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Abstract. In this note self-adjoint extensions of symmetric operators are in-
vestigated by using the abstract technique of quasi boundary triples and their
Weyl functions. The main result is an extension of [5, Theorem 2.6] which pro-
vides sufficient conditions on the parameter in the boundary space to induce
self-adjoint realizations. As an example self-adjoint Robin Laplacians on the
half-space with boundary conditions involving an unbounded coefficient are
considered.

1. Introduction

The concept of quasi boundary triples and their Weyl functions is a useful tool
in the spectral theory of symmetric and self-adjoint elliptic partial differential
operators. This abstract notion from [3, 4] is a slight generalization of ordinary
boundary triples and their Weyl functions from [11, 14, 19], adapted and extended
in such a way that it directly applies to elliptic boundary value problems in the
Hilbert space framework.

Very roughly speaking, a quasi boundary triple consists of a boundary Hilbert
space G – in applications typically the L2-space on the boundary of some domain
Ω – and two boundary mappings Γ0 and Γ1 that satisfy an abstract second Green
identity. A natural choice are the Neumann and Dirichlet trace operators if one
deals with the Laplacian in L2(Ω). The boundary mappings are defined on the
domain of some operator T which is a core of the maximal operator; in the case
of the Laplacian, the core H2(Ω) is often a convenient choice. The Weyl function
corresponding to a quasi boundary triple can be viewed as the abstract counterpart
of the Dirichlet-to-Neumann map and is an important analytic object since it can
be used to characterize the spectrum of the self-adjoint realizations in this theory.
One uses abstract boundary conditions to define restrictions of T in the form

A[B]f = Tf, domA[B] =
{
f ∈ domT : Γ0f = BΓ1f

}
,
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where B is an operator in the boundary space G. It is an immediate consequence
of the abstract second Green identity that a symmetric operator B leads to a
symmetric operator A[B], but in general a self-adjoint boundary parameter B does
not induce a self-adjoint operator A[B] – a fact that is not too surprising when
taking into account that the range of the boundary mappings is not necessarily
the whole boundary space G; cf. Definition 2.1.

It is one of the main objectives of the present note to provide a new useful
sufficient condition on the boundary parameter B and the properties of the Weyl
function to ensure self-adjointness of the extension A[B]. Here we generalize a
recent result from [5] by allowing boundary operators B that are factorized in
the form B = B1B2, or more general B ⊂ B1B2. The assumptions on B in [5,
Theorem 2.6] are here replaced by similar ones on B1 and B2. We refer the reader
to Theorem 2.2 and the discussion afterwards for more details.

As an example and illustration for the abstract techniques we discuss the
Laplacian on the half-space Rd+ = {x ∈ Rd : xd > 0} in any dimension d ≥ 2 in
Section 3. The key feature is that Theorem 2.2 and Corollary 2.3 can be applied
for the Laplace operator with Robin boundary conditions τNf = ατDf on ∂Rd+ '
Rd−1, where

α ∈ Lp(Rd−1) + L∞(Rd−1)

is real-valued. In Theorem 3.5 we have the slightly stronger assumption p > 4
3 (d−1)

if d ≥ 3 and p > 2 if d = 2 than the usual form method requires (namely, p = d−1
if d ≥ 3 and p > 1 if d = 2 is sufficient by Proposition 3.8), but also at the
same time a higher Sobolev regularity for the operator domain. For other related
variants of Theorem 3.5 we also refer the reader to [1, Theorem 7.2] which provides
H2-regularity for more general second order elliptic differential expressions on
certain unbounded non-smooth domains (see Remark 3.7), to [18, Theorem 4.5
and Lemma 5.3] for the case of Laplacians on bounded Lipschitz domains, and to
[17, Section 2]. In this context we also mention the contributions [1, 6, 7, 16, 30, 31]
dealing with Robin Laplacians with singular boundary conditions and we refer to
[2, 9, 10, 12, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34] for some other recent works on
spectral problems for Robin Laplacians.
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2. Quasi boundary triples and self-adjoint extensions

In this section we first recall the notion of quasi boundary triples and their Weyl
functions in the extension theory of symmetric operators from [3, 4]. Afterwards
we provide a new sufficient criterion for self-adjointness in Theorem 2.2, which is
the main abstract result in this note.

In the following let H be a Hilbert space with inner product (·, ·)H. The next
definition is a generalization of the concept of ordinary and generalized boundary
triples; cf. [11, 13, 14, 15, 19].

Definition 2.1. Let S be a densely defined, closed, symmetric operator in H and
let T be a closable operator with T = S∗. A triple {G,Γ0,Γ1} is a quasi boundary
triple for T ⊂ S∗ if (G, (·, ·)G) is a Hilbert space and the linear mappings Γ0,Γ1 :
domT → G satisfy the following conditions (i)–(iii).

(i) The abstract second Green identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G (2.1)

holds for all f, g ∈ domT .
(ii) The range of (Γ0,Γ1)> : domT → G × G is dense.
(iii) The operator A0 := T � ker Γ0 is self-adjoint in H.

Recall from [3, 4] that for a densely defined, closed, symmetric operator S in
H a quasi boundary triple {G,Γ0,Γ1} exists if and only if the deficiency indices
of S coincide. In this case one has domS = ker Γ0 ∩ ker Γ1. The notion of quasi
boundary triples reduces to the well-known concept of ordinary boundary triples
if T = S∗. For more details we refer the reader to [3, 4].

Assume now that {G,Γ0,Γ1} is a quasi boundary triple for T ⊂ S∗. In a sim-
ilar way as for ordinary and generalized boundary triples in [14, 15] one associates
the γ-field and the Weyl function. Their definition and some of their properties
will now be recalled very briefly. Again we refer the reader to [3, 4] for a more
detailed exposition. Observe first that the direct sum decomposition

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ), λ ∈ ρ(A0), (2.2)

implies that Γ0 � ker(T − λ) is invertible for λ ∈ ρ(A0). The γ-field γ and Weyl
function M are then defined as operator-valued functions on ρ(A0) by

λ 7→ γ(λ) :=
(
Γ0 � ker(T − λ)

)−1
and λ 7→M(λ) := Γ1γ(λ), (2.3)

respectively. It is clear from (2.2) that dom γ(λ) = domM(λ) = ran Γ0 for all
λ ∈ ρ(A0). Moreover, the values γ(λ) of the γ-field are densely defined and bounded
operators from G into H such that ran γ(λ) = ker(T − λ). With the help of the
abstract second Green identity in (2.1) one verifies the representation

γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0), (2.4)

of the adjoint γ-field, which is a bounded and everywhere defined operator from
H into G. The values M(λ) of the Weyl function are operators in G which are not
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necessarily closed and in general unbounded. Note that also ranM(λ) ⊂ ran Γ1 by
definition.

For a given quasi boundary triple {G,Γ0,Γ1} and an operator B in G the
extension A[B] of S in H is defined as

A[B]f = Tf, domA[B] =
{
f ∈ domT : Γ0f = BΓ1f

}
. (2.5)

In contrast to ordinary boundary triples (see [11, 14, 19]) a self-adjoint boundary
operator B in G does not necessarily induce a self-adjoint extension A[B] in H.
There are various results in the literature that provide sufficient conditions for
this conclusion to hold, see, e.g., [3, 4, 5]. Our aim in the next theorem is to
provide a useful generalization of a recent result in [5]; cf. Corollary 2.4.

Theorem 2.2. Let S be a densely defined, closed, symmetric operator in H and let
{G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗ with A0 = T � ker Γ0, γ-field
γ and Weyl function M . Let λ0 ∈ ρ(A0) ∩ R and let B be a symmetric operator
in G. Assume that B ⊂ B1B2 holds with some operators B1, B2 in G and that the
following conditions are satisfied.

(i) 1 ∈ ρ(B2M(λ0)B1);

(ii) ran(B2M(λ0)B1) ⊂ ran Γ0 ∩ domB1;
(iii) ran(B1 � ran Γ0) ⊂ ran Γ0;
(iv) ran(B2 � ran Γ1) ⊂ ran Γ0;
(v) ran Γ1 ⊂ domB.

Then the extension A[B] in (2.5) is a self-adjoint operator in H and for every
λ ∈ ρ(A0) ∩ ρ(A[B]) the Krein type resolvent formula

(A[B] − λ)−1 − (A0 − λ)−1 = γ(λ)B1(1−B2M(λ)B1)−1B2γ(λ)∗ (2.6)

is valid.

In the next corollary the special case that ran Γ0 = G is formulated. In this
situation the quasi boundary triple {G,Γ0,Γ1} is a generalized boundary triple in
the sense of [13, 15]. It is clear that condition (ii) in Theorem 2.2 simplifies and
that conditions (iii) and (iv) are automatically satisfied in this case.

Corollary 2.3. Let {G,Γ0,Γ1}, A0 = T � ker Γ0, M and λ0 ∈ ρ(A0) ∩ R, and
B ⊂ B1B2 be as in Theorem 2.2. Assume, in addition, that ran Γ0 = G and that
the following conditions are satisfied.

(i) 1 ∈ ρ(B2M(λ0)B1);

(ii) ran(B2M(λ0)B1) ⊂ domB1;
(iii) ran Γ1 ⊂ domB.

Then the extension A[B] in (2.5) is a self-adjoint operator in H and for every
λ ∈ ρ(A0) ∩ ρ(A[B]) the Krein type resolvent formula (2.6) is valid.

The next corollary shows that for the special choice B1 = IG and B2 = B
Theorem 2.2 coincides with [5, Theorem 2.6].
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Corollary 2.4. Let {G,Γ0,Γ1}, A0 = T � ker Γ0, M , γ and λ0 ∈ ρ(A0) ∩ R be as
in Theorem 2.2 and assume that B is a symmetric operator in G such that the
following conditions are satisfied.

(i) 1 ∈ ρ(BM(λ0));

(ii) ran(BM(λ0)) ⊂ ran Γ0;
(iii) ran(B � ran Γ1) ⊂ ran Γ0;
(iv) ran Γ1 ⊂ domB.

Then the extension A[B] in (2.5) is a self-adjoint operator in H and for every
λ ∈ ρ(A0) ∩ ρ(A[B]) the Krein type resolvent formula

(A[B] − λ)−1 − (A0 − λ)−1 = γ(λ)(1−BM(λ))−1Bγ(λ)∗

is valid.

Remark 2.5. The assumption λ0 ∈ ρ(A0)∩R and conditions (i)-(ii) in Theorem 2.2
(and similarly in Corollary 2.3 and Corollary 2.4) can be replaced by assuming that
there exist λ± ∈ C± with the properties

(i’) 1 ∈ ρ(B2M(λ±)B1);

(ii’) ran(B2M(λ±)B1) ⊂ ran Γ0 ∩ domB1.

Proof of Theorem 2.2. The proof is split into four separate steps: First the self-
adjointness of A[B] is shown in Steps 1 and 2 and afterwards, in Step 3 and 4, the
resolvent formula (2.6) is verified.

Step 1. In this step we prove the inclusion

ran(B2γ(λ0)∗) ⊂ ran(1−B2M(λ0)B1). (2.7)

Let ψ ∈ ran(B2γ(λ0)∗). Then (2.4), (iv)–(v) and B ⊂ B1B2 yield

ψ ∈ ran(B2 � ran Γ1) ⊂ ran Γ0 ∩ domB1. (2.8)

Consider ϕ := (1−B2M(λ0)B1)−1ψ, which is well-defined by (i) and observe that

ϕ− ψ = B2M(λ0)B1ϕ ∈ ran Γ0 ∩ domB1 (2.9)

by (ii). Combining (2.8)–(2.9) we conclude ϕ ∈ ran Γ0∩domB1 and now (iii) shows
B1ϕ ∈ ran Γ0 = domM(λ0). Therefore (2.9) can be written as

(1−B2M(λ0)B1)ϕ = ψ,

and hence (2.7) holds.

Step 2. We will now prove that the operator A[B] in (2.5) is self-adjoint in H. Note
first that for f, g ∈ domA[B] one has

(A[B]f, g)H − (f,A[B]g)H = (Tf, g)H − (f, Tg)H

= (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

= (Γ1f,BΓ1g)G − (BΓ1f,Γ1g)G

= 0
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by the abstract second Green identity (2.1) and the symmetry of B in G. Therefore
A[B] is symmetric in H and hence it suffices to show that

ran(A[B] − λ0) = H. (2.10)

Fix h ∈ H. By (2.4), (v) and B ⊂ B1B2, the element B2γ(λ0)∗h is well-
defined and according to (2.7) there exists some g ∈ dom(B2M(λ0)B1) such that

B2γ(λ0)∗h = (1−B2M(λ0)B1)g. (2.11)

Consider

f := (A0 − λ0)−1h+ γ(λ0)B1g

and note that (T −λ0)f = h since ran γ(λ0) = ker(T −λ0); cf. (2.3). We claim that
f ∈ domA[B]. In fact, since domA0 = ker Γ0 it follows from (2.4), the definition
of the γ-field and the Weyl function that

Γ0f = B1g and Γ1f = γ(λ0)∗h+M(λ0)B1g. (2.12)

Making use of condition (v) and B ⊂ B1B2 we then conclude

BΓ1f = B1

(
B2γ(λ0)∗h+B2M(λ0)B1g

)
= B1g = Γ0f

from (2.11) and (2.12). Hence f ∈ domA[B] and (A[B] − λ0)f = (T − λ0)f = h.
Thus, (2.10) holds and therefore A[B] is self-adjoint in H.

Step 3. In this step we show that

ker(1−B2M(λ)B1) = {0}, λ ∈ ρ(A0) ∩ ρ(A[B]). (2.13)

In fact, for ϕ ∈ ker(1 − B2M(λ)B1) one has ϕ = B2M(λ)B1ϕ ∈ ran Γ0 by (iv)
and ranM(λ) ⊂ ran Γ1. Making use of (iii) we find

B1ϕ = B1B2M(λ)B1ϕ ∈ ran Γ0. (2.14)

Using the definition of the γ-field and the Weyl function and (v) we can rewrite
(2.14) in the form

Γ0γ(λ)B1ϕ = BΓ1γ(λ)B1ϕ,

which shows that γ(λ)B1ϕ ∈ domA[B]. Since ran γ(λ) = ker(T − λ) and λ ∈
ρ(A[B]) we conclude

γ(λ)B1ϕ ∈ ker(A[B] − λ) = {0},
and hence ϕ = B2Γ1γ(λ)B1ϕ = 0. We have shown (2.13).

Step 4. For λ ∈ ρ(A0)∩ρ(A[B]) we prove ran(B2γ(λ)∗) ⊂ ran(1−B2M(λ)B1) and
the resolvent formula (2.6). For h ∈ H define

fB := (A[B] − λ)−1h and f0 := (A0 − λ)−1h. (2.15)

Then we have fB − f0 ∈ ker(T − λ) and hence

γ(λ)Γ0(fB − f0) = fB − f0. (2.16)

Furthermore, the definitions of A0, A[B] and (2.4) show

Γ0f0 = 0, Γ1f0 = γ(λ)∗h, and Γ0fB = BΓ1fB . (2.17)
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The element B2M(λ)B1B2Γ1fB is well-defined by (iii)–(v) and using (2.17) we
obtain

(1−B2M(λ)B1)B2Γ1fB = B2Γ1fB −B2M(λ)Γ0fB

= B2Γ1fB −B2M(λ)Γ0(fB − f0)

= B2Γ1fB −B2Γ1(fB − f0)

= B2γ(λ)∗h.

Since 1−B2M(λ)B1 is invertible according to (2.13) we conclude

B2Γ1fB = (1−B2M(λ)B1)−1B2γ(λ)∗h.

Using again Γ0(fB−f0) = BΓ1fB = B1B2Γ1fB from (2.17) as well as (2.16) leads
to

fB − f0 = γ(λ)B1(1−B2M(λ)B1)−1B2γ(λ)∗h.

Now the Krein type resolvent formula (2.6) follows from (2.15). �

3. An example: Laplacians on the half-space with singular Robin
boundary conditions

In this section we illustrate our abstract techniques from the previous section by
applying Corollary 2.3 to an explicit boundary value problem. On the upper half-
space Rd+ = {x ∈ Rd : xd > 0} in d ≥ 2 dimensions we consider the Laplacian with

Robin boundary conditions τNf = ατDf on ∂Rd+ ' Rd−1 involving an unbounded

parameter function α : Rd−1 → R. Here τD and τN denote the Dirichlet and
Neumann trace operator, respectively.

In order to construct a suitable quasi boundary triple consider the operators

Tf = −∆f, domT =
{
f ∈ H3/2(Rd+) : ∆f ∈ L2(Rd+)

}
,

and
Sf = −∆f, domS =

{
f ∈ H2(Rd+) : τDf = τNf = 0

}
,

as well as the boundary mappings

Γ0f = τNf and Γ1f = τDf, f ∈ domT.

The following proposition is essentially a consequence of the properties of the
Dirichlet and Neumann trace operators and can be proved with standard tech-
niques; cf. [3, Proposition 4.6]. The form of the Weyl function follows from [20,
(9.65)].

Proposition 3.1. Let S, T , Γ0 and Γ1 be as above. Then {L2(Rd−1),Γ0,Γ1} is a
quasi boundary triple for T ⊂ S∗ such that

ran Γ0 = L2(Rd−1) and ran Γ1 = H1(Rd−1).

Furthermore, A0 = T � ker Γ0 coincides with the Neumann Laplacian

ANf = −∆f, domAN =
{
f ∈ H2(Rd+) : τNf = 0

}
,
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and the corresponding Weyl function is given by

M(λ) = (−∆Rd−1 − λ)−
1
2 , λ ∈ C \ [0,∞), (3.1)

where ∆Rd−1 denotes the self-adjoint Laplacian in L2(Rd−1) with domain H2(Rd−1).

It follows from dom ∆
1
2

Rd−1 = H1(Rd−1), the continuity of the embedding

H1(Rd−1) ↪→ Hs(Rd−1) for s ≤ 1 and (3.1) that

M2,s(λ) : L2(Rd−1)→ Hs(Rd−1), ϕ 7→M2,s(λ)ϕ := M(λ)ϕ, (3.2)

is a bounded operator for every s ≤ 1. Moreover, the next lemma shows that the
values M(λ) of the Weyl function also induce densely defined and bounded opera-
tors from Lp(Rd−1) into Hs(Rd−1) for certain values of p and s. This is essentially
a consequence of the mapping properties of the resolvent of the Laplacian on Rd−1;
for the convenience of the reader we provide a short proof.

Lemma 3.2. Let M be the Weyl function of the quasi boundary triple in Proposi-
tion 3.1. For λ ∈ C \ [0,∞), p ∈ [1, 2) and s < 1− (d− 1)( 1

p −
1
2 ) the restriction

Mp,s(λ) : Lp(Rd−1)→ Hs(Rd−1), ϕ 7→Mp,s(λ)ϕ := M(λ)ϕ,

with domMp,s(λ) = Lp(Rd−1) ∩ L2(Rd−1) is a densely defined and bounded oper-
ator.

Proof. Denote by F the Fourier transform in L2(Rd−1). Then it follows from (3.1)
that for every ϕ ∈ L2(Rd−1) we get

(FM(λ)ϕ)(ξ) = (|ξ|2 − λ)−
1
2 (Fϕ)(ξ), ξ ∈ Rd−1.

Fix r > 0 and choose a constant Cr > 0 such that

(1 + |ξ|2)s

||ξ|2 − λ|
≤ Cr

{
1, ξ ∈ Br ,
|ξ|−(2−2s), ξ ∈ Rd−1 \Br ,

where Br is the open ball with radius r centered at 0. Then for every function
ϕ ∈ Lp(Rd−1) ∩ L2(Rd−1) one has the estimate

‖M(λ)ϕ‖2Hs(Rd−1) =

∫
Rd−1

(1 + |ξ|2)s|(FM(λ)ϕ)(ξ)|2dξ

=

∫
Rd−1

(1 + |ξ|2)s

||ξ|2 − λ|
|(Fϕ)(ξ)|2dξ

≤ Cr

(∫
Br

|(Fϕ)(ξ)|2dξ +

∫
Rd−1\Br

|(Fϕ)(ξ)|2

|ξ|2−2s
dξ

)
.

(3.3)

Using the Hölder inequality with the coefficients p
2−p and p

2(p−1) we obtain for the

first integral ∫
Br

|(Fϕ)(ξ)|2dξ ≤ |Br|
2−p
p ‖Fϕ‖2

L
p

p−1 (Rd−1)
, (3.4)
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and for the second integral∫
Rd−1\Br

|(Fϕ)(ξ)|2

|ξ|2−2s
dξ ≤

(∫
Rd−1\Br

|ξ|−
(2−2s)p

2−p dξ

) 2−p
p

‖Fϕ‖2
L

p
p−1 (Rd−1)

. (3.5)

As s < 1− (d− 1)( 1
p −

1
2 ) by assumption, we have (2−2s)p

2−p > d− 1 and hence the

integral on the right hand side of (3.5) is finite. Furthermore, since the Fourier

transform F is bounded from Lp(Rd−1) into L
p

p−1 (Rd−1) it follows from (3.4) and
(3.5) that (3.3) can finally be estimated by

‖M(λ)ϕ‖2Hs(Rd−1) ≤ C
′‖ϕ‖2Lp(Rd−1), ϕ ∈ Lp(Rd−1) ∩ L2(Rd−1),

with some constant C ′ > 0. This completes the proof of Lemma 3.2. �

The following lemma provides two important technical properties of the pa-
rameter function α, which will be useful in the proof of Theorem 3.5.

Lemma 3.3. Let α ∈ Lp(Rd−1) + L∞(Rd−1) for some p > 2. Then for every
t ∈ (0, 1] one has

|α|t ∈ L
p
t (Rd−1) + L∞(Rd−1) (3.6)

and there exists a constant Cα > 0 such that

‖|α|tϕ‖L2(Rd−1) ≤ Cα‖ϕ‖
H

t(d−1)
p (Rd−1)

(3.7)

holds for every ϕ ∈ H
t(d−1)

p (Rd−1).

Proof. Decompose α = αp + α∞ for αp ∈ Lp(Rd−1) and α∞ ∈ L∞(Rd−1) and
define the functions

β p
t
(x) =

{
|α(x)|t, x ∈ K,
0, x /∈ K, and β∞(x) =

{
0, x ∈ K,
|α(x)|t, x /∈ K,

where K = {x ∈ Rd−1 : |α(x)| > ‖α∞‖L∞(Rd−1) + 1}. Note that K is contained in

the set {x ∈ Rd−1 : |αp(x)| > 1}, which has finite measure since αp ∈ Lp(Rd−1).
Hence K has finite measure as well. It is obvious that β∞ ∈ L∞(Rd−1) and more-
over, the estimate∫

Rd−1

|β p
t
(x)|

p
t dx =

∫
K

|αp(x) + α∞(x)|pdx

≤ 2p−1
(∫

K

|αp(x)|pdx+

∫
K

|α∞(x)|pdx
)

≤ 2p−1
(
‖αp‖pLp(Rd−1)

+ |K| ‖α∞‖pL∞(Rd−1)

)
shows that β p

t
∈ L

p
t (Rd−1). Hence |α|t = β p

t
+ β∞ ∈ L

p
t (Rd−1) + L∞(Rd−1).
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Using the decomposition |α|t = β p
t

+ β∞ from above, we can prove (3.7) by
estimating both terms separately. For the bounded part β∞ it is clear that

‖β∞ϕ‖L2(Rd−1) ≤ ‖β∞‖L∞(Rd−1)‖ϕ‖L2(Rd−1)

≤ ‖β∞‖L∞(Rd−1)‖ϕ‖
H

t(d−1)
p (Rd−1)

(3.8)

holds for all ϕ ∈ H
t(d−1)

p (Rd−1). For the estimate of the unbounded part β p
t

note
first that by assumption we ensured p > 2 ≥ 2t. Hence the Hölder inequality with
the coefficients p

2t and p
p−2t yields

‖β p
t
ϕ‖L2(Rd−1) ≤ ‖β p

t
‖
L

p
t (Rd−1)

‖ϕ‖
L

2p
p−2t (Rd−1)

≤ C ‖β p
t
‖
L

p
t (Rd−1)

‖ϕ‖
H

t(d−1)
p (Rd−1)

(3.9)

for all ϕ ∈ H
t(d−1)

p (Rd−1), where C > 0 is the constant of the Sobolev embedding
theorem [8, Theorem 8.12.4 Case I]. Combining (3.8) and (3.9) leads to the estimate
(3.7). �

In the next lemma we recall a simple estimate for functions f ∈ H1(Rd+). For
the convenience of the reader we provide a short proof.

Lemma 3.4. Let s ∈ [0, 1). Then for every ε > 0 there exists a constant Cε > 0
such that

‖f‖2Hs(Rd
+) ≤ ε‖∇f‖

2
L2(Rd

+,Cd) + Cε‖f‖2L2(Rd
+) (3.10)

holds for every f ∈ H1(Rd+).

Proof. Recall from [35, §3 Theorem 5] that there exists an extension operator
E : L2(Rd+)→ L2(Rd) which satisfies

‖Eg‖L2(Rd) ≤ cE‖g‖L2(Rd
+) and ‖Ef‖H1(Rd) ≤ cE‖f‖H1(Rd

+) (3.11)

for some cE > 0 and all g ∈ L2(Rd+), f ∈ H1(Rd+). From [22, Theorem 3.30] we
can conclude that for ε′ > 0 there exists Cε′ > 0 such that

‖f‖Hs(Rd
+) ≤ ‖Ef‖Hs(Rd) ≤ ε′‖Ef‖H1(Rd) + Cε′‖Ef‖L2(Rd)

for every f ∈ H1(Rd+). Together with (3.11) this leads to (3.10). �

After these preparations we are now ready to formulate and prove the main
theorem of this section.

Theorem 3.5. Let α ∈ Lp(Rd−1)+L∞(Rd−1) be a real-valued function and assume
that p > 4

3 (d− 1) if d ≥ 3 and p > 2 if d = 2. Then the Robin-Laplacian

Aαf = −∆f, domAα =

{
f ∈ H3/2(Rd+) :

∆f ∈ L2(Rd+),
ατDf = τNf

}
, (3.12)
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is self-adjoint in L2(Rd+) and for every λ ∈ ρ(Aα) \ [0,∞) the Krein type resolvent
formula

(Aα − λ)−1 − (AN − λ)−1

= γ(λ) sgn(α)|α| 13
(
1 + |α| 23 (−∆Rd−1 − λ)−

1
2 sgn(α)|α| 13

)−1|α| 23 γ(λ)∗

is valid.

Proof. This theorem is a consequence of Corollary 2.3 and hence in the follow-
ing it will be shown that its assumptions are satisfied. We start by defining the
multiplication operator

Bϕ = αϕ, domB = H1(Rd−1),

in the boundary space L2(Rd−1). Note that by assumption we have p > 2 as well
as p > t(d− 1), for every t ∈ (0, 1] in any dimension d ≥ 2. Hence by Lemma 3.3
the estimate

‖|α|tϕ‖L2(Rd−1) ≤ Cα‖ϕ‖
H

t(d−1)
p (Rd−1)

≤ Cα‖ϕ‖H1(Rd−1) (3.13)

holds for every ϕ ∈ H1(Rd−1) and the operator B is well-defined. Clearly the first

inequality in (3.13) also holds for ϕ ∈ H
t(d−1)

p (Rd−1). Next we decompose B into

B1ϕ = sgn(α)|α| 13ϕ, domB1 =
{
ϕ ∈ L2(Rd−1) : |α| 13ϕ ∈ L2(Rd−1)

}
,

B2ϕ = |α| 23ϕ, domB2 =
{
ϕ ∈ L2(Rd−1) : |α| 23ϕ ∈ L2(Rd−1)

}
.

Using the first estimate in (3.13) it follows that every ϕ ∈ domB = H1(Rd−1)
satisfies ϕ ∈ domB2 and B2ϕ ∈ domB1, and hence the operator inclusion B ⊂
B1B2 holds.

For the operators B, B1 and B2 we now verify the assumptions in Corol-
lary 2.3. First of all, since α is real-valued, it is clear that the operator B is sym-
metric in L2(Rd−1). Moreover, ran Γ0 = L2(Rd−1) as well as ran Γ1 = H1(Rd−1)
holds by Proposition 3.1 and hence also assumption (iii) in Corollary 2.3 is ful-
filled. Therefore, it remains to choose a suitable λ0 ∈ ρ(AN ) ∩ R = (−∞, 0) such
that the assumptions (i) and (ii) are satisfied.

Using again (3.13), the boundedness of the Dirichlet trace operator

τD : H
2(d−1)

3p + 1
2 (Rd+)→ H

2(d−1)
3p (Rd−1),

and Lemma 3.4, we find a constant c1 > 0 such that

‖|α| 23 τDg‖2L2(Rd−1) ≤ C
2
α‖τDg‖2

H
2(d−1)

3p (Rd−1)

≤ C2
α‖τD‖2‖g‖2

H
2(d−1)

3p
+1

2 (Rd
+)

≤ 1

2
‖∇g‖2L2(Rd

+,Cd) + c1‖g‖2L2(Rd
+)

(3.14)
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holds for all g ∈ H1(Rd+). In the last step it was crucial that 2(d−1)
3p + 1

2 < 1, which

is equivalent to p > 4
3 (d − 1) and is fulfilled by the assumptions on p in every

dimension d ≥ 2. In the same way we find a constant c2 > 0 such that

‖|α| 13 τDg‖2L2(Rd−1) ≤
1

2
‖∇g‖2L2(Rd

+,Cd) + c2‖g‖2L2(Rd
+) (3.15)

holds for all g ∈ H1(Rd+). For the choice λ0 := −2 max{c1, c2} ∈ ρ(AN ), the
estimates (3.14) and (3.15) turn into

‖|α| 23 τDg‖2L2(Rd−1) ≤
1

2

(
‖∇g‖2L2(Rd

+,Cd) − λ0‖g‖
2
L2(Rd

+)

)
, (3.16)

‖|α| 13 τDg‖2L2(Rd−1) ≤
1

2

(
‖∇g‖2L2(Rd

+,Cd) − λ0‖g‖
2
L2(Rd

+)

)
, (3.17)

for all g ∈ H1(Rd+).

Assumption (ii). In order to check ran(B2M(λ0)B1) ⊂ domB1 we have to show

|α| 13B2M(λ0)B1ϕ = |α|M(λ0)B1ϕ ∈ L2(Rd−1) for all functions ϕ ∈ dom(B2M(λ0)B1).

Using (3.13) it suffices to verify M(λ0)B1ϕ ∈ H
d−1
p (Rd−1).

First consider ϕ ∈ dom(M(λ0)B1) and choose β3p ∈ L3p(Rd−1) and β∞ ∈
L∞(Rd−1) such that sgn(α)|α| 13 = β3p + β∞; cf. (3.6). Then by the boundedness
of the Weyl function in Lemma 3.2 and (3.2) we obtain

‖M(λ0)B1ϕ‖
H

d−1
p (Rd−1)

≤ ‖M(λ0)β3pϕ‖
H

d−1
p (Rd−1)

+ ‖M(λ0)β∞ϕ‖
H

d−1
p (Rd−1)

≤ c
(
‖β3pϕ‖

L
6p

3p+2 (Rd−1)
+ ‖β∞ϕ‖L2(Rd−1)

)
≤ c

(
‖β3p‖L3p(Rd−1) + ‖β∞‖L∞(Rd−1)

)
‖ϕ‖L2(Rd−1),

(3.18)

where Lemma 3.2 was used in the penultimate inequality with s and p replaced by
d−1
p and 6p

3p+2 , respectively, which is possible since p > 4
3 (d−1) holds by assumption

for every dimension d ≥ 2. Furthermore, in the last estimate the Hölder inequality
with the exponents 3p+2

2 and 3p+2
3p was used.

Now let ϕ ∈ dom(M(λ0)B1) and pick a sequence (ϕn) ⊂ dom(M(λ0)B1)

such that ϕn → ϕ and M(λ0)B1ϕn → M(λ0)B1ϕ for n → ∞ in L2(Rd−1). It is

clear from (3.18) that the sequence (M(λ0)B1ϕn) converges in H
d−1
p (Rd−1) to an

element g ∈ H
d−1
p (Rd−1). Hence it follows that

g = M(λ0)B1ϕ ∈ H
d−1
p (Rd−1).

Therefore, assumption (ii) in Corollary 2.3 holds.

Assumption (i). We prove 1 ∈ ρ(B2M(λ0)B1) by showing that B2M(λ0)B1 is an
everywhere defined bounded operator with norm strictly less than 1.
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For this we define the inner product

(f, g)λ0
:= (∇f,∇g)L2(Rd

+,Cd) − λ0(f, g)L2(Rd
+), f, g ∈ H1(Rd+),

and note that the corresponding norm is equivalent to the usual H1(Rd+)-norm.
Fix now any ϕ ∈ dom(B2M(λ0)B1) and use (3.16) for g = γ(λ0)B1ϕ to obtain
the estimate

‖B2M(λ0)B1ϕ‖2L2(Rd−1) = ‖|α| 23 τDγ(λ0)B1ϕ‖2L2(Rd−1)

≤ 1

2
‖γ(λ0)B1ϕ‖2λ0

=
1

2
sup

h∈H1(Rd
+)\{0}

(γ(λ0)B1ϕ, h)2λ0

‖h‖2λ0

.

Using the first Green identity and the properties

(−∆− λ0)γ(λ0)B1ϕ = 0 and τNγ(λ0)B1ϕ = B1ϕ,

of the γ-field, which follow immediately from its definition (2.3) and Proposi-
tion 3.1, we find

(γ(λ0)B1ϕ, h)λ0
= (∇γ(λ0)B1ϕ,∇h)L2(Rd

+,Cd) − λ0(γ(λ0)B1ϕ, h)L2(Rd
+)

= (∇γ(λ0)B1ϕ,∇h)L2(Rd
+,Cd) + (∆γ(λ0)B1ϕ, h)L2(Rd

+)

= (τNγ(λ0)B1ϕ, τDh)L2(Rd−1)

= (B1ϕ, τDh)L2(Rd−1)

and hence

‖B2M(λ0)B1ϕ‖2L2(Rd−1) ≤
1

2
sup

h∈H1(Rd
+)\{0}

(B1ϕ, τDh)2L2(Rd−1)

‖h‖2λ0

≤ 1

2
‖ϕ‖2L2(Rd−1) sup

h∈H1(Rd
+)\{0}

‖|α| 13 τDh‖2L2(Rd−1)

‖h‖2λ0

.

Equation (3.17) then leads to the estimate

‖B2M(λ0)B1ϕ‖2L2(Rd−1) ≤
1

4
‖ϕ‖2L2(Rd−1) (3.19)

for any ϕ ∈ dom(B2M(λ0)B1).

As B2 is closed and (3.18) implies that M(λ0)B1 is bounded in L2(Rd−1)

it follows that B2M(λ0)B1 is closed in L2(Rd−1) as well. Since B2M(λ0)B1 is

everywhere defined, this however implies B2M(λ0)B1 = B2M(λ0)B1 and hence

1 ∈ ρ(B2M(λ0)B1) follows from (3.19). This completes the proof of Theorem 3.5.
�

Remark 3.6. If one uses Corollary 2.4 instead of Corollary 2.3 in the proof of
Theorem 3.5 only α ∈ Lp(Rd−1) +L∞(Rd−1) with p > 2(d− 1) can be treated. In
fact, in this situation one chooses B2 = B to be the multiplication operator with
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α and for the estimate (3.14) (with α instead of |α| 23 ) it is necessary to restrict
to p > 2(d − 1). Thus, for Laplacians with singular Robin boundary conditions
Theorem 2.2 and Corollary 2.3 allow a larger class of boundary parameters α than
Corollary 2.4.

Remark 3.7. A variant of Theorem 3.5 for more general elliptic second order oper-
ators on a certain class of unbounded non-smooth domains with Robin boundary
conditions containing also differential or pseudodifferential operators can be found
in [1]. In our situation for a Robin Laplacian on Rd+ with an H1/2-smooth real-
valued

α ∈ H1/2
p (Rd−1), p > 2(d− 1),

it follows from [1, Theorem 7.2] that the operator

Aαf = −∆f, domAα =
{
f ∈ H2(Rd+) : ατDf = τNf

}
,

is self-adjoint in L2(Rd+).

Self-adjoint Laplacians with Robin boundary conditions can also be defined
via the densely defined, symmetric form

aα[f ] = ‖∇f‖2L2(Rd,Cd) −
∫
Rd−1

α|τDf |2dx, dom aα = H1(Rd+), (3.20)

and the first representation theorem [26, VI Theorem 2.1]. The following propo-
sition shows that this method allows a larger class of boundary parameters α as
Theorem 3.5 does, but leads to an operator Aα with a less regular operator domain.
However, for functions α satisfying the stronger assumptions in Theorem 3.5, the
operators in (3.21) below and in (3.12) coincide. A variant of Proposition 3.8 for
bounded Lipschitz domains can be found in [18, Theorem 4.5 and Lemma 5.3].

Proposition 3.8. Let α ∈ Lp(Rd−1) + L∞(Rd−1) be a real-valued function for
p = d − 1 if d ≥ 3 and p > 1 if d = 2. Then the quadratic form aα in (3.20)
is semibounded and closed. The corresponding self-adjoint operator in L2(Rd+) is
given by

Aαf = −∆f, domAα =

{
f ∈ H1(Rd+) :

∆f ∈ L2(Rd+),
ατDf = τNf

}
. (3.21)

Proof. In order to prove that the form aα is semibounded and closed we split aα
into the two quadratic forms

a[f ] = ‖∇f‖2L2(Rd
+,Cd) and t[f ] =

∫
Rd−1

α(x)|τDf(x)|2dx

with dom a = dom t = H1(Rd+) and observe that a is a densely defined, nonnega-

tive, closed form in L2(Rd−1). Now it suffices to check that t is relatively bounded
with respect to a with relative bound < 1, that is, for some a ≥ 0 and 0 ≤ b < 1

|t[f ]| ≤ a‖f‖2L2(Rd
+) + b a[f ], f ∈ H1(Rd+), (3.22)
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since in this case the KLMN theorem [36, Theorem 6.24] (see also [26, VI The-
orem 1.33]) yields that the form aα = a − t is densely defined, closed, and semi-
bounded in L2(Rd−1). To verify (3.22), decompose the function α = αp + α∞ in
the sum of αp ∈ Lp(Rd−1) and α∞ ∈ L∞(Rd−1), and let ε > 0. For the unbounded
part αp choose a sufficiently large γε > 0 such that

‖αp‖Lp(Kε) ≤ ε with Kε =
{
x ∈ Rd−1 : |αp(x)| > γε

}
, (3.23)

and write αp as the sum of

α(0)
p (x) =

{
0, x ∈ Kε,
αp(x), x /∈ Kε,

and α(1)
p (x) =

{
αp(x), x ∈ Kε,
0, x /∈ Kε.

With this decomposition we now estimate the form t by

|t[f ]| ≤
∫
Rd−1

|α∞(x) + α(0)
p (x)| |τDf(x)|2dx

+

∫
Rd−1

|α(1)
p (x)| |τDf(x)|2dx

(3.24)

and discuss both integrals on the right hand side of (3.24) separately. For the first
integral we fix some arbitrary s ∈ ( 1

2 , 1) and use the continuity of τD : Hs(Rd+)→
Hs− 1

2 (Rd−1) as well as Lemma 3.4 to obtain∫
Rd−1

|α∞(x)+α(0)
p (x)| |τDf(x)|2dx

≤ (‖α∞‖L∞(Rd−1) + γε)‖τDf‖2L2(Rd−1)

≤ c′‖f‖2Hs(Rd
+)

≤ c′ε‖∇f‖2L2(Rd
+,Cd) + c′Cε‖f‖2L2(Rd

+),

(3.25)

where c′ = (‖α∞‖L∞(Rd−1) + γε)‖τD‖2 and Cε is the constant in Lemma 3.4. For
the estimate of the second integral in (3.24) we first use the Hölder inequality and
(3.23) to obtain∫

Rd−1

|α(1)
p (x)| |τDf(x)|2dx ≤ ‖α(1)

p ‖Lp(Rd−1)‖τDf‖2
L

2p
p−1 (Rd−1)

≤ ε‖τDf‖2
L

2p
p−1 (Rd−1)

.

By the given assumptions on p we can now apply the Sobolev embedding theorem
[8, Theorem 8.12.4 Case I] if d ≥ 3 and [8, Theorem 8.12.4 Case II] if d = 2. This
leads to the estimate∫

Rd−1

|α(1)
p | |τDf(x)|2dx ≤ εc′′‖τDf‖2

H
1
2 (Rd−1)

≤ εc′′′‖f‖2H1(Rd
+) (3.26)

with some constants c′′, c′′′ > 0. From (3.25) and (3.26) we conclude that (3.22)
holds for all b > 0 and hence it follows, in particular, that aα closed and semi-
bounded.
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We leave it to the reader to verify that the self-adjoint operator corresponding
to aα is given by (3.21). �
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