
Inverse Problems

PAPER • OPEN ACCESS

Inverse problems with partial data for elliptic operators on unbounded
Lipschitz domains
To cite this article: Jussi Behrndt and Jonathan Rohleder 2020 Inverse Problems 36 035009

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.27.151.43 on 22/07/2020 at 11:27

https://doi.org/10.1088/1361-6420/ab603d
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssQBgnsf0jc8MRURs_VfStJ_Wqz50Kfv68fDqlMI86qQ7NjEjVCtqINCh9mpW_NENyuj3bJHpRwJmRXaR4IF9khbbhELPq3bxiUSKKSVM41E0KWcbRlN1eH59lGJYLgclPCTAiC1D249OGeTCeICSPxGa6bDY_FL-boJKLcEp3_0734GciLCHAk-t_YamxiHYua2Zpx9zxRyxzJoM58x4E2XmOWV6zYyGdPnjOUDQbhAnwnNgXg&sig=Cg0ArKJSzN25cyJn7uyB&adurl=http://iopscience.org/books


1

Inverse Problems

Inverse problems with partial data for 
elliptic operators on unbounded Lipschitz 
domains

Jussi Behrndt1  and Jonathan Rohleder2,3

1  Institut für Angewandte Mathematik, Technische Universität Graz, Steyrergasse 30, 
8010 Graz, Austria
2  Stockholms universitet, Matematiska institutionen, 10691 Stockholm, Sweden

E-mail: behrndt@tugraz.at and jonathan.rohleder@math.su.se

Received 6 August 2019, revised 27 November 2019
Accepted for publication 10 December 2019
Published 11 February 2020

Abstract
For a second order formally symmetric elliptic differential expression we show 
that the knowledge of the Dirichlet-to-Neumann map or Robin-to-Dirichlet map 
for suitably many energies on an arbitrarily small open subset of the boundary 
determines the self-adjoint operator with a Dirichlet boundary condition or 
with a (possibly non-self-adjoint) Robin boundary condition uniquely up to 
unitary equivalence. These results hold for general Lipschitz domains, which 
can be unbounded and may have a non-compact boundary, and under weak 
regularity assumptions on the coefficients of the differential expression.

Keywords: Dirichlet-to-Neumann map, elliptic differential operator,  
inverse problem, Calderón problem, Gelfand problem

1.  Introduction

Let L be a uniformly elliptic, formally symmetric differential expression of the form

L = −
n∑

j,k=1

∂jajk∂k +

n∑
j=1

(
aj∂j − ∂jaj

)
+ a� (1.1)

on a possibly unbounded Lipschitz domain Ω. For appropriate λ ∈ C, the corresponding 
Dirichlet-to-Neumann map is given by
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M(λ) : H1/2(∂Ω) → H−1/2(∂Ω), uλ|∂Ω �→ ∂Luλ|∂Ω,

where uλ ∈ H1(Ω) solves the differential equation Lu = λu, uλ|∂Ω denotes the trace of uλ on 
the boundary ∂Ω and ∂Luλ|∂Ω is the conormal derivative of uλ on ∂Ω with respect to L. In 
the present paper it will be shown that the partial knowledge of M(λ) on an arbitrarily small 
nonempty, relatively open subset ω  of ∂Ω for a set of points λ with an accumulation point 
determines the self-adjoint Dirichlet operator

ADu = Lu, dom AD =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0
}

,

and other realizations of L with (possibly non-self-adjoint) Robin boundary conditions 
uniquely up to unitary equivalence in L2(Ω). We impose weak regularity assumptions on 
the coefficients, that is, ajk, aj : Ω → C are bounded Lipschitz functions, 1 � j, k � n, and 
a : Ω → R is measurable and bounded. We emphasize that Ω is an unbounded Lipschitz 
domain without any additional geometric restrictions, and that ω  may be a bounded subset of 
∂Ω even in the case that ∂Ω is unbounded.

The interplay between elliptic differential operators and their corresponding Dirichlet-
to-Neumann maps is of particular interest for spectral theory and inverse problems, among 
them the famous Calderón problem, the multidimensional Gelfand inverse boundary spectral 
problem, and inverse scattering problems on Riemannian manifolds. In his famous paper [20] 
Calderón asked whether the uniformly positive coefficient γ  in the differential expression 
−∇ · γ∇ on a bounded domain Ω is uniquely determined by the Dirichlet-to-Neumann map 
on the boundary ∂Ω or on parts of the boundary; this corresponds to the case ajk = γδjk , 
aj   =  a  =  0 in (1.1), and γ  describes the isotropic conductivity of an inhomogeneous body. 
There is an extensive literature on this topic and uniqueness of the coefficient γ  from the 
knowledge of M(0) has been shown under rather general regularity assumptions, see, e.g. 
[7, 60, 61, 63, 73] and [19, 35, 45, 62] for results with partial data, as well as [3, 23, 55, 71, 
72, 74] for the more general case of an anisotropic conductivity (aj   =  a  =  0 in (1.1)) and the 
surveys [75–77]. If Ω is an unbounded domain the situation is much more difficult since, very 
roughly speaking, the spectrum contains continuous parts. For conductivities that are constant 
outside compact sets, special unbounded domains (infinite slabs or transversally anisotropic 
geometries), and magnetic Schrödinger operators, uniqueness results were shown in [21, 22, 
24, 34, 44, 46–48, 53, 54, 56, 65, 69].

In Gelfand’s inverse boundary spectral problem—which is a variant of the inverse prob-
lems discussed in the present paper for bounded domains—one reconstructs from the given 
boundary spectral data on a compact manifold (consisting of eigenvalues and boundary data 
of eigenfunctions of a self-adjoint elliptic operator) the manifold and its metric (up to gauge 
equivalence) with the help of the boundary control method; see [2, 12–15, 41, 42, 50] and 
[49, 51] for the non-self-adjoint case. There is also a strong recent interest in closely related 
problems in inverse scattering theory on compact and non-compact Riemannian manifolds; 
here the main theme is the reconstruction of the manifold and its Riemannian metric from the 
knowledge of the scattering matrix for the Laplace–Beltrami operator, see e.g. [15, 36–40, 
42, 52].

The inverse problems discussed in this paper are of a somewhat more abstract, but also 
more general nature. In sections 3 and 4 it will be shown that the knowledge of the Dirichlet-
to-Neumann map for a suitable set of points λ with an accumulation point on an arbitrarily 
small open subset of the boundary determines the self-adjoint Dirichlet operator and other 
non-self-adjoint realizations with mixed Dirichlet–Robin boundary conditions up to unitary 
equivalence. We treat here the general case of an unbounded Lipschitz domain without any 
additional geometric restrictions and assume weak regularity assumptions on the coefficients 
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of the elliptic differential expression. We emphasize that unitary equivalence determines the 
spectral properties, so that, in particular, the isolated and embedded eigenvalues, continuous, 
essential, absolutely continuous and singular continuous spectra are uniquely determined by 
the partial knowledge of the Dirichlet-to-Neumann map. Finally, in section 5 another variant 
of our uniqueness result is provided for self-adjoint Robin realizations, where instead of the 
Dirichlet-to-Neumann map a Robin-to-Dirichlet map on an open subset of the boundary is 
considered. The main results in this paper complement earlier results for bounded domains 
from [9], see also [64], where the uniqueness problem is substantially easier since all spectral 
singularities are discrete eigenvalues, and hence poles of the Dirichlet-to-Neumann map. Our 
proofs in the present paper are based on more elaborate methods from the extension theory of 
symmetric operators and the spectral theory of elliptic operators; related techniques were also 
developed and used in [10, 11] for the spectral analysis of Schrödinger and more general ellip-
tic operators. In this context we also refer the reader to [1, 27, 28, 30–33, 57, 58, 66–68] for 
some recent related papers on spectral theory of elliptic differential operators, to the classical 
contributions [29, 78], and to [4–6, 16–18, 26] for operator-theoretic approaches to Dirichlet-
to-Neumann and Robin-to-Dirichlet maps.

2.  Preliminaries

In this section we provide some preliminaries on elliptic differential operators on possibly 
unbounded Lipschitz domains. Throughout this paper we assume that Ω ⊂ Rn , n � 2, is a 
connected Lipschitz domain in the sense of, e.g. [70, VI.3], that is, Ω is an open, connected set 
with a nonempty boundary ∂Ω and there exist ε > 0, N ∈ N, M  >  0 and (finitely or infinitely 
many) open sets U1, U2, . . . with the following properties.

	 (i)	�For each x ∈ ∂Ω there exists j  such that the open ball B(x, ε) of radius ε centered at x is 
contained in Uj .

	(ii)	�No point of Rn is contained in more than N of the Uj .
	(iii)	�For each j  there exists a function ζj : Rn−1 → R with

|ζj(x)− ζj(y)| � M|x − y|, x, y ∈ Rn−1,

		 such that (up to a possible rotation of coordinates) the Lipschitz hypographs

Ωj :=
{
(x1, . . . , xn)

� ∈ Rn : xn < ζj(x1, . . . , xn−1)
}

		 satisfy Uj ∩ Ω = Uj ∩ Ωj .

We are particularly interested in the case that Ω is unbounded. Note that the boundary ∂Ω may 
be noncompact. It can be described by the graphs of countably many Lipschitz functions with 
a joint Lipschitz constant.

In the following we denote by Hs(Ω) and Ht(∂Ω) the Sobolev spaces of order s ∈ R on Ω 
and of order t ∈ [−1, 1] on its boundary ∂Ω, respectively. We point out that under the above 
assumptions on Ω many typical properties of Sobolev spaces on bounded Lipschitz domains 
and their boundaries remain true. For instance, by the same proofs as provided in [59, theo-
rem 3.37 and theorem 3.40] for bounded domains, one verifies that there exists a continuous,  
surjective trace operator from H1(Ω) onto H1/2(∂Ω) and that its kernel coincides with H1

0(Ω), 
the closure of C∞

0 (Ω) in H1(Ω). In the following we denote the trace of a function u ∈ H1(Ω) 
by u|∂Ω.
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On Ω let us consider the differential expression L in (1.1) satisfying the uniform ellipticity 
condition

n∑
j,k=1

ajk(x)ξjξk � E
n∑

k=1

ξ2
k , ξ = (ξ1, . . . ξn)

� ∈ Rn, x ∈ Ω,� (2.1)

for some E  >  0. We assume that

ajk, aj : Ω → C are bounded Lipschitz functions, 1 � j, k � n,� (2.2)

ajk(x) = akj(x), x ∈ Ω,� (2.3)

and that

a : Ω → R is measurable and bounded.� (2.4)

In the following we make use of the conormal derivative (with respect to L). For a function 
u ∈ H1(Ω) such that Lu ∈ L2(Ω) in the sense of distributions, the conormal derivative of u 
at ∂Ω with respect to L is defined as the unique ψ ∈ H−1/2(∂Ω) which satisfies the identity

a[u, v] = (Lu, v)L2(Ω) + (ψ, v|∂Ω)∂Ω

for all v ∈ H1(Ω), where (·, ·)L2(Ω) is the inner product in L2(Ω), (·, ·)∂Ω denotes the (sesqui-
linear) duality of H−1/2(∂Ω) and H1/2(∂Ω), and

a[u, v] =
∫

Ω

( n∑
j,k=1

ajk∂ku · ∂jv +

n∑
j=1

(
aj∂ju · v + aju · ∂jv

)
+ auv

)
dx;� (2.5)

see [59, lemma 4.3]. We shall use the notation ψ = ∂Lu|∂Ω.

3.  An inverse problem for the Dirichlet operator with partial Dirichlet-to-Neu-
mann data

In this section we prove that the partial knowledge of the Dirichlet-to-Neumann map deter-
mines the Dirichlet realization of L in L2(Ω) uniquely up to unitary equivalence. Recall first 
that (2.2)–(2.4) ensure that the Dirichlet operator

ADu = Lu, dom AD =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0
}

,� (3.1)

is a semibounded self-adjoint operator in L2(Ω) since it corresponds to the closed semi-
bounded sesquilinear form

aD[u, v] := a[u, v], u, v ∈ dom aD = H1
0(Ω),

via the first representation theorem; see [43, theorem VI.2.1] and [25, chapter VI].
In order to define the Dirichlet-to-Neumann map associated with L on the boundary of 

the unbounded Lipschitz domain Ω we need the following lemma, which is well known for 
bounded domains and remains valid in the unbounded case. For the convenience of the reader 
we provide a short proof. By ρ(AD) we denote the resolvent set of AD, i.e. the complement of 
the spectrum.

Lemma 3.1.  For each λ ∈ ρ(AD) and each ϕ ∈ H1/2(∂Ω) the boundary value problem

Lu = λu, u|∂Ω = ϕ,� (3.2)

has a unique solution uλ ∈ H1(Ω).
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Proof.  Let λ ∈ ρ(AD) and ϕ ∈ H1/2(∂Ω). Since the trace map is surjective from H1(Ω) 
to H1/2(∂Ω) there exists (a non-unique) w ∈ H1(Ω) with w|∂Ω = ϕ. Let a be the symmetric 
sesquilinear form on H1(Ω) defined in (2.5). It follows from (2.2) and (2.4) that there exists 
C  >  0 such that

|a[u, v]| � C‖u‖H1(Ω)‖v‖H1(Ω), u, v ∈ H1(Ω),� (3.3)

where ‖ · ‖H1(Ω) denotes the norm in H1(Ω). In particular, the antilinear mapping

Fw,ζ : H1
0(Ω) → C, v �→ a[w, v] + ζ(w, v)L2(Ω),

is bounded on H1
0(Ω) for each ζ ∈ R; hence Fw,ζ  belongs to the antidual of H1

0(Ω). Moreover, 
it follows from (3.3) and the ellipticity condition (2.1) that we can fix ζ0 ∈ R such that

a[u, v] + ζ0(u, v)L2(Ω), u, v ∈ H1
0(Ω),� (3.4)

defines an inner product on H1
0(Ω) with an induced norm that is equivalent to the norm 

‖ · ‖H1(Ω). In particular, H1
0(Ω) equipped with the inner product in (3.4) is a Hilbert space. By 

the Fréchet–Riesz theorem there exists a unique u0 ∈ H1
0(Ω) such that

a[u0, v] + ζ0(u0, v)L2(Ω) = Fw,ζ0(v) = a[w, v] + ζ0(w, v)L2(Ω), v ∈ H1
0(Ω).

Consequently, a[u0 − w, v] + ζ0(u0 − w, v)L2(Ω) = 0 for all v ∈ H1
0(Ω), which implies 

L(u0 − w) + ζ0(u0 − w) = 0 in the distributional sense. For λ ∈ ρ(AD) it follows, in par
ticular, that (L − λ)(u0 − w) ∈ L2(Ω). Let us set

uλ = u0 − w − (AD − λ)−1(L − λ)(u0 − w) ∈ H1(Ω).

Then uλ|∂Ω = w|∂Ω = ϕ and (L − λ)uλ = 0. Thus uλ is a solution of (3.2).

In order to prove uniqueness let vλ ∈ H1(Ω) be a further solution of (3.2). Then we have

L(uλ − vλ) = λ(uλ − vλ) and (uλ − vλ)|∂Ω = 0,

that is, (uλ − vλ) ∈ ker(AD − λ). Since λ ∈ ρ(AD), it follows uλ = vλ.� □ 

Lemma 3.1 ensures that the Dirichlet-to-Neumann map in the following definition is 
well-defined.

Definition 3.2.  For λ ∈ ρ(AD) the Dirichlet-to-Neumann map M(λ) is defined by

M(λ) : H1/2(∂Ω) → H−1/2(∂Ω), M(λ)uλ|∂Ω := ∂Luλ|∂Ω,

for each uλ ∈ H1(Ω) satisfying Luλ = λuλ.

For λ ∈ ρ(AD) we will also make use of the Poisson operator γ(λ) defined by

γ(λ) : H1/2(∂Ω) → L2(Ω), γ(λ)uλ|∂Ω := uλ,� (3.5)

for any uλ ∈ H1(Ω) such that Luλ = λuλ; see lemma 3.1.

J Behrndt and J Rohleder﻿Inverse Problems 36 (2020) 035009
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We collect some properties of the Dirichlet-to-Neumann map and the Poisson operator in 
the following lemma. Its proof is analogous to the case of a bounded Lipschitz domain carried 
out in [9, lemma 2.4].

Lemma 3.3.  For λ,µ ∈ ρ(AD) let γ(λ), γ(µ) be the Poisson operators and let M(λ), M(µ) 
be the Dirichlet-to-Neumann maps. Then the following assertions hold.

	 (i)	�γ(λ) is bounded and its adjoint γ(λ)∗ : L2(Ω) → H−1/2(∂Ω) is given by

γ(λ)∗u = −∂L
(
(AD − λ)−1u

)
|∂Ω, u ∈ L2(Ω).

	(ii)	�The identity

γ(λ) =
(
I + (λ− µ)(AD − λ)−1)γ(µ)

		 holds.
	(iii)	�M(λ) is a bounded operator from H1/2(∂Ω) to H−1/2(∂Ω), the operator function 

λ �→ M(λ) is holomorphic on ρ(AD), and

(Imµ)‖γ(µ)ϕ‖2
L2(Ω) = −Im(M(µ)ϕ,ϕ)∂Ω

		 holds for all ϕ ∈ H1/2(∂Ω).

The next theorem is the main result in this section; one can view it as a generalized variant 
of the multidimensional Gelfand inverse boundary spectral problem with partial data on arbi-
trary unbounded Lipschitz domains. Instead of determining coefficients up to gauge equiva-
lence here an operator uniqueness result is obtained. Roughly speaking theorem 3.4 states that 
the knowledge of the Dirichlet-to-Neumann map M(λ) on a nonempty open subset ω  of the 
boundary ∂Ω for sufficiently many λ determines the Dirichlet operator uniquely up to unitary 
equivalence. For bounded Lipschitz domains such a result was shown in [9], see also [64].

Theorem 3.4.  Let L1,L2 be two uniformly elliptic differential expressions on Ω of the 
form (1.1) with coefficients ajk,1, aj,1, a1 and ajk,2, aj,2, a2, respectively, satisfying (2.2)–(2.4). 
Denote by AD,1, AD,2 and M1(λ), M2(λ) the corresponding self-adjoint Dirichlet operators 
and Dirichlet-to-Neumann maps, respectively. Assume that ω ⊂ ∂Ω is an open, nonempty set 
such that

(M1(λ)ϕ,ϕ)∂Ω = (M2(λ)ϕ,ϕ)∂Ω, ϕ ∈ H1/2(∂Ω), supp ϕ ⊂ ω,� (3.6)

holds for all λ ∈ D, where D ⊂ ρ(AD,1) ∩ ρ(AD,2) is a set with an accumulation point in 
ρ(AD,1) ∩ ρ(AD,2). Then there exists a unitary operator U in L2(Ω) such that

AD,2 = UAD,1U∗� (3.7)

holds.

Before we provide a proof of the theorem, let us point out that unitary equivalence of self-
adjoint operators implies that their spectra coincide.

Corollary 3.5.  Let the assumptions be as in theorem 3.4. Then µ ∈ R belongs to the point 
(discrete, essential, continuous, absolutely continuous, singular continuous) spectrum of AD,1 
if and only if µ belongs to the point (discrete, essential, continuous, absolutely continuous, 
singular continuous) spectrum of AD,2, respectively.
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Proof of theorem 3.4.  The proof will be carried out in two steps. In the first step an iso-
metric operator defined on a subspace of L2(Ω) is constructed; this step follows the strategy of 
the proof of [9, theorem 1.3] but is given here for completeness. In the second step we show 
that this operator extends to a unitary operator such that (3.7) holds.

	Step 1.	 Let L1, L2 be differential expressions as in the theorem and let AD,1, AD,2 and 
M1(λ), M2(λ) be the corresponding Dirichlet operators and Dirichlet-to-Neumann maps, 
respectively. Moreover, denote by γ1(λ) and γ2(λ) the corresponding Poisson operators 
as in (3.5). Assume that (3.6) holds for all λ ∈ D. Since (Mi(·)ϕ,ϕ)∂Ω is holomorphic on 
ρ(AD,i) for all ϕ ∈ H1/2(∂Ω) with supp ϕ ⊂ ω, i = 1, 2, and D has an accumulation point in 
ρ(AD,1) ∩ ρ(AD,2), it follows that

(M1(λ)ϕ,ϕ)∂Ω = (M2(λ)ϕ,ϕ)∂Ω, ϕ ∈ H1/2(∂Ω), supp ϕ ⊂ ω,

holds for all λ ∈ ρ(AD,1) ∩ ρ(AD,2). With lemma 3.3 (iii) for all µ ∈ C \ R and all ϕ ∈ H1/2(∂Ω) 
with suppϕ ⊂ ω we obtain

‖γ1(µ)ϕ‖2
L2(Ω) = − Im(M1(µ)ϕ,ϕ)∂Ω

Imµ

= − Im(M2(µ)ϕ,ϕ)∂Ω
Imµ

= ‖γ2(µ)ϕ‖2
L2(Ω).

� (3.8)

Let us define a linear mapping V  in L2(Ω) on the domain

dom V = span
{
γ1(µ)ϕ : ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R

}
� (3.9)

by setting

Vγ1(µ)ϕ = γ2(µ)ϕ, ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R,� (3.10)

and extending it by linearity to all of dom V . It follows from (3.8) that V  is a well-defined, 
isometric operator in L2(Ω) with

ranV = span
{
γ2(µ)ϕ : ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R

}
.

Moreover, if we fix λ ∈ C \ R then by lemma 3.3 (ii) we have ran(AD,1 − λ)−1γ1(µ) ⊂ dom V  
and

V(AD,1 − λ)−1γ1(µ)ϕ = V
γ1(λ)ϕ− γ1(µ)ϕ

λ− µ
=

γ2(λ)ϕ− γ2(µ)ϕ

λ− µ

= (AD,2 − λ)−1γ2(µ)ϕ = (AD,2 − λ)−1Vγ1(µ)ϕ

for all µ ∈ C \ R with µ �= λ and all ϕ ∈ H1/2(∂Ω) with suppϕ ⊂ ω. By linearity this implies

V(AD,1 − λ)−1 � Hλ = (AD,2 − λ)−1V � Hλ,� (3.11)

where Hλ is the subspace of dom V  given by

Hλ = span
{
γ1(µ)ϕ : ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R,µ �= λ

}
.� (3.12)

Step 2. Let us show that the linear space dom V  in (3.9) is dense in L2(Ω). For this choose 
a Lipschitz domain Ω̃ such that Ω ⊂ Ω̃, ∂Ω \ ω ⊂ ∂Ω̃, and Ω̃ \ Ω contains an open ball 
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O, and such that L1 admits a uniformly elliptic, formally symmetric extension L̃1 to Ω̃ with 
coefficients satisfying (2.2)–(2.4) on Ω̃. Let ÃD,1 denote the self-adjoint Dirichlet operator 
associated with L̃1 in L2(Ω̃),

ÃD,1ũ = L̃1ũ, dom ÃD,1 =
{

ũ ∈ H1(Ω̃) : L̃1ũ ∈ L2(Ω̃), ũ|∂Ω̃ = 0
}

.

Since ÃD,1 is semibounded from below, we can assume without loss of generality that this 
operator has a positive lower bound η. In fact, when a constant is added to the zero order term 
of L1 (and L̃1) the linear space dom V  in (3.9) remains the same.
		 For each ṽ ∈ L2(Ω̃) such that ṽ  vanishes on Ω we define

ũµ,̃v = (ÃD,1 − µ)−1ṽ, µ ∈ C \ R.

Moreover, denote by uµ,̃v  the restriction of ũµ,̃v  to Ω. Then uµ,̃v ∈ H1(Ω), L1uµ,̃v = µuµ,̃v , 
and supp (uµ,̃v|∂Ω) ⊂ ω, that is, with ϕ := uµ,̃v|∂Ω ∈ H1/2(∂Ω) we have uµ,̃v = γ(µ)ϕ and 
suppϕ ⊂ ω; in particular, uµ,̃v ∈ dom V  holds for all µ ∈ C \ R and all ṽ ∈ L2(Ω̃) with 
ṽ|Ω = 0.

Let u ∈ L2(Ω) such that u is orthogonal to dom V . Then the extension ũ  of u by zero to Ω̃ 
satisfies

0 = (u, uµ,̃v)L2(Ω) =
(
ũ, (ÃD,1 − µ)−1ṽ

)
L2(Ω̃)

=
(
(ÃD,1 − µ)−1ũ, ṽ

)
L2(Ω̃)

for all µ ∈ C \ R and all ṽ ∈ L2(Ω̃) with ṽ|Ω = 0. Hence
(
(ÃD,1 − µ)−1ũ

)∣∣
Ω̃\Ω = 0, µ ∈ C \ R.� (3.13)

Following an idea from [8, section 3] we define the operator semigroup

T(t) = e−t
√

ÃD,1 , t � 0,

generated by the square root of ÃD,1. Then t �→ T(t)ũ is twice differentiable with

∂2
t T(t)ũ = ÃD,1T(t)ũ, t > 0,

from which we conclude
(
− ∂2

t + L̃1
)
T(t)ũ = 0, x ∈ Ω̃, t > 0,� (3.14)

in the distributional sense. Note that

(x, t) �→
(
e−t

√
ÃD,1 ũ

)
(x) ∈ L2(Ω̃× (0,∞)).

Since the differential expression L1 is uniformly elliptic on Ω̃, regularity theory implies 

e−t
√

ÃD,1 ũ ∈ H2
loc(Ω̃× (0,∞)). For any real numbers a, b, a  <  b, which are no eigenvalues of 

ÃD,1 the Stone formula

E1((a, b))ũ = lim
ε↘0

1
2πi

(∫ b

a

(
ÃD,1 − (z + iε)

)−1 −
(
ÃD,1 − (z − iε)

)−1
dz

)
ũ

for the spectral measure E1(·) of ÃD,1 and (3.13) imply (E1((a, b))ũ)|Ω̃\Ω = 0. Thus, in par
ticular, for each t � 0
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(
e−t

√
ÃD,1 ũ

) ∣∣∣
Ω̃\Ω

=

(∫ ∞

η

e−t
√

zdE1(z)ũ
) ∣∣∣

Ω̃\Ω
= 0.� (3.15)

By (3.15), e−t
√

ÃD,1 ũ vanishes on the nonempty, open set O × (0,∞), and (3.14) and unique 
continuation yield T(t)ũ = 0 identically on Ω̃ for all t  >  0, see, e.g. [79]. Thus, taking the 
limit t ↘ 0 we obtain ũ = 0 and, hence, u  =  0. Thus dom V  is dense in L2(Ω). Analogously 
one shows that ranV  is dense in L2(Ω).

To summarize, the operator V  in (3.10) is densely defined and isometric in L2(Ω) with a dense 
range. Hence it extends by continuity to a unitary operator U : L2(Ω) → L2(Ω). Moreover, 
note that the space Hλ ⊂ dom V  in (3.12) is dense in L2(Ω) as well since (γ(µ)ϕ, u)L2(Ω) = 0 
for all µ ∈ C \ R with µ �= λ and all ϕ ∈ H1/2(∂Ω) with suppϕ ⊂ ω implies, by continuity, 
(γ(µ)ϕ, u)L2(Ω) = 0 for all µ ∈ C \ R and all ϕ ∈ H1/2(∂Ω) with suppϕ ⊂ ω and hence 
u  =  0. Therefore the identity (3.11) extends to

U(AD,1 − λ)−1 = (AD,2 − λ)−1U,

which implies Udom AD,1 = dom AD,2 and AD,2 = UAD,1U∗. This completes the proof of 
theorem 3.4.� □ 

4.  An inverse problem for a mixed non-self-adjoint Dirichlet–Robin operator 
with partial Dirichlet-to-Neumann data

In this section we consider non-self-adjoint operators with mixed Dirichlet–Robin boundary 
conditions. We shall provide a variant of theorem 3.4 for m-sectorial elliptic operators satisfy-
ing a Robin boundary condition on an open subset ω ⊂ ∂Ω and Dirichlet boundary conditions 
on ∂Ω \ ω. Here the knowledge of the Dirichlet-to-Neumann map is assumed locally at the 
same subset ω  of ∂Ω on which the Robin condition is given.

In order to define the operators under consideration, let us set

H1/2
ω =

{
ϕ ∈ H1/2(∂Ω) : suppϕ ⊂ ω

}
,

where the closure is taken in H1/2(∂Ω). Let θ ∈ L∞(∂Ω) be a complex-valued function such 
that θ|∂Ω\ω = 0, and consider the quadratic form

aθ,ω[u, v] = a[u, v] + (θu|∂Ω, v|∂Ω)∂Ω, dom aθ,ω =
{

u ∈ H1(Ω) : u|∂Ω ∈ H1/2
ω

}
,

where a is given in (2.5). One verifies that aθ,ω is a densely defined, sectorial, closed form in 
L2(Ω) and gives rise to the m-sectorial operator

Aθ,ωu = Lu,

dom Aθ,ω =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω), ∂Lu|ω + θu|ω = 0, u|∂Ω ∈ H1/2
ω

}
;

� (4.1)
this operator realization of L in L2(Ω) is subject to a Dirichlet boundary condition on ∂Ω \ ω 
and the Robin boundary condition ∂Lu|ω + θu|ω = 0 on ω , which is understood as

(
∂Lu|∂Ω + θu|∂Ω,ϕ

)
∂Ω

= 0, ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω.� (4.2)

Note also that for a real-valued θ ∈ L∞(∂Ω) such that θ|∂Ω\ω = 0 the operator Aθ,ω in (4.1) is 
self-adjoint in L2(Ω) and semibounded from below.
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Theorem 4.1.  Let L1,L2 be two uniformly elliptic differential expressions on Ω of the form 
(1.1) with coefficients ajk,1, aj,1, a1 and ajk,2, aj,2, a2, respectively, satisfying (2.2)–(2.4), and let 
M1(λ), M2(λ) be the corresponding Dirichlet-to-Neumann maps. Assume that ω ⊂ ∂Ω is an 
open, nonempty set such that

(M1(λ)ϕ,ϕ)∂Ω = (M2(λ)ϕ,ϕ)∂Ω, ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω,� (4.3)

holds for all λ ∈ D, where D ⊂ ρ(AD,1) ∩ ρ(AD,2) is a set with an accumulation point in 
ρ(AD,1) ∩ ρ(AD,2). Let θ ∈ L∞(∂Ω) be a complex-valued function such that θ|∂Ω\ω = 0 and 
denote by Aθ,ω,1 and Aθ,ω,2 the m-sectorial operators associated with L1 and L2, respectively, 
as in (4.1). Then there exists a unitary operator U in L2(Ω) (the same as in theorem 3.4) such 
that

Aθ,ω,2 = UAθ,ω,1U∗

holds.

Theorem 4.1 is essentially a consequence of theorem 3.4 and the following proposition, 
which relates the resolvent of the Dirichlet operator AD in (3.1) to the resolvent of the operator 
Aθ,ω via a perturbation term containg the Dirichlet-to-Neumann map and the function θ. We 
shall restrict elements in H−1/2(∂Ω) to ω  and use the operator

Pω : H−1/2(∂Ω) →
{
ψ|ω : ψ ∈ H−1/2(∂Ω)

}
, Pωψ = ψ|ω;� (4.4)

here the restriction ψ|ω is defined by (ψ|ω ,ϕ) := (ψ,ϕ)∂Ω for all ϕ ∈ H1/2(∂Ω) with 
suppϕ ⊂ ω. One can view Pω as the dual of the embedding operator from H1/2

ω  into H1/2(∂Ω).

Proposition 4.2.  Let ω ⊂ ∂Ω be an open, nonempty set, let θ ∈ L∞(∂Ω) be a complex-
valued function such that θ|∂Ω\ω = 0, and let Aθ,ω be the m-sectorial operator defined in 

(4.1). Then the operator Pω(θ + M(λ))�H1/2
ω  is injective for all λ ∈ ρ(Aθ,ω) ∩ ρ(AD) and 

the identity

(Aθ,ω − λ)−1 = (AD − λ)−1 + γ(λ)
(
Pω(θ + M(λ))�H1/2

ω

)−1
Pωγ(λ)

∗� (4.5)

holds for all λ ∈ ρ(Aθ,ω) ∩ ρ(AD).

Proof.  We verify first that Pω(θ + M(λ))�H1/2
ω  is injective for λ ∈ ρ(Aθ,ω) ∩ ρ(AD). In-

deed, assume that ψ ∈ H1/2
ω  is such that Pω(θ + M(λ))ψ = 0, that is,

(
(θ + M(λ))ψ,ϕ

)
∂Ω

= 0, ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω.

Then uλ := γ(λ)ψ satisfies Luλ = λuλ, uλ|∂Ω ∈ H1/2
ω , and

(
θuλ|∂Ω + ∂Luλ|∂Ω,ϕ

)
∂Ω

= 0, ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω,

which implies uλ ∈ ker(Aθ,ω − λ) by (4.1) and (4.2). Together with λ ∈ ρ(Aθ,ω) it follows 
uλ = 0 and, thus, ψ = uλ|∂Ω = 0.

Let us now come to the proof of (4.5). For this let v ∈ L2(Ω) be arbitrary. Since 
λ ∈ ρ(Aθ,ω) ∩ ρ(AD), we can define

u = (Aθ,ω − λ)−1v − (AD − λ)−1v and z = (Aθ,ω − λ)−1v.� (4.6)
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Then u ∈ H1(Ω) with Lu = λu, z ∈ dom Aθ,ω, and u|∂Ω = z|∂Ω ∈ H1/2
ω . Moreover,

∂Lu|∂Ω = ∂Lz|∂Ω − ∂L
(
(AD − λ)−1v

)
|∂Ω = ∂Lz|∂Ω + γ(λ)∗v

by lemma 3.3 (i). For all ψ ∈ H1/2(∂Ω) with suppψ ⊂ ω we then obtain
(
γ(λ)∗v,ψ

)
∂Ω

= (∂Lu|∂Ω − ∂Lz|∂Ω,ψ
)
∂Ω

=
(
M(λ)u|∂Ω − ∂Lz|∂Ω,ψ

)
∂Ω

=
(
(M(λ) + θ)z|∂Ω,ψ

)
∂Ω

.

Hence Pωγ(λ)
∗v = Pω(θ + M(λ))z|∂Ω, that is, Pωγ(λ)

∗v ∈ ran(Pω(θ + M(λ))�H1/2
ω ) and

(
Pω(θ + M(λ))�H1/2

ω

)−1
Pωγ(λ)

∗v = z|∂Ω = u|∂Ω.

It follows

γ(λ)
(
Pω(θ + M(λ))�H1/2

ω

)−1
Pωγ(λ)

∗v = γ(λ)u|∂Ω = u,

which, together with the definition of u in (4.6), completes the proof of (4.5).� □ 

Proof of theorem 4.1.  Let U be the unitary operator in L2(Ω) constructed in the proof of 
theorem 3.4, which satisfies

Uγ1(µ)ϕ = γ2(µ)ϕ� (4.7)

for all µ ∈ C \ R and all ϕ ∈ H1/2(∂Ω) with suppϕ ⊂ ω as well as

U(AD,1 − λ)−1 = (AD,2 − λ)−1U� (4.8)

for λ ∈ ρ(AD,1) ∩ ρ(AD,2). Let us fix λ ∈ (C \ R) ∩ ρ(Aθ,ω,1) ∩ ρ(Aθ,ω,2). Then with Pω in 
(4.4) the identity

Pωγ1(λ)
∗ = Pωγ2(λ)

∗U� (4.9)

holds. In fact, for u ∈ L2(Ω) and ψ ∈ H1/2(∂Ω) with suppψ ⊂ ω we have

(γ1(λ)
∗u,ψ)∂Ω = (u, γ1(λ)ψ)L2(Ω) = (u, U∗γ2(λ)ψ)L2(Ω) = (γ2(λ)

∗Uu,ψ)∂Ω

taking into account (4.7); this yields (4.9). Using proposition 4.2, (4.8), the assumption (4.3), 
and (4.9), we obtain

U(Aθ,ω,1 − λ)−1 = U(AD,1 − λ)−1 + Uγ1(λ)
(
Pω(θ + M1(λ))�H1/2

ω

)−1
Pωγ1(λ)

∗

= (AD,2 − λ)−1U + γ2(λ)
(
Pω(θ + M2(λ))�H1/2

ω

)−1
Pωγ2(λ)

∗U

= (Aθ,ω,2 − λ)−1U.

This yields Aθ,ω,2 = UAθ,ω,1U∗ and completes the proof.� □ 
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5.  An inverse problem for a self-adjoint Robin operator with partial Robin-to-
Dirichlet data

In this section we turn to an inverse problem for elliptic differential operators with Robin 
boundary conditions on the whole boundary of the unbounded Lipschitz domain Ω. In contrast 
to the previous section we restrict ourselves to self-adjoint boundary conditions. More specifi-
cally, for a real-valued function θ ∈ L∞(∂Ω) we consider the densely defined, semibounded, 
closed form

aθ[u, v] = a[u, v] + (θu|∂Ω, v|∂Ω)∂Ω, dom aθ = H1(Ω),

in L2(Ω) and the corresponding semibounded, self-adjoint Robin operator

Aθu = Lu, dom Aθ =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω), ∂Lu|∂Ω + θu|∂Ω = 0
}

.

Our aim is to prove that this operator is determined uniquely up to unitary equivalence by the 
knowledge of a corresponding Robin-to-Dirichlet map on any nonempty, open subset of the 
boundary.

The following lemma prepares the definition of the Robin-to-Dirichlet map. It can be 
proved analogously to lemma 3.1.

Lemma 5.1.  For each λ ∈ ρ(Aθ) and each ψ ∈ H−1/2(∂Ω) the boundary value problem

Lu = λu, ∂Lu|∂Ω + θu|∂Ω = ψ,

has a unique solution uλ ∈ H1(Ω).

Due to lemma 5.1 the following definition makes sense.

Definition 5.2.  For λ ∈ ρ(Aθ) the Robin-to-Dirichlet map Mθ(λ) is defined by

Mθ(λ) : H−1/2(∂Ω) → H1/2(∂Ω), Mθ(λ)
(
∂Luλ|∂Ω + θuλ|∂Ω

)
:= uλ|∂Ω,

for each uλ ∈ H1(Ω) satisfying Luλ = λuλ.

For λ ∈ ρ(Aθ) we also define the Poisson operator for the Robin problem γθ(λ) by

γθ(λ) : H−1/2(∂Ω) → L2(Ω), γθ(λ)
(
∂Luλ|∂Ω + θuλ|∂Ω

)
:= uλ,� (5.1)

for any uλ ∈ H1(Ω) such that Luλ = λuλ.
In order to prove the main result of this section we collect some properties of γθ(λ) and 

Mθ(λ), which are analogs of the statements in lemma 3.3. Their proofs are similar to those in 
[9, lemma 2.4] and are not repeated here.

Lemma 5.3.  For λ,µ ∈ ρ(Aθ) let γθ(λ), γθ(µ) be the Poisson operators for the Robin prob-
lem and let Mθ(λ), Mθ(µ) be the Robin-to-Dirichlet maps. Then the following assertions hold.

	 (i)	�γθ(λ) is bounded and the identity

γθ(λ) =
(
I + (λ− µ)(Aθ − λ)−1)γθ(µ)

		 holds.
	(ii)	�Mθ(λ) is a bounded operator from H−1/2(∂Ω) to H1/2(∂Ω), the operator function 

λ �→ Mθ(λ) is holomorphic on ρ(Aθ), and
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(Imµ)‖γθ(µ)ϕ‖2
L2(Ω) = Im(Mθ(µ)ϕ,ϕ)∂Ω

		 holds for all ϕ ∈ H−1/2(∂Ω).

For ϕ ∈ H−1/2(∂Ω) and an open set ν ⊂ ∂Ω we shall say that ϕ vanishes on ν  if (ϕ, η)∂Ω = 0 
for all η ∈ H1/2(∂Ω) with supp η ⊂ ν . As usual, we define the support suppϕ ⊂ ∂Ω of ϕ to 
be the complement of the union of all open sets on which ϕ vanishes.

The main result of this section is the following.

Theorem 5.4.  Let L1,L2 be two uniformly elliptic differential expressions on Ω of the 
form (1.1) with coefficients ajk,1, aj,1, a1 and ajk,2, aj,2, a2, respectively, satisfying (2.2)–(2.4). 
Let θ1, θ2 ∈ L∞(∂Ω) be real-valued and let Aθ1, Aθ2 and Mθ1(λ), Mθ2(λ) denote the corre
sponding self-adjoint Robin operators and Robin-to-Dirichlet maps, respectively. Assume that 
ω ⊂ ∂Ω is an open, nonempty set such that

(Mθ1(λ)ϕ,ϕ)∂Ω = (Mθ2(λ)ϕ,ϕ)∂Ω, ϕ ∈ H−1/2(∂Ω), suppϕ ⊂ ω,� (5.2)

holds for all λ ∈ D, where D ⊂ ρ(Aθ1) ∩ ρ(Aθ2) is a set with an accumulation point in 
ρ(Aθ1) ∩ ρ(Aθ2). Then there exists a unitary operator U in L2(Ω) such that

Aθ2 = UAθ1 U∗

holds.

Proof.  The proof of theorem 5.4 is a modification of the proof of theorem 3.4 and we will 
leave some details to the reader. For any µ ∈ C \ R and let γθi(µ) be the Poisson operator for 
the Robin problem as defined in (5.1), i = 1, 2. We define a linear mapping V  in L2(Ω) on the 
domain

dom V = span
{
γθ1(µ)ϕ : ϕ ∈ H−1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R

}

setting

Vγθ1(µ)ϕ = γθ2(µ)ϕ, ϕ ∈ H−1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R,

and extending this operator by linearity to all of dom V . Clearly, we have

ranV = span
{
γθ2(µ)ϕ : ϕ ∈ H−1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R

}
.

As in Step 1 of the proof of theorem 3.4 we conclude from (5.2) with the help of lemma 5.3 
(i) and (ii) (instead of lemma 3.3 (ii) and (iii)) that V  is well-defined, isometric, and satisfies

V(Aθ1 − λ)−1 � Hλ = (Aθ2 − λ)−1V � Hλ� (5.3)

for each fixed λ ∈ C \ R, where Hλ is the subspace of dom V  given by

Hλ = span
{
γθ1(µ)ϕ : ϕ ∈ H1/2(∂Ω), suppϕ ⊂ ω, µ ∈ C \ R,µ �= λ

}
.

Let us now check that dom V  is dense in L2(Ω). Let Ω̃ and L̃1 be defined as in Step 2 of the 
proof of theorem 3.4 above with the additional condition that there exist ω0 ⊂ ∂Ω such that 
ω0 ⊂ ω and still ∂Ω \ ω0 ⊂ ∂Ω̃. Define the real-valued function θ̃1 ∈ L∞(∂Ω̃) by
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θ̃1 =

{
θ1 on ∂Ω \ ω0,
0 otherwise.

Then the operator

Ãθ̃1
ũ = L̃1ũ, dom Ãθ̃1

=
{

ũ ∈ H1(Ω̃) : L̃1ũ ∈ L2(Ω̃), ∂L̃1
ũ
∣∣
∂Ω̃

+ θ̃1ũ|∂Ω̃ = 0
}

,

in L2(Ω̃) is self-adjoint and semibounded from below; as in the proof of theorem 3.4 one 

argues that Ãθ̃1
 can be assumed to be uniformly positive. For each ṽ ∈ L2(Ω̃) such that ṽ  

vanishes on Ω, we define

ũµ,̃v = (Ãθ̃1
− µ)−1ṽ, µ ∈ C \ R.

Moreover, we denote by uµ,̃v  the restriction of ũµ,̃v  to Ω. Then L1uµ,̃v = µuµ,̃v  and by con-
struction

supp
(
∂L1 uµ,̃v|∂Ω + θ1uµ,̃v|∂Ω

)
⊂ ω0 ⊂ ω.� (5.4)

In fact, to justify (5.4) consider x ∈ ∂Ω \ ω0 , choose an open set ν ⊂ ∂Ω \ ω0  with x ∈ ν, and 
let ϕ ∈ H1/2(∂Ω) with suppϕ ⊂ ν . The first inclusion in (5.4) follows if we show

(∂L1 uµ,̃v|∂Ω + θ1uµ,̃v|∂Ω,ϕ)∂Ω = 0.� (5.5)

Choose w ∈ H1(Ω) with w|∂Ω = ϕ so that, in particular, w|ω0 = 0. Hence the extension w̃ by 
zero of w onto Ω̃ satisfies w̃ ∈ H1(Ω̃) and supp (w̃|∂Ω̃) ⊂ ∂Ω \ ω0 . Now it follows from the 
definition of the conormal derivative that

(∂L1 uµ,̃v|∂Ω + θ1uµ,̃v|∂Ω,ϕ)∂Ω
= −(L1uµ,̃v, w)L2(Ω) + a[uµ,̃v, w] + (θ1uµ,̃v|∂Ω, w|∂Ω)∂Ω
= −(L̃1ũµ,̃v, w̃)L2(Ω̃) + ã[ũµ,̃v, w̃] + (θ̃1ũµ,̃v|∂Ω̃, w̃|∂Ω̃)∂Ω̃
= (∂L̃1

ũµ,̃v|∂Ω̃ + θ̃1ũµ,̃v|∂Ω̃, w̃|∂Ω̃)∂Ω̃ = 0,

which proves (5.5) and therefore (5.4) holds. Now it follows in the same way as in the proof of 
theorem 3.4 that uµ,̃v ∈ dom V  for all µ ∈ C \ R and all ṽ ∈ L2(Ω̃) with ṽ|Ω = 0.

If we choose u ∈ L2(Ω) being orthogonal to dom V  and denote by ũ  the extension of u by 
zero to Ω̃ then we obtain

0 = (u, uµ,̃v)L2(Ω) =
(
ũ, (Ãθ̃1

− µ)−1ṽ
)

L2(Ω̃)
=

(
(Ãθ̃1

− µ)−1ũ, ṽ
)

L2(Ω̃)

for all µ ∈ C \ R and all ṽ ∈ L2(Ω̃) which vanish on Ω, that is,
(
(Ãθ̃1

− µ)−1ũ
)
|Ω̃\Ω = 0

for all µ ∈ C \ R. Proceeding further as in Step 2 of the proof of theorem 3.4 it can be con-

cluded that e−t
√

Ã
θ̃1 ũ  vanishes on an open, nonempty subset of Ω̃× (0,∞) and by unique 

continuation it follows e−t
√

Ã
θ̃1 ũ = 0 on Ω̃ for each t  >  0. Hence, u  =  0, which implies that 

dom V  is dense in L2(Ω). Analogously one shows that ranV  is dense in L2(Ω).
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Now it follows in the same way as in the end of Step 2 of the proof of theorem 3.4 that the 
isometric operator V  extends by continuity to a unitary operator U : L2(Ω) → L2(Ω) and that 
(5.3) extends to

U(Aθ1 − λ)−1 = (Aθ2 − λ)−1U.

This yields Aθ2 = UAθ1 U∗ and hence completes the proof of the theorem.� □ 
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