S) = ∅.

Proof of Theorem 4.1. Let {L2(Σ), Γ0, Γ1} be the quasi boundary triple for T = S∗ in 
Lemma 4.2. Then T � ker Γ0 corresponds to the selfadjoint elliptic differential operator A0
in (4.2) and the associated Weyl function coincides with the operator function M in (4.4). 
Taking Lemma 4.3 into account, item (i) follows from Corollary 3.4 and items (ii)–(iv) are 
consequences of Theorem 3.5 and Proposition 3.6 when choosing an open interval δ � λ

with δ ∩ σp(S) = ∅. Moreover, item (v) follows from Theorem 3.8 and Corollary 3.11, 
and item (vi) is due to Theorem 3.12 and Corollary 3.15. �

We point out that in the case that the symmetric operator S is simple the assertions 
in Theorem 4.1 hold for all λ, μ ∈ R. On the other hand, without further assumptions, it 
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may happen that S possesses eigenvalues. In this case at least the parts of the eigenspaces 
of A0 which do not belong to S can be characterized in terms of the function M ; cf. The-
orem 3.2. The next examples illustrate that a proper choice of the interface Σ may avoid 
eigenvalues of S.

Example 4.5. Assume that L acts as the Laplacian outside some compact set K ⊂ R
n and 

choose Σ to be the boundary of any smooth, bounded domain Ωi ⊃ K. Then S does not 
have any eigenvalues. Indeed, if u ∈ H2(Rn) satisfies Lu = λu on Rn and u|Σ = 0 then 
u|Ωe belongs to ker(AD,e − λ) and must vanish. Then a unique continuation argument 
implies u = 0. Hence S is simple by Corollary 4.4 and the assertions in Theorem 4.1 hold 
for all λ, μ ∈ R.

Example 4.6. Let the coefficients of L be chosen in such a way that for some bounded, 
smooth domain Ωi ⊂ R

n the operator AD,i in L2(Ωi) is strictly positive; for instance 
this happens if − 2

E

∑n
j=1 ‖aj‖2

∞ + ess inf a ≥ 0 on Ωi, where E is an ellipticity constant 
for L, see (4.1). If we choose Σ = ∂Ωi then S has no non-positive eigenvalues, otherwise 
Su = λu for some λ ≤ 0 and u ∈ domS with u �= 0, and a unique continuation argument 
yields that ui is nontrivial, thus ui is an eigenfunction of AD,i corresponding to the 
eigenvalue λ ≤ 0, a contradiction. Hence in this situation all non-positive eigenvalues 
of A0 and the corresponding eigenspaces can be described completely in terms of the 
function M .

4.2. A block operator matrix Weyl function associated with a decoupled system

In this section we consider a different Weyl function for the operator A0, which cor-
responds to a symmetric operator which is always simple, independently of the choice of 
the interface Σ. This symmetric operator is the orthogonal sum of the minimal symmetric 
realizations Si and Se of L in L2(Ωi) and L2(Ωe), respectively, in the proof of Lemma 4.3, 
and hence an infinite dimensional restriction of the symmetric operator in (4.5); it can be 
viewed as a decoupled symmetric operator. Let Λi and Λe be the Dirichlet-to-Neumann 
maps for the interior and exterior elliptic boundary value problem, respectively, defined 
in (4.3), and let

AN,eue = Leue, domAN,e =
{
ue ∈ H2(Ωe) : ∂ue

∂νLe

∣∣∣
Σ

= 0
}
,

be the selfadjoint realization of Le in L2(Ωe) with Neumann boundary conditions. In 
Lemma 4.8 below it will turn out that the function

λ �→ M̃(λ) =
(

Λi(λ) 1
1 −Λe(λ)−1

)−1

in L2(Σ) × L2(Σ) (4.19)

is well defined on ρ(A0) ∩ ρ(AD,i) ∩ ρ(AN,e) and can be viewed as the Weyl function of a 
quasi boundary triple for (Si ⊕ Se)∗, where A0 in (4.2) corresponds to the kernel of the 
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first boundary mapping. We mention that a scalar analog of the function M̃ in (4.19)
appears in connection with λ-dependent Sturm–Liouville boundary value problems in 
[22] (see also [60]), in [36,38,42] for Hamiltonian systems, and in more general abstract 
form in [6,17,19].

In the present setting Lemma 4.8 and Lemma 4.9 below combined with the results 
in Section 3 lead to an improvement of items (i)–(iv) in Theorem 4.1. The assertions 
(v) and (vi) in Theorem 4.1 remain valid with M and H1/2(Σ) replaced by M̃ and 
H1/2(Σ) ×H3/2(Σ), respectively.

Theorem 4.7. Let A0, Σ, and M̃ be as above and let λ ∈ R. Then the following assertions 
hold.

(i) λ ∈ σp(A0) if and only if RλM̃ := s- limη↘0 iηM̃(λ + iη) �= 0; if the multiplicity of 
the eigenvalue λ is finite then the mapping

τ : ker(A0 − λ) → ranRλM̃, u �→
(

ui|Σ
∂ue
∂νLe

∣∣
Σ

)
, (4.20)

is bijective; if the multiplicity of the eigenvalue λ is infinite then the mapping

τ : ker(A0 − λ) → clτ
(
ranRλM̃

)
, u �→

(
ui|Σ
∂ue
∂νLe

∣∣
Σ

)
, (4.21)

is bijective, where clτ denotes the closure in the normed space ran τ , equipped with 
the norm in L2(Σ) × L2(Σ).

(ii) λ is an isolated eigenvalue of A0 if and only if λ is a pole in the strong sense of M̃ . 
In this case (4.20) and (4.21) are bijective mappings and RλM̃ = Resλ M̃ .

(iii) λ ∈ ρ(A0) if and only if M̃ can be continued analytically into λ.
(iv) λ ∈ σc(A0) if and only if s- limη↘0 iηM̃(λ + iη) = 0 and M̃ cannot be continued 

analytically into λ.
(v) The absolutely continuous spectrum σac(A0) of A0 in Δ is given by

σac(A0) ∩ Δ =
⋃

g∈H1/2(Σ)×H3/2(Σ)

clac
({

x ∈ Δ : 0 < Im(M̃(x + i0)g, g) < +∞
})

and, in particular, σac(A0) ∩ Δ = ∅ if and only if for each g ∈ H1/2(Σ) ×H3/2(Σ)
one has Im(M̃(x + i0)g, g) = 0 for almost all x ∈ Δ.

(vi) The singular continuous spectrum of A0 in Δ, σsc(A0) ∩ Δ, is contained in

⋃
1/2 3/2

clc
({

x ∈ Δ : Im(M̃(x + i0)g, g) = +∞, lim
y↘0

y(M̃(x + iy)g, g) = 0
})

,

g∈H (Σ)×H (Σ)
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and, in particular, if for each g ∈ H1/2(Σ) ×H3/2(Σ) there exist at most countably 
many x ∈ Δ such that Im(M̃(x + iy)g, g) → +∞ and y(M̃(x + iy)g, g) → 0 as 
y ↘ 0 then σsc(A0) ∩ Δ = ∅.

We provide a quasi boundary triple such that M̃ in (4.19) is the corresponding Weyl 
function. As indicated above we make use of the densely defined, closed, symmetric 
operators

Sjuj = Ljuj , domSj =
{
uj ∈ H2(Ωj) : uj |Σ = ∂uj

∂νLj

∣∣∣
Σ

= 0
}
,

in L2(Ωj) for j = i, e, which appeared already in the proof of Lemma 4.3 and which are 
both simple. Besides the operators Sj also the operators

Tjuj = Ljuj , domTj = H2(Ωj),

appear in the formulation of the next lemma.

Lemma 4.8. The triple {L2(Σ) ×L2(Σ), ̃Γ0, ̃Γ1}, where Γ̃0, ̃Γ1 : dom(Ti ⊕ Te) → L2(Σ) ×
L2(Σ) and

Γ̃0u =
( ∂ui

∂νLi

∣∣
Σ + ∂ue

∂νLe

∣∣
Σ

ui|Σ − ue|Σ

)
, Γ̃1u =

(
ui|Σ
∂ue
∂νLe

∣∣
Σ

)
,

is a quasi boundary triple for S∗
i ⊕ S∗

e such that (Ti ⊕ Te) � ker Γ̃0 coincides with the 
operator A0 in (4.2) and ran Γ̃0 = H1/2(Σ) × H3/2(Σ). For all λ ∈ ρ(A0) ∩ ρ(AD,i) ∩
ρ(AN,e) the corresponding Weyl function coincides with the function M̃ in (4.19).

Proof. The proof of Lemma 4.8 follows the same strategy as the proof of Lemma 4.2
and some details are left to the reader. Well known properties of traces of H2-functions 
yield

ran(Γ̃0, Γ̃1)� =
(
H1/2(Σ) ×H3/2(Σ)

)
×

(
H3/2(Σ) ×H1/2(Σ)

)
,

which is dense in (L2(Σ) ×L2(Σ)) × (L2(Σ) ×L2(Σ)). Moreover, C∞
0 (Rn \Σ) is a dense 

subspace of L2(Rn) which is contained in ker Γ̃0 ∩ ker Γ̃1. Green’s identity implies that 
(2.1) holds, and as H2(Rn) is contained in ker Γ̃0 the selfadjoint operator A0 is contained 
in (Ti ⊕ Te) � ker Γ̃0. Hence the assumptions (i)–(iii) in Proposition 2.2 are satisfied and 
it follows that {L2(Σ) × L2(Σ), ̃Γ0, ̃Γ1} is a quasi boundary triple for S∗

i ⊕ S∗
e such that 

A0 = (Ti ⊕ Te) � ker Γ̃0.
Let us verify that the corresponding Weyl function is given by M̃ in (4.19). For this 

let λ ∈ ρ(A0) ∩ ρ(AD,i) ∩ ρ(AN,e) and let uλ = uλ,i ⊕ uλ,e ∈ dom(Ti ⊕ Te) be such that 
Ljuλ,j = λuλ,j , j = i, e. Then we have
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(
Λi(λ) 1

1 −Λe(λ)−1

)
Γ̃1uλ =

(
Λi(λ) 1

1 −Λe(λ)−1

)(
uλ,i|Σ
∂uλ,e
∂νLe

∣∣
Σ

)
=

( Λi(λ)uλ,i|Σ + ∂uλ,e
∂νLe

∣∣
Σ

uλ,i|Σ − Λe(λ)−1 ∂uλ,e
∂νLe

∣∣
Σ

)
=

( ∂uλ,i
∂νLi

∣∣
Σ + ∂uλ,e

∂νLe

∣∣
Σ

uλ,i|Σ − uλ,e|Σ

)
= Γ̃0uλ.

By the definition of the Weyl function we obtain that the function M̃ in (4.19) coincides 
with the Weyl function associated to the quasi boundary triple {L2(Σ) ×L2(Σ), ̃Γ0, ̃Γ1}
for all λ ∈ ρ(A0) ∩ ρ(AD,i) ∩ ρ(AN,e). �

The next lemma is a direct consequence of the fact that the symmetric operators Si
and Se are simple; cf. [7, Proposition 2.5] and [8, Proposition 2.2].

Lemma 4.9. The symmetric operator Si ⊕ Se is simple.

Proof of Theorem 4.7. Let {L2(Σ) × L2(Σ), ̃Γ0, ̃Γ1} be the quasi boundary triple in 
Lemma 4.8. Then (Ti ⊕Te) � ker Γ̃0 corresponds to the selfadjoint elliptic differential op-
erator A0 in (4.2) and the associated Weyl function coincides with the operator function 
M̃ in (4.19). Taking Lemma 4.9 into account, item (i) follows from Corollary 3.4 and 
items (ii)–(iv) are consequences of Theorem 3.5 and Proposition 3.6. Item (v) follows 
from Theorem 3.8 and Corollary 3.11, and item (vi) is a consequence of Theorem 3.12
and Corollary 3.15. �
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