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1. Introduction

In the analysis of the Cauchy problem for the one dimensional time dependent Schrödinger equation

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2 + V (t, x)
)
Ψ(t, x), t > 0, x ∈ R,

Ψ(0, x) = F (x), x ∈ R,

(1.1)

with a given potential V and initial condition F , one typically wants to express the solution Ψ with the 
help of the corresponding Green’s function G(t, x, y) in the form

Ψ(t, x) =
∫
R

G(t, x, y)F (y)dy. (1.2)

To ensure the existence of the integral (1.2) in the usual Lebesgue sense one often imposes strong smoothness 
and decay assumptions on the initial condition F . In particular, test or Schwartz functions are a natural 
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choice to avoid technical difficulties, see for example the constructions of explicit Green’s functions in 
[18,19,23,28,34]. However, if F does not satisfy such additional requirements, it is necessary to specify in 
which sense the integral (1.2) has to be understood.

The main objective of this paper is to propose a new constructive and explicit approach towards integrals 
that do not converge in the usual Lebesgue sense, but where the integrand has a fast oscillatory behavior. 
Our technique is inspired by the above Cauchy problem and its application in the theory of Aharonov-Berry 
superoscillations (a wave phenomenon, where low frequency waves interact almost destructively in such a 
way that the resulting wave has a very small amplitude but an arbitrary large frequency; cf. [2,13] for the 
physical and mathematical origin of this effect, and [14] for a comprehensive survey), but will be developed 
in a general independent framework. To familiarize the reader with our method let us consider (1.1) with 
the initial condition

F (y) = eiκy, (1.3)

which is a plane wave with frequency κ ∈ R, the most important initial condition in the above mentioned 
application on superoscillations. Typically, the Green’s function in (1.2) does not possess any decay as 
y → ±∞ and thus the integral (1.2) with F in (1.3) is not absolutely convergent in the Lebesgue sense. 
In order to still give meaning to the integral, one may use that the Green’s function of the Schrödinger 
equation often admits a decomposition of the form

G(t, x, y) = eia(t)y2
Ĝ(t, x, y),

where the functions a and Ĝ satisfy certain growth conditions. Using this decomposition turns the integral 
(1.2) into

Ψ(t, x) =
∫
R

eia(t)y2
Ĝ(t, x, y)F (y)dy. (1.4)

Now, one may interpret (1.4) as a generalized Fresnel integral by formally substituting y → yeiα for some 
α > 0. This leads to a rotation of the integration path into the complex plane and turns the oscillating term 
eia(t)y2 into the Gaussian decaying factor eia(t)(yeiα)2 , which may lead to an absolutely convergent integral. 
This method typically requires that the integrand extends holomorphically into the complex plane and was 
employed in the context of time evolution of superoscillations recently in [3,12,33].

In the present paper we propose a different method, based on iterative integration by parts, to interpret 
(1.4) as a limit of absolutely convergent integrals. This avoids the analyticity assumption on the integrand 
and replaces it by some Cn-regularity. Moreover, the integrand and hence the initial condition is allowed 
to grow polynomially at y → ±∞, see Theorem 4.2. In order to sketch the key idea, we note that the 
fundamental structure of the integral (1.4) is of the form

∞∫
b

eiay
2
f(y)dy, (1.5)

where we only consider the integral along the interval [b, ∞) with b > 0 and a ∈ R \ {0}. This integral can 
be rewritten by formally using integration by parts, as

∞∫
eiay

2
f(y)dy = −1

2ia

(
eiab

2 f(b)
b

−
∞∫
eiay

2 f(y)
y2 dy +

∞∫
eiay

2 f ′(y)
y

dy

)
, (1.6)
b b b
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where we have assumed that the evaluation eiay
2
f(y)/y for y → ∞ vanishes. Thus, instead of the function 

f , it suffices to integrate the functions f(y)/y2 and f ′(y)/y, where the additional decaying factors 1/y2 and 
1/y lead to better integrability properties at ∞. This observation can be made rigorous by inserting the 
Gaussian factor e−εy2 , and when (1.6) is applied iteratively, it leads to the formula (3.6). It is then shown 
in Theorem 3.3, that for n-times continuously differentiable functions f where the n-th derivative grows at 
most polynomially with order α < n − 1, we can consider the oscillatory integral as the limit of regularized 
integrals

∞∫
b

eiay
2
f(y)dy := lim

ε→0+

∞∫
b

e−εy2
eiay

2
f(y)dy. (1.7)

In Section 4 this technique and the general results from Section 3 will be applied to the Cauchy problem for 
the one dimensional time dependent Schrödinger equation (1.1). In particular, assuming that the Green’s 
function satisfies Assumption 4.1, we conclude that for a class of Cn-regular initial conditions F with 
polynomial growth, the solution of (1.1) can be expressed as the limit

Ψ(t, x) = lim
ε→0+

∫
R

e−εy2
G(t, x, y)F (y)dy, t > 0, x ∈ R. (1.8)

Here we shall also rely on the Leibniz rule for oscillatory integrals from Theorem 3.7, which in the concrete 
situation (1.8) leads to

∂2

∂x2 Ψ(t, x) = lim
ε→0+

∫
R

e−εy2 ∂2

∂x2G(t, x, y)F (y)dy,

∂

∂t
Ψ(t, x) = lim

ε→0+

∫
R

e−εy2 ∂

∂t
G(t, x, y)F (y)dy,

and thus shows that Ψ in (1.8) is a solution of the time dependent Schrödinger equation. Furthermore, using 
the abstract continuity result Proposition 3.6, it turns out in Theorem 4.3 that Ψ depends continuously 
on the initial condition F . As a simple illustration of our general results we consider the free particle in 
Section 5, where we also discuss the initial condition (1.3) and compute the moments of the corresponding 
Green’s function, i.e. choose the initial conditions F (y) = ym. We also refer to [3–5,12,17,20] for other 
explicit examples of Green’s functions and related considerations in the context of superoscillations.

Finally, we briefly connect and relate our investigations to the general theory of oscillatory integrals, 
which appear in various branches in mathematics and physics. Note first that the single valued integral 
(1.5) is an oscillatory integral of the form ∫

Ω

eiaφ(y)f(y)dy, (1.9)

where Ω is an open subset of Rm. While our method (1.6) of iterative integration by parts uses the term 
eiay

2 to gain additional powers of 1/y in order to make the integral absolutely convergent, typically these 
integrals are treated for functions f which are already absolutely integrable. The main interest is mostly on 
the asymptotic behavior when a → ∞, and the classical tool is the method of stationary phase; we refer the 
interested reader to the monographs by Hörmander [26, Section 7.7], Sogge [35, Chapter 1] and Steinthe l 
[36, Chapter VIII]. The case when f does not possess any decay at infinity is treated, e.g., in the papers 
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[10,11], [24, Section 1.2] and [35, Section 0.5]. There, the oscillatory integral is, similar to (1.7), defined as 
the limit of regularized integrals

lim
ε→0+

∫
Ω

ρ(εy)eiaφ(y)f(y)dy,

where ρ is a function with ρ(0) = 1, which makes the above integral absolute convergent for every ε > 0. 
However, the function f still has to have C∞-regularity with growth assumptions on all derivatives, while 
in this paper we present an improved integration by parts method which reduces, at least for φ(y) = y2

and Gaussian regularizers ρ(y) = e−y2 , the regularity assumptions to Cn, and polynomial boundedness 
is only needed for the n-th derivative. Typical examples are the Airy integral in [26, Section 7.6] or the 
Stein-Wainger oscillatory integral treated in [29,30,32,38].

Another possible approach to oscillatory integrals, which formally seems closer to the Green’s function 
integral (1.4), is to introduce a second parameter x as well as an integral kernel K(x, y) into the integral 
(1.9). However, while we still consider this integral as the limit of regularized integrals (1.8), the classical 
approach in this case is to consider the integral∫

Ω

eiφ(x,y)K(x, y)f(y)dy (1.10)

only for f in a dense subset, and then extend it either as a bounded operator or in the sense of distributions. 
Mapping properties in between the spaces Lp(Ω) and Lq(Ω) are discussed in, e.g., [15,25,27,37]. Such oper-
ators and their applications in the theory of partial differential equations were thoroughly investigated by 
Duistermaat and Hörmander in [21,22,24,26]. Typical examples for (1.10) are the standard Fourier trans-
form (φ(x, y) = xy and K(x, y) = 1 on Ω = Rm), or more general Fourier integral operators, also with 
measure-valued kernels K which restrict the integral to a submanifold [16,36,39]. As another important 
application we point out that in the papers [6–10] by Albeverio and collaborators, the infinite dimensional 
Feynman path integral is treated as the limit of finite dimensional oscillatory integrals.

Acknowledgments. We are indebted to Jean-Claude Cuenin for fruitful discussions and helpful remarks. This 
research was funded by the Austrian Science Fund (FWF) Grant-DOI: 10.55776 / P33568 and 10.55776 / 
J4685. The research of P.S. is also funded by the European Union–NextGenerationEU.

2. Spaces of polynomially bounded Cn-functions

In this preparatory section we introduce and study two families of spaces of n-times continuously differ-
entiable functions, which both play an important role in this paper. First, in Definition 2.1 for α ≥ 0 and 
b > 0 we define the space Cn

α([b, ∞)), where only the n-th derivative is assumed to satisfy a polynomial 
bound yα at ∞. For functions f from this space we will define the oscillatory integral Ia,b(f) in Theo-
rem 3.3. Second, we consider the space Cn(R, rα) with r(y) = 1 + |y| in Definition 2.8, where all derivatives 
satisfy the polynomial bound r(y)α at ∞. This space turns out to be more convenient when products of 
functions appear in the integrals, such as it is the case for the Green’s function and the initial condition in 
Theorem 4.2.

Definition 2.1. For b > 0, n ∈ N0, and α ≥ 0, define the space

Cn
α([b,∞)) :=

{
f ∈ Cn([b,∞))

∣∣∣ |f (n)(y)| ≤ Myα for some M ≥ 0
}

(2.1)

equipped with the norm



J. Behrndt, P. Schlosser / J. Math. Anal. Appl. 543 (2025) 129022 5
‖f‖Cn
α([b,∞)) :=

n−1∑
k=0

|f (k)(b)|
bn−k+α

+ sup
y∈[b,∞)

|f (n)(y)|
yα

; (2.2)

here (and in the following) we use the convention 
∑−1

k=0 := 0.

Observe that for f ∈ Cn
α([b, ∞)) only a bound on the highest order derivative f (n) is required. However, 

the next Proposition 2.2 also provides bounds for the lower order derivatives, which will be used frequently 
in the following. The estimate (2.3) is also useful to verify that Cn

α([b, ∞)) is a Banach space; this can be 
done in the same way as for Cn([b, ∞)) and is not repeated here.

Proposition 2.2. Let b > 0, n ∈ N0, and α ≥ 0. Then for any f ∈ Cn
α([b, ∞)) one has

|f (k)(y)| ≤ ‖f‖Cn
α([b,∞))y

n−k+α, y ∈ [b,∞), k ∈ {0, . . . , n}. (2.3)

Proof. Let us set M := supy∈[b,∞)
|f(n)(y)|

yα and prove by induction for k ∈ {0, . . . , n} the stronger inequality

|f (k)(y)| ≤
( n−1∑

l=k

|f (l)(b)|
bn−l+α

+ M

)
yn−k+α, y ∈ [b,∞). (2.4)

Since f ∈ Cn
α([b, ∞)), the inequality (2.4) for k = n follows immediately from the definition of M . For the 

induction step k → k − 1, we get

|f (k−1)(y)| =
∣∣∣∣f (k−1)(b) +

y∫
b

f (k)(z)dz
∣∣∣∣

≤ |f (k−1)(b)| +
( n−1∑

l=k

|f (l)(b)|
bn−l+α

+ M

) y∫
b

zn−k+αdz

≤ |f (k−1)(b)| +
( n−1∑

l=k

|f (l)(b)|
bn−l+α

+ M

)
yn−k+α+1

n− k + α + 1

≤ |f (k−1)(b)|
(y
b

)n−k+α+1
+

( n−1∑
l=k

|f (l)(b)|
bn−l+α

+ M

)
yn−k+α+1

=
( n−1∑

l=k−1

|f (l)(b)|
bn−l+α

+ M

)
yn−k+α+1, y ∈ [b,∞).

This shows estimate (2.4), which implies the inequality (2.3). �
In the following we collect four corollaries that are all based on the bound (2.3). The first one is a 

continuous embedding result.

Corollary 2.3. Let b > 0, n ∈ N0, α ≥ 0, and f ∈ Cn
α([b, ∞)). Then for every value c ≥ b one has 

f |[c,∞) ∈ Cn
α([c, ∞)) and

‖f |[c,∞)‖Cn
α([c,∞)) ≤ (n + 1)‖f‖Cn

α([b,∞)).

Proof. It is clear from the definition of the space (2.1) that f |[c,∞) ∈ Cn
α([c, ∞)). Using (2.3) for y = c, we 

can estimate the norm (2.2) of the restricted function f |[c,∞) by
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‖f |[c,∞)‖Cn
α([c,∞)) =

n−1∑
k=0

|f (k)(c)|
cn−k+α

+ sup
y∈[c,∞)

|f (n)(y)|
yα

≤
n−1∑
k=0

‖f‖Cn
α([b,∞))c

n−k+α

cn−k+α
+ sup

y∈[b,∞)

|f (n)(y)|
yα

≤ (n + 1)‖f‖Cn
α([b,∞)). �

Corollary 2.4. Let b > 0, n ∈ N0, α ≥ 0, and f ∈ Cn
α([b, ∞)). Then for every m ∈ {0, . . . , n} one has 

f (m) ∈ Cn−m
α ([b, ∞)) and

‖f (m)‖Cn−m
α ([b,∞)) ≤ ‖f‖Cn

α([b,∞)).

Proof. Using the inequality (2.3), the derivatives of f (m) can be estimated by

∣∣∣ dk
dyk

f (m)(y)
∣∣∣ = |f (m+k)(y)| ≤ ‖f‖Cn

α([b,∞))y
n−m−k+α, k ∈ {0, . . . , n−m}.

This estimate shows that f (m) ∈ Cn−m
α ([b, ∞)), with norm bounded by

‖f (m)‖Cn−m
α ([b,∞)) =

n−m−1∑
k=0

|f (m+k)(b)|
bn−m−k+α

+ sup
y∈[b,∞)

|f (m+n−m)(y)|
yα

=
n−1∑
k=m

|f (k)(b)|
bn−k+α

+ sup
y∈[b,∞)

|f (n)(y)|
yα

≤ ‖f‖Cn
α
,

where the first equation is the definition of the norm (2.2), in the second equation we substituted k → k−m, 
and in the last inequality we added the missing terms k = 0, . . . , m − 1 in the sum. �
Corollary 2.5. Let b > 0, n, m ∈ N0, and α, β ≥ 0. If n ≥ m and β ≥ α+n −m, then one has the inclusion 
of the spaces Cn

α([b, ∞)) ⊆ Cm
β ([b, ∞)), together with the norm estimate

‖f‖Cm
β ([b,∞)) ≤

m + 1
bβ−α−n+m

‖f‖Cn
α([b,∞)), f ∈ Cn

α([b,∞)).

Proof. Using the inequality (2.3), we get for every f ∈ Cn
α([b, ∞)) and k ∈ {0, . . . , n} the estimate

|f (k)(y)| ≤ ‖f‖Cn
α([b,∞))y

n−k+α ≤ ‖f‖Cn
α([b,∞))

ym−k+β

bβ−α−n+m
,

where in the second inequality y ≥ b and β ≥ α+n −m was used. This estimate shows that f ∈ Cm
β ([b, ∞)), 

with norm bounded by

‖f‖Cm
β ([b,∞)) =

m−1∑
k=0

|f (k)(b)|
bm−k+β

+ sup
y∈[b,∞)

|f (m)(y)|
yβ

≤ ‖f‖Cn
α([b,∞))

(m−1∑
k=0

1
bβ−α−n+m

+ 1
bβ−α−n+m

)
= ‖f‖Cn([b,∞))

m + 1
. �
α bβ−α−n+m
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In the next result, functions f ∈ Cn
α([b, ∞)) are multiplied with monomials yp. In the following we shall 

use the convention 
∏−1

j=0 := 1.

Corollary 2.6. Let b > 0, n ∈ N0, α ≥ 0, and f ∈ Cn
α([b, ∞)). Then for every real valued p ≥ 0 one has 

ypf ∈ Cn
α+p([b, ∞)) and

‖ypf‖Cn
α+p([b,∞)) ≤ (p + n + 1)n‖f‖Cn

α([b,∞)).

Proof. Using the inequality (2.3), we get for every k ∈ {0, . . . , n} the estimate

∣∣∣ dk
dyk

(ypf(y))
∣∣∣ =

∣∣∣∣ k∑
l=0

(
k

l

)( l−1∏
j=0

(p− j)
)
yp−lf (k−l)(y)

∣∣∣∣
≤ ‖f‖Cn

α([b,∞))

k∑
l=0

(
k

l

)( l−1∏
j=0

|p− j|
)
yn−k+α+p.

(2.5)

Estimating |p − j| ≤ p + j ≤ p + n − 1, using the largest j-value j ≤ l − 1 ≤ k − 1 ≤ n − 1, the inequality 
(2.5) becomes

∣∣∣ dk
dyk

(ypf(y))
∣∣∣ ≤ ‖f‖Cn

α([b,∞))

k∑
l=0

(
k

l

)
(p + n− 1)lyn−k+α+p

= ‖f‖Cn
α([b,∞))(p + n)kyn−k+α+p

for y ∈ [b, ∞). In the second line we used the binomial formula 
∑k

l=0
(
k
l

)
ξl = (ξ + 1)k. This estimate shows 

that ypf ∈ Cn
α+p([b, ∞)), with norm bounded by

‖ypf‖Cn
α+p([b,∞)) =

n−1∑
k=0

∣∣ dk

dyk (ypf(y))
∣∣
y=b

∣∣
bn−k+α+p

+ sup
y∈[b,∞)

∣∣ dn

dyn (ypf(y))
∣∣

yα+p

≤ ‖f‖Cn
α([b,∞))

( n−1∑
k=0

(p + n)k + (p + n)n
)

≤ ‖f‖Cn
α([b,∞))

n∑
k=0

(
n

k

)
(p + n)k

= ‖f‖Cn
α([b,∞))(p + n + 1)n,

where in the last line we again used the binomial formula. �
The next remark shows that the function spaces Cn

α in Definition 2.1 do not possess natural multiplication 
properties. The main reason for this is that the growth yα in (2.1) is only required for the highest derivative, 
while the lower order derivatives may grow faster, see Proposition 2.2.

Remark 2.7. Observe that in general for f ∈ Cn
α([b, ∞)) and g ∈ Cn

β ([b, ∞)), α, β ≥ 0, one can not conclude 
fg ∈ Cn

α+β([b, ∞)). E.g., for f(y) = eiy ∈ Cn
0 ([b, ∞)) and g(y) = yn+β ∈ Cn

β ([b, ∞)), Corollary 2.6 only 
ensures fg ∈ Cn

n+β([b, ∞)), but since

dn

dyn
(yn+βeiy) =

n∑(
n

k

)( k−1∏
(n + β − l)

)
yn−k+βin−keiy = O(yn+β) as y → ∞,
k=0 l=0
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it is clear that fg /∈ Cn
β ([b, ∞)) for n 	= 0.

Next we introduce another family of weighted Cn-spaces, which are more natural for treating products 
and hence will be used in Section 4, where the product of Green’s function and an initial condition appears 
in the integrand. As weights we consider powers of

r(y) := 1 + |y|,

and in contrast to the Cn
α-spaces, not only the n-th derivative, but also the lower order derivatives have to 

satisfy the same upper bound. However, in Lemma 2.12 it turns out that (modulo restrictions) the spaces 
Cn(R, rα) can be viewed as a subspace of Cn

α([b, ∞)).

Definition 2.8. For n ∈ N0 and α ≥ 0, define the space

Cn(R, rα) :=
{
f ∈ Cn(R)

∣∣∣ |f (k)(y)| ≤ Mr(y)α for some M ≥ 0 and every k ∈ {0, . . . , n}
}
,

equipped with the norm

‖f‖Cn(R,rα) := max
k∈{0,...,n}

sup
y∈R

|f (k)(y)|
r(y)α . (2.6)

We remark that the space Cn(R, rα) is a Banach space, which can be proven in the same way as for 
the standard Cn-spaces and is not repeated here. Next we collect some useful features of the functions in 
Cn(R, rα) and start with a natural product property.

Proposition 2.9. Let n ∈ N0 and α, β ≥ 0. Then for every f ∈ Cn(R, rα) and g ∈ Cn(R, rβ) one has 
fg ∈ Cn(R, rα+β) and

‖fg‖Cn(R,rα+β) ≤ 2n‖f‖Cn(R,rα)‖g‖Cn(R,rβ).

Proof. For every k ∈ {0, . . . , n} the k-th derivative of the product fg can be estimated by

∣∣∣ dk
dyk

(f(y)g(y))
∣∣∣ =

∣∣∣ k∑
l=0

(
k

l

)
f (l)(y)g(k−l)(y)

∣∣∣
≤

k∑
l=0

(
k

l

)
‖f‖Cn(R,rα)‖g‖Cn(R,rβ)r(y)α+β

= 2k‖f‖Cn(R,rα)‖g‖Cn(R,rβ)r(y)α+β .

This estimate shows that fg ∈ Cn(R, rα+β), with norm bounded by

‖fg‖Cn(R,rα+β) ≤ max
k∈{0,...,n}

2k‖f‖Cn(R,rα)‖g‖Cn(R,rβ) = 2n‖f‖Cn(R,rα)‖g‖Cn(R,rβ). �

Lemma 2.10. Let n ∈ N0, α ≥ 0, and f ∈ Cn(R, rα). Then the following assertions hold.

(i) For every m ∈ N0 one has ymf ∈ Cn(R, rα+m) and

‖ymf‖Cn(R,rα+m) ≤ (1 + m)n‖f‖Cn(R,rα). (2.7)
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(ii) For every κ ∈ R one has eiκyf ∈ Cn(R, rα) and

‖eiκyf‖Cn(R,rα) ≤ (1 + |κ|)n‖f‖Cn(R,rα). (2.8)

Proof. (i) For every k ∈ {0, . . . , n} the k-th derivative of ymf(y) can be estimated by

∣∣∣ dk
dyk

(ymf(y))
∣∣∣ =

∣∣∣∣min{k,m}∑
l=0

(
k

l

)
m!

(m− l)!y
m−lf (k−l)(y)

∣∣∣∣
≤

min{k,m}∑
l=0

(
k

l

)
ml‖f‖Cn(R,rα)r(y)α+m−l

≤
k∑

l=0

(
k

l

)
ml‖f‖Cn(R,rα)r(y)α+m

= (1 + m)k‖f‖Cn(R,rα)r(y)α+m.

This inequality shows that ymf ∈ Cn(R, rα+m), with norm bounded by (2.7).

(ii) For every k ∈ {0, . . . , n} the k-th derivative of eiκyf(y) can be estimated by

∣∣∣ dk
dyk

(eiκyf(y))
∣∣∣ =

∣∣∣∣ k∑
l=0

(
k

l

)
(iκ)leiκyf (k−l)(y)

∣∣∣∣
≤

k∑
l=0

(
k

l

)
|κ|l‖f‖Cn(R,rα)r(y)α

= (1 + |κ|)k‖f‖Cn(R,rα)r(y)α.

This inequality shows that eiκyf ∈ Cn(R, rα), with norm bounded by (2.8). �
Next, we show that the space Cn(R, rα) is invariant with respect to the shift of the function.

Lemma 2.11. Let n ∈ N0, α ≥ 0, and f ∈ Cn(R, rα). Then for every x ∈ R one has f( · + x) ∈ Cn(R, rα)
and

‖f( · + x)‖Cn(R,rα) ≤ (1 + |x|)α‖f‖Cn(R,rα).

Proof. For every k ∈ {0, . . . , n} the k-th derivative of f( · + x) can be estimated by

∣∣∣ dk
dyk

f(y + x)
∣∣∣ = |f (k)(y + x)| ≤ ‖f‖Cn(R,rα)(1 + |y + x|)α ≤ ‖f‖Cn(R,rα)(1 + |x|)α(1 + |y|)α.

This estimate shows that f( · + x) ∈ Cn(R, rα), with norm bounded by

‖f( · + x)‖Cn(R,rα) ≤ ‖f‖Cn(R,rα)(1 + |x|)α. �
The following lemma shows, that the function space Cn

α([b, ∞)) from Definition 2.1 is indeed in some 
sense larger then the weighted Cn-spaces Cn(R, rα) from Definition 2.8.
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Lemma 2.12. Let n ∈ N0, α ≥ 0, and f ∈ Cn(R, rα). Then for b > 0 one has f |[b,∞) ∈ Cn
α([b, ∞)) and

‖f |[b,∞)‖Cn
α([b,∞)) ≤

(
1 + 1

b

)n+α

‖f‖Cn(R,rα).

Proof. For every k ∈ {0, . . . , n} the k-th derivative of f can be estimated by

|f (k)(y)| ≤ ‖f‖Cn(R,rα)(1 + y)α ≤ ‖f‖Cn(R,rα)

(
1 + 1

b

)α

yα, y ∈ [b,∞),

where 1 + y ≤ (1 + 1
b )y was used for every y ≥ b. This estimate shows that f |[b,∞) ∈ Cn

α([b, ∞)), with norm 
bounded by

‖f |[b,∞)‖Cn
α([b,∞)) =

n−1∑
k=0

|f (k)(b)|
bn−k+α

+ sup
y∈[b,∞)

|f (n)(y)|
yα

≤ ‖f‖Cn(R,rα)

(
1 + 1

b

)α
( n−1∑

k=0

1
bn−k

+ 1
)

≤ ‖f‖Cn(R,rα)

(
1 + 1

b

)n+α

,

where in the last inequality we used

n−1∑
k=0

1
bn−k

+ 1 =
n∑

k=0

1
bn−k

≤
n∑

k=0

(
n

k

)
1

bn−k
=

(
1 + 1

b

)n

. �

3. Oscillatory integrals

In this section we want to give meaning to oscillatory integrals of the form

∞∫
b

eiay
2
f(y)dy, (3.1)

where a ∈ R \ {0}, b > 0, and the function f : [b, ∞) → C is not necessarily (absolutely) integrable on 
[b, ∞). The idea is to insert the Gaussian regularizer e−ε(y−y0)2 , ε > 0, y0 ∈ R, into (3.1) and consider the 
regularized Lebesgue integral

Iε,y0
a,b (f) :=

∞∫
b

e−ε(y−y0)2eiay
2
f(y)dy. (3.2)

The oscillatory integral (3.1) can now be defined as the limit ε → 0+ of the absolutely convergent integrals 
(3.2), namely

Ia,b(f) := lim
ε→0+

Iε,y0
a,b (f) = lim

ε→0+

∞∫
b

e−ε(y−y0)2eiay
2
f(y)dy, (3.3)

for functions f for which this limit exists and is independent of the chosen y0 ∈ R. We emphasize that in 
the following the notation Iε,y0(f) is used for the standard Lebesgue integral (3.2), whereas we shall use the 
a,b
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calligraphic symbol Ia,b(f) for the limit in (3.3) which, in general, does not exist as an absolute convergent 
Lebesgue integral.

It will be shown in Theorem 3.3 that for functions in the space Cn
α([b, ∞)) of Definition 2.1 with n > α+1, 

the limit (3.3) exists. The key idea of the convergence of these oscillatory integrals is presented in the 
following Lemma 3.1. Using integration by parts we will derive the identity (3.4) for the regularized integral 
Iε,y0
a,b , which will then serve as a first step for the more complicated formula (3.6). We also refer to, e.g., 

[26, Theorem 7.7.1], [35, Lemma 0.4.7, Lemma 1.1.2], and [36, Proposition 1 on page 331], where similar 
iterative integration by parts techniques were used.

Lemma 3.1. Let a ∈ R \ {0}, b > 0, ε > 0, and y0 ∈ R. Then for every f ∈ C1
α([b, ∞)), α ≥ 0, and κ ∈ N0

one has

Iε,y0
a,b

( f

yκε

)
= −1

2(ia− ε)

(
eiab

2−ε(b−y0)2f(b)
bκ+1
ε

− (κ + 1)Iε,y0
a,b

( f

yκ+2
ε

)
+ Iε,y0

a,b

( f ′

yκ+1
ε

))
, (3.4)

where yε := y + εy0
ia−ε and bε := b + εy0

ia−ε .

Formula (3.4) shows, that instead of f
yκ
ε
, one can rather integrate the functions f

yκ+2
ε

and f ′

yκ+1
ε

. This 
procedure is illustrated in the following diagram.

Iε,y0
a,b

(
f
yκ
ε

)
Iε,y0
a,b

(
f

yκ+2
ε

)
Iε,y0
a,b

(
f ′

yκ+1
ε

)

Proof of Lemma 3.1. Using integration by parts we can rewrite the integral (3.2) as

Iε,y0
a,b

( f

yκε

)
=

∞∫
b

eiay
2−ε(y−y0)2 f(y)

yκε
dy

= 1
2(ia− ε)

∞∫
b

d

dy

(
eiay

2−ε(y−y0)2
) f(y)
yκ+1
ε

dy (3.5)

= 1
2(ia− ε)

(
eiay

2−ε(y−y0)2 f(y)
yκ+1
ε

∣∣∣∣∞
y=b

−
∞∫
b

eiay
2−ε(y−y0)2 d

dy

( f(y)
yκ+1
ε

)
dy

)
.

Since f ∈ C1
α([b, ∞)) the boundary term satisfies

∣∣∣eiay2−ε(y−y0)2 f(y)
yκ+1
ε

∣∣∣ ≤ e−ε(y−y0)2 ‖f‖C1
α([b,∞))y

1+α

|yε|κ+1 → 0 as y → ∞,

where also (2.3) was used. Therefore, (3.5) simplifies to

Iε,y0
a,b

( f

yκε

)
= −1

2(ia− ε)

(
eiab

2−ε(b−y0)2 f(b)
bκ+1
ε

+
∞∫
b

eiay
2−ε(y−y0)2 d

dy

( f(y)
yκ+1
ε

)
dy

)

= −1
(
eiab

2−ε(b−y0)2 f(b)
κ+1 − (κ + 1)Iε,y0

a,b

( f
κ+2

)
+ Iε,y0

a,b

( f ′

κ+1

))
. �
2(ia− ε) bε yε yε
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Next, we repeatedly apply (3.4) to gain multiple powers of 1
yε

, which serve as regularizers of the integrand 
at infinity. The formula (3.6) below is the crucial ingredient in Theorem 3.3 to define the oscillatory integral 
(3.1) as a limit via (3.3). The following diagram provides a schematic illustration of how (3.4) is repeatedly 
applied: Instead of the integral Iε,y0

a,b (f) in the top left corner, one can rather compute the n integrals in the 
bottom row and the m + 1 integrals in the right column.

Iε,y0
a,b (f)

Iε,y0
a,b

(
f
y2
ε

)
...

Iε,y0
a,b

(
f

y2m
ε

)
Iε,y0
a,b

(
f

y2+2m
ε

)

Iε,y0
a,b

(
f ′

yε

)
Iε,y0
a,b

(
f ′

y3
ε

)
...

Iε,y0
a,b

(
f ′

y1+2m
ε

)
Iε,y0
a,b

(
f ′

y3+2m
ε

)

. . .

. . .

. . .

. . .

Iε,y0
a,b

(
f(n−1)

yn−1
ε

)
Iε,y0
a,b

(
f(n−1)

yn+1
ε

)
...

Iε,y0
a,b

(
f(n−1)

yn−1+2m
ε

)
Iε,y0
a,b

(
f(n−1)

yn+1+2m
ε

)

Iε,y0
a,b

(
f(n)

yn
ε

)
Iε,y0
a,b

(
f(n)

yn+2
ε

)
...

Iε,y0
a,b

(
f(n)

yn+2m
ε

)

Lemma 3.2. Let a ∈ R \ {0}, b > 0, ε > 0, y0 ∈ R, m ∈ N0, and n ∈ N. Then for every f ∈ Cn
α([b, ∞)), 

α ≥ 0, one has

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
m∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)

−
n−1∑
k=0

(k + 1 + 2m)Ck,m

(ia− ε)k+1+m
Iε,y0
a,b

( f (k)

yk+2+2m
ε

)
,

(3.6)

where yε := y + εy0
ia−ε and bε := b + εy0

ia−ε , and the coefficients Ck,l ∈ R are recursively given by

Ck,0 :=
(
− 1

2

)k+1
and Ck,l+1 :=

k∑
i=0

(−1)i+k(i + 1 + 2l)
2k+1−i

Ci,l. (3.7)

Proof. Step 1. We fix m = 0 and prove the formula (3.6) inductively for n ∈ N. For the induction start 
n = 1, the formula (3.6) reduces to

Iε,y0
a,b (f) = eiab

2−ε(b−y0)2 C0,0f(b)
(ia− ε)bε

+ C0,0

ia− ε
Iε,y0
a,b

(f ′

yε

)
− C0,0

ia− ε
Iε,y0
a,b

( f

y2
ε

)
,

and holds by (3.4) with κ = 0 and the choice C0,0 = −1
2 . For the induction step n → n + 1, we know by 

(3.6) with m = 0, that

Iε,y0
a,b (f) =

n−1∑
k=0

Ck,0e
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+1bk+1
ε

+ Cn−1,0

(ia− ε)n I
ε,y0
a,b

(f (n)

ynε

)
−

n−1∑
k=0

(k + 1)Ck,0

(ia− ε)k+1 I
ε,y0
a,b

( f (k)

yk+2
ε

)
.

Using (3.4) with f (n) and κ = n, turns this formula into

Iε,y0
a,b (f) =

n−1∑ Ck,0e
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+1bk+1
ε

−
n−1∑ (k + 1)Ck,0

(ia− ε)k+1 I
ε,y0
a,b

( f (k)

yk+2
ε

)

k=0 k=0
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− Cn−1,0

2(ia− ε)n+1

(
eiab

2−ε(b−y0)2f (n)(b)
bn+1
ε

− (n + 1)Iε,y0
a,b

( f (n)

yn+2
ε

)
+ Iε,y0

a,b

(f (n+1)

yn+1
ε

))
=

n∑
k=0

Ck,0e
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+1bk+1
ε

+ Cn,0

(ia− ε)n+1 I
ε,y0
a,b

(f (n+1)

yn+1
ε

)
−

n∑
k=0

(k + 1)Ck,0

(ia− ε)k+1 I
ε,y0
a,b

( f (k)

yk+2
ε

)
,

where in the last line we used the property Cn,0 = −1
2Cn−1,0 of the coefficients.

Step 2. Now we generalize (3.6) to every m ∈ N0. The induction start m = 0 was already done in Step 1. 
For the induction step m → m + 1, we assume that (3.6) holds for n ∈ N and m ∈ N0. The computations 
will now be split into two parts. In Step 2.1 we verify for every K ∈ {0, . . . , n − 1} the formula

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
K−1∑
k=0

Ck,m+1e
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+2+mbk+3+2m
ε

+
m∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)
−

K−1∑
k=0

(k + 3 + 2m)Ck,m+1

(ia− ε)k+2+m
Iε,y0
a,b

( f (k)

yk+4+2m
ε

)

− 2CK,m+1

(ia− ε)K+1+m
Iε,y0
a,b

( f (K)

yK+2+2m
ε

)
−

n−1∑
k=K+1

(k + 1 + 2m)Ck,m

(ia− ε)k+1+m
Iε,y0
a,b

( f (k)

yk+2+2m
ε

)
.

(3.8)

For K = 0, this formula reads as

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(b−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
m∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)

− 2C0,m+1

(ia− ε)m+1 I
ε,y0
a,b

( f

y2+2m
ε

)
−

n−1∑
k=1

(k + 1 + 2m)Ck,m

(ia− ε)k+1+m
Iε,y0
a,b

( f (k)

yk+2+2m
ε

)
,

and holds, since with C0,m+1 = 1+2m
2 C0,m it is exactly the induction assumption (3.6). For the step K →

K + 1, we use the formula (3.4) with f (K) and κ = K + 2 + 2m in the induction assumption (3.8), and get

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
K−1∑
k=0

Ck,m+1e
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+2+mbk+3+2m
ε

+
m∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)
−

K−1∑
k=0

(k + 3 + 2m)Ck,m+1

(ia− ε)k+2+m
Iε,y0
a,b

( f (k)

yk+4+2m
ε

)

+ CK,m+1

(ia− ε)K+2+m

(
eiab

2−ε(y−y0)2f (K)(b)
bK+3+2m
ε

− (K + 3 + 2m)Iε,y0
a,b

( f (K)

yK+4+2m
ε

)
+ Iε,y0

a,b

( f (K+1)

yK+3+2m
ε

))
−

n−1∑
k=K+1

(k + 1 + 2m)Ck,m

(ia− ε)k+1+m
Iε,y0
a,b

( f (k)

yk+2+2m
ε

)
.

The relation CK,m+1− (K+2 +2m)CK+1,m = −2CK+1,m+1 of the coefficients (3.7) simplifies this equation 
to the stated formula (3.8), namely

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
K∑

k=0

Ck,m+1e
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+2+mbk+3+2m
ε

+
m∑ Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)
−

K∑ (k + 3 + 2m)Ck,m+1

(ia− ε)k+2+m
Iε,y0
a,b

( f (k)

yk+4+2m
ε

)

l=0 k=0
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− 2CK+1,m+1

(ia− ε)K+2+m
Iε,y0
a,b

( f (K+1)

yK+3+2m
ε

)
−

n−1∑
k=K+2

(k + 1 + 2m)Ck,m

(ia− ε)k+1+m
Iε,y0
a,b

( f (k)

yk+2+2m
ε

)
.

In Step 2.2 we prove the second part of the induction step m → m +1. Choosing the special value K = n −1
in (3.6) gives

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
n−2∑
k=0

Ck,m+1e
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+2+mbk+3+2m
ε

+
m∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)
−

n−2∑
k=0

(k + 3 + 2m)Ck,m+1

(ia− ε)k+2+m
Iε,y0
a,b

( f (k)

yk+4+2m
ε

)

− 2Cn−1,m+1

(ia− ε)n+m
Iε,y0
a,b

( f (n−1)

yn+1+2m
ε

)
.

Using a last time (3.4) with f (n−1) and κ = n + 1 + 2m turns this formula into (3.6) with m + 1, namely

Iε,y0
a,b (f) =

n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
n−2∑
k=0

Ck,m+1e
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+2+mbk+3+2m
ε

+
m∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)
−

n−2∑
k=0

(k + 3 + 2m)Ck,m+1

(ia− ε)k+2+m
Iε,y0
a,b

( f (k)

yk+4+2m
ε

)

+ Cn−1,m+1

(ia− ε)n+1+m

(
eiab

2−ε(y−y0)2f (n−1)(b)
bn+2+2m
ε

− (n + 2 + 2m)Iε,y0
a,b

( f (n−1)

yn+3+2m
ε

)
+ Iε,y0

a,b

( f (n)

yn+2+2m
ε

))

=
n−1∑
k=0

m∑
l=0

Ck,le
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
n−1∑
k=0

Ck,m+1e
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+2+mbk+3+2m
ε

+
m+1∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)
−

n−1∑
k=0

(k + 3 + 2m)Ck,m+1

(ia− ε)k+2+m
Iε,y0
a,b

( f (k)

yk+4+2m
ε

)
. �

In the following theorem we will make use of the formula (3.6) to make sense of the integral Ia,b(f) in 
(3.3) for functions f in the space Cn

α([b, ∞)).

Theorem 3.3. Let a ∈ R \ {0}, b > 0, n ∈ N, α ≥ 0, with n > α + 1. Then for every f ∈ Cn
α([b, ∞)) the 

oscillatory integral

Ia,b(f) := lim
ε→0+

Iε,y0
a,b (f) = lim

ε→0+

∞∫
b

e−ε(y−y0)2eiay
2
f(y)dy (3.9)

exists and is independent of y0 ∈ R. Moreover, for every 0 < ε ≤ 1 one has

|Iε,y0
a,b (f)| ≤ Da,b,n,α‖f‖Cn

α([b,∞)) and |Ia,b(f)| ≤ Da,b,n,α‖f‖Cn
α([b,∞)), (3.10)

where Da,b,n,α ≥ 0 depends continuously on a, b and admits the asymptotics

Da,b,n,α = O
( 1 )

as |a| → ∞. (3.11)
|a|
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Proof. Let us fix y0 ∈ R and 0 < ε ≤ 1. According to (3.6), with the choice m = n − 1, we have the 
representation

Iε,y0
a,b (f) =

n−1∑
k=0

n−1∑
l=0

Ck,le
iab2−ε(y−y0)2f (k)(b)

(ia− ε)k+1+lbk+1+2l
ε

+
n−1∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,y0
a,b

( f (n)

yn+2l
ε

)

−
n−1∑
k=0

(k + 2n− 1)Ck,n−1

(ia− ε)k+n
Iε,y0
a,b

( f (k)

yk+2n
ε

)
.

(3.12)

To show that the limit ε → 0+ of the right hand side exists it suffices to verify the existence of the limits

lim
ε→0+

Iε,y0
a,b

( f (n)

yn+2l
ε

)
and lim

ε→0+
Iε,y0
a,b

( f (k)

yk+2n
ε

)
, k, l ∈ {0, . . . , n− 1}. (3.13)

For the first limit in (3.13) we use the upper bound (2.3) and obtain for every l ∈ {0, . . . , n −1} the estimate

∣∣∣f (n)(y)
yn+2l
ε

∣∣∣ ≤ ‖f‖Cn
α([b,∞))y

α

|yε|n+2l ≤
|ia− ε|n+2l‖f‖Cn

α([b,∞))

|a|n+2lyn+2l−α
≤

|ia− ε|n+2l‖f‖Cn
α([b,∞))

|a|n+2lb2lyn−α
, (3.14)

where in the second inequality we used

|yε| =
∣∣∣y + εy0

ia− ε

∣∣∣ = |iay − ε(y − y0)|
|ia− ε| ≥ |a|y

|ia− ε| . (3.15)

Since n −α > 1 by assumption, the estimate (3.14) shows that f
(n)(y)
yn+2l
ε

is integrable on [b, ∞). Moreover, for 
every 0 < ε ≤ 1 we can estimate |ia − ε| ≤ |a| +1 and make the upper bound (3.14) independent of ε. Then 
the dominated convergence theorem implies the existence of the limit

lim
ε→0+

Iε,y0
a,b

( f (n)

yn+2l
ε

)
= lim

ε→0+

∞∫
b

eiay
2−ε(y−y0)2 f

(n)(y)
yn+2l
ε

dy =
∞∫
b

eiay
2 f (n)(y)
yn+2l dy.

Moreover, from (3.14) we obtain the upper bound

∣∣∣Iε,y0
a,b

( f (n)

yn+2l
ε

)∣∣∣ ≤ |ia− ε|n+2l‖f‖Cn
α([b,∞))

|a|n+2lb2l

∞∫
b

1
yn−α

dy =
|ia− ε|n+2l‖f‖Cn

α([b,∞))

(n− α− 1)|a|n+2lb2l+n−α−1 . (3.16)

To show the existence of the second limit in (3.13) we estimate in the same way as in (3.14) for every 
k ∈ {0, . . . , n − 1}

∣∣∣f (k)(y)
yk+2n
ε

∣∣∣ ≤ ‖f‖Cn
α([b,∞))y

n−k+α

|yε|k+2n ≤
|ia− ε|k+2n‖f‖Cn

α([b,∞))

ak+2ny2k+n−α
≤

|ia− ε|k+2n‖f‖Cn
α([b,∞))

ak+2nb2kyn−α
. (3.17)

Since n − α > 1 by assumption, this estimate shows that f(k)

yk+2n
ε

is integrable on [b, ∞), and the dominated 
convergence theorem gives the existence of the limit

lim
ε→0+

Iε,y0
a,b

( f (k)

yk+2n
ε

)
= lim

ε→0+

∞∫
eiay

2−ε(y−y0)2 f
(k)(y)
yk+2n
ε

dy =
∞∫
eiay

2 f (k)(y)
yk+2n dy.
b b
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Moreover, from (3.17) we obtain the upper bound

∣∣∣Iε,y0
a,b

( f (k)

yk+2n
ε

)∣∣∣ ≤ |ia− ε|k+2n‖f‖Cn
α([b,∞))

|a|k+2nb2k

∞∫
b

1
yn−α

dy =
|ia− ε|k+2n‖f‖Cn

α([b,∞))

(n− α− 1)|a|k+2nb2k+n−α−1 . (3.18)

Now (3.13) implies that also the limit of the sum (3.12) exists and is given by

Ia,b(f) := lim
ε→0+

Iε,y0
a,b (f) =

n−1∑
k=0

n−1∑
l=0

Ck,le
iab2f (k)(b)

(ia)k+1+lbk+1+2l +
n−1∑
l=0

Cn−1,l

(ia)n+l

∞∫
b

eiay
2 f (n)(y)
yn+2l dy

−
n−1∑
k=0

(k + 2n− 1)Ck,n−1

(ia)k+n

∞∫
b

eiay
2 f (k)(y)
yk+2n dy.

(3.19)

With the estimates (3.15), (3.16), (3.18), with |f (k)(b)| ≤ ‖f‖Cn
α([b,∞))b

n−k+α by (2.3), and with |bε| ≥ |a|b
|ia−ε|

as in (3.15), we can also estimate (3.12) by

|Iε,y0
a,b (f)| ≤

n−1∑
k=0

n−1∑
l=0

|Ck,l||ia− ε|l‖f‖Cn
α([b,∞))

|a|k+1+2lb2k+2l−n−α+1 +
n−1∑
l=0

|Cn−1,l||ia− ε|l‖f‖Cn
α([b,∞))

(n− α− 1)|a|n+2lb2l+n−α−1

+
n−1∑
k=0

(k + 2n− 1)|Ck,n−1||ia− ε|n‖f‖Cn
α([b,∞))

(n− α− 1)|a|k+2nb2k+n−α−1

≤
( n−1∑

k=0

n−1∑
l=0

|Ck,l|(|a| + 1)l

|a|k+1+2lb2k+2l−n−α+1 +
n−1∑
l=0

|Cn−1,l|(|a| + 1)l

(n− α− 1)|a|n+2lb2l+n−α−1

+
n−1∑
k=0

(k + 2n− 1)|Ck,n−1|(|a| + 1)n

(n− α− 1)|a|k+2nb2k+n−α−1

)
‖f‖Cn

α([b,∞)),

where in the second inequality we used ε ≤ 1 to estimate |ia − ε| ≤ |a| + 1. This estimate shows (3.10) with 
Da,b,n,α being the term inside the parentheses. The continuous dependency on a and b of this coefficient is 
obvious. Since n > α + 1 ≥ 1, one also obtains the convergence

lim
|a|→∞

(
|a|Da,b,n,α

)
= |C0,0|

b−n−α+1 = bn+α−1

2 ,

and hence we conclude the asymptotics Da,b,n,α = O( 1
|a| ) as |a| → ∞. �

Next, we will illustrate for the function f(y) = eiκy, κ ∈ R, how the integral Ia,b(eiκy) in (3.9) can be 
computed. Here we shall make use of the error function

erf(z) = 2√
π

z∫
0

e−ξ2
dξ, z ∈ C, (3.20)

and we agree to cut the complex square root along the negative real axis, so that Re(
√
z) > 0 for every 

z ∈ C \ (−∞, 0].

Example 3.4. For κ ∈ R consider the exponential function f(y) := eiκy. The derivatives are given by 
f (n)(y) = (iκ)neiκy and hence f ∈ Cn

0 ([b, ∞)) for every n ∈ N0. Choosing in particular n ≥ 2, the 
oscillatory integral (3.9) is for every a ∈ R \ {0}, b > 0 well defined, and has the explicit value
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Ia,b(eiκy) = lim
ε→0+

∞∫
b

e−εy2
eiay

2+iκydy = lim
ε→0+

√
π

2
√
ε− ia

e−
κ2

4(ε−ia) erf
(
y
√
ε− ia− iκ

2
√
ε− ia

)∣∣∣∣∞
y=b

.

Since Arg(
√
ε− ia) ∈ (−π

4 , 
π
4 ), the above error function converges to 1 when y → ∞, see, e.g., [1, Eq. 7.1.16]. 

Hence we obtain for the oscillatory integral

Ia,b(eiκy) = lim
ε→0+

√
π

2
√
ε− ia

e−
κ2

4(ε−ia)

(
1 − erf

(
b
√
ε− ia− iκ

2
√
ε− ia

))
=

√
π

2
√
−ia

e
κ2
4ia

(
1 − erf

(
b
√
−ia− iκ

2
√
−ia

))
.

We note that Ia,b(eiκy) is the natural generalization of the absolutely convergent Gauss integral

∞∫
b

e−αy2+iκydy =
√
π

2
√
α
e−

κ2
4α

(
1 − erf

(
b
√
α− iκ

2
√
α

))
, Re(α) > 0,

to purely imaginary values α = −ia ∈ iR \ {0}.

Corollary 3.5. Let a ∈ R \ {0}, b > 0, n ∈ N, α ≥ 0, with n > α + 1, and assume that f ∈ Cn
α([b, ∞))

satisfies for every k ∈ {0, . . . , n − 1} the asymptotic condition

f (k)(y) = o(yk+1) as y → ∞. (3.21)

Then the oscillatory integral Ia,b(f) in (3.9) can be represented as the improper Riemann integral

Ia,b(f) = lim
R→∞

R∫
b

eiay
2
f(y)dy.

Proof. The formula (3.6) with m = n − 1 and y0 = 0, i.e. yε = y and bε = b, is given by

Iε,0a,b (f) =
n−1∑
k=0

m−1∑
l=0

Ck,le
(ia−ε)b2f (k)(b)

(ia− ε)k+1+lbk+1+2l +
n−1∑
l=0

Cn−1,l

(ia− ε)n+l
Iε,0a,b

( f (n)

yn+2l

)

−
n−1∑
k=0

(k − 1 + 2n)Ck,n−1

(ia− ε)k+n
Iε,0a,b

( f (k)

yk+2n

)
.

(3.22)

Let now R > b, and subtract the identity (3.22) from the same one with b replaced by R. This gives

R∫
b

e(ia−ε)y2
f(y)dy = Iε,0a,b (f) − Iε,0a,R(f) =

n−1∑
k=0

n−1∑
l=0

Ck,l

(ia− ε)k+1+l

(e(ia−ε)b2f (k)(b)
bk+1+2l − e(ia−ε)R2

f (k)(R)
Rk+1+2l

)

+
n−1∑
l=0

Cn−1,l

(ia− ε)n+l

R∫
b

e(ia−ε)y2 f (n)(y)
yn+2l dy

−
n−1∑
k=0

(k − 1 + 2n)Ck,n−1

(ia− ε)k+n

R∫
b

e(ia−ε)y2 f (k)(y)
yk+2n dy.
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Since the integration intervals are all finite, each integrand is absolutely integrable also for ε = 0. Thus, the 
limit ε → 0+ exists and has the form

R∫
b

eiay
2
f(y)dy =

n−1∑
k=0

n−1∑
l=0

Ck,l

(ia)k+1+l

(eiab2f (k)(b)
bk+1+2l − eiaR

2
f (k)(R)

Rk+1+2l

)

+
n−1∑
l=0

Cn−1,l

(ia)n+l

R∫
b

eiay
2 f (n)(y)
yn+2l dy

−
n−1∑
k=0

(k + 2n− 1)Ck,n−1

(ia)k+n

R∫
b

eiay
2 f (k)(y)
yk+2n dy.

(3.23)

From (2.3) and n > α+1 it follows that f(n)

yn+2l , 
f(k)

yk+2n ∈ L1([b, ∞)), for every l, k ∈ {0, . . . , n − 1}, and hence

lim
R→∞

R∫
b

eiay
2 f (n)(y)
yn+2l dy =

∞∫
b

eiay
2 f (n)(y)
yn+2l dy

as well as

lim
R→∞

R∫
b

eiay
2 f (k)(y)
yk+2n dy =

∞∫
b

eiay
2 f (k)(y)
yk+2n dy.

From the asymptotic conditions (3.21) we obtain

lim
R→∞

f (k)(R)
Rk+1+2l = 0, k, l ∈ {0, . . . , n− 1},

and therefore (3.23) in the limit R → ∞ becomes

lim
R→∞

R∫
b

eiay
2
f(y)dy =

n−1∑
k=0

n−1∑
l=0

Ck,le
iab2f (k)(b)

(ia)k+1+lbk+1+2l +
n−1∑
l=0

Cn−1,l

(ia)n+l

∞∫
b

eiay
2 f (n)(y)
yn+2l dy

−
n−1∑
k=0

(k + 2n− 1)Ck,n−1

(ia)k+n

∞∫
b

eiay
2 f (k)(y)
yk+2n dy.

Finally, since the above expression coincides with the representation (3.19) of the oscillatory integral Ia,b(f)
we conclude

lim
R→∞

R∫
b

eiay
2
f(y)dy = Ia,b(f) = lim

ε→0+
Iε,0a,b (f) = lim

ε→0+

∞∫
b

e−εy2
eiay

2
f(y)dy. �

In the next proposition we show that for a convergent sequence of functions (fm)m also the sequence of 
oscillatory integrals Ia,b(fm) converges.

Proposition 3.6. Let a ∈ R \{0}, b > 0, n ∈ N, α ≥ 0 with n > α+1, and assume that f, (fm)m ∈ Cn
α([b, ∞))

are such that
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lim
m→∞

‖f − fm‖Cn
α([b,∞)) = 0.

Then also the oscillatory integrals Ia,b(fm) converge and one has

Ia,b(f) = Ia,b
(

lim
m→∞

fm

)
= lim

m→∞
Ia,b(fm).

Proof. For every m ∈ N and 0 < ε ≤ 1 we obtain from (3.10) the ε-uniform convergence

|Iε,y0
a,b (fm) − Iε,y0

a,b (f)| = |Iε,y0
a,b (fm − f)| ≤ Da,b,n,α‖f − fm‖Cn

α([b,∞)) → 0 as m → ∞.

Hence we are allowed to interchange the limits m → ∞ and ε → 0+, and get

lim
m→∞

Ia,b(fm) = lim
m→∞

lim
ε→0+

Iε,y0
a,b (fm) = lim

ε→0+
lim

m→∞
Iε,y0
a,b (fm) = lim

ε→0+
Iε,y0
a,b (f) = Ia,b(f). �

The following Theorem 3.7 provides conditions under which the oscillatory integral (3.9) is absolutely 
continuous with respect to an additional parameter s, and we obtain a formula for its derivative (defined 
almost everywhere). Recall, that a function f : I → C, defined on some open interval I ⊆ R, is said to be 
absolutely continuous if there exists g ∈ L1

loc(I), such that

f(s2) − f(s1) =
s2∫

s1

g(s)ds, s1 < s2 ∈ I.

In this case the function f is differentiable almost everywhere with derivative f ′ = g. We shall denote the 
space of absolutely continuous functions on I by AC(I).

Theorem 3.7. Let I ⊆ R be an open interval and a, b ∈ AC(I) with a(s) 	= 0 and b(s) ≥ b0 > 0 for every 
s ∈ I and some positive constant b0. Assume that f : I × [b0, ∞) → C satisfies the following two conditions.

(i) f( · , y) ∈ AC(I) for every y ∈ [b0, ∞);
(ii) There exist n ∈ N, α ≥ 0 with n > α + 3, such that

f(s, · ) ∈ Cn
α([b0,∞)) and ∂f

∂s
(s, · ) ∈ Cn

α+2([b0,∞)), f.a.e. s ∈ I,

and the norms ‖f(s, · )‖Cn
α([b0,∞)) and ‖∂f

∂s (s, · )‖Cn
α+2([b0,∞)) are locally bounded on I.

Then the oscillatory integral

ψ(s) := Ia(s),b(s)(f(s, · )) = lim
ε→0+

Iε,y0
a(s),b(s)(f(s, · )) = lim

ε→0+

∞∫
b(s)

e−ε(y−y0)2eia(s)y2
f(s, y)dy (3.24)

exists for every s ∈ I, is independent of y0 ∈ R, and defines a function ψ ∈ AC(I). Furthermore, the 
derivative of ψ exists for almost every s ∈ I and is given by

d

ds
ψ(s) = −b′(s)eia(s)b(s)2f(s, b(s)) + lim

ε→0+

∞∫
e−ε(y−y0)2 d

ds

(
eia(s)y2

f(s, y)
)
dy.
b(s)
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Proof. Since the oscillatory integrals are independent of the choice of y0 ∈ R (see Theorem 3.3) we will 
choose y0 = 0 in this proof. For almost every s ∈ I, we can split the s-derivative of the integrand in (3.24)
into

d

ds

(
eia(s)y2

f(s, y)
)

= eia(s)y2
g(s, y), where g(s, y) := ia′(s)y2f(s, y) + ∂f

∂s
(s, y). (3.25)

As f(s, · ) ∈ Cn
α([b0, ∞)) it follows from Corollary 2.6 that y2f(s, · ) ∈ Cn

α+2([b0, ∞)), with norm bound

‖y2f(s, · )‖Cn
α+2([b0,∞)) ≤ (n + 3)n‖f(s, · )‖Cn

α([b0,∞)).

Together with the assumption ∂f
∂s (s, · ) ∈ Cn

α+2([b0, ∞)) we conclude g(s, · ) ∈ Cn
α+2([b0, ∞)), with norm 

bounded by

‖g(s, · )‖Cn
α+2([b0,∞)) ≤ |a′(s)|(n + 3)n‖f(s, · )‖Cn

α([b0,∞)) +
∥∥∥∂f
∂s

(s, · )
∥∥∥
Cα

n+2([b0,∞))
.

Since ‖f(s, · )‖Cn
α([b0,∞)) and ‖∂f

∂s (s, · )‖Cα
n+2([b0,∞)) are locally bounded by assumption, and since a′ ∈ L1

loc(I)
due to a ∈ AC(I), it follows that the norm ‖g(s, · )‖Cn

α+2([b0,∞)) admits a locally integrable upper bound. 
By Corollary 2.3 we have g(s, · ) ∈ Cn

α+2([b(s), ∞)), with locally integrable upper bound

‖g(s, · )‖Cn
α+2([b(s),∞)) ≤ (n + 1)‖g(s, · )‖Cn

α+2([b0,∞)).

Our assumption n > (α+2) +1 ensures that Theorem 3.3 can be applied in the present situation and hence 
we conclude for almost every s ∈ I the existence of the oscillatory integral

Ia(s),b(s)(g(s, · )) = lim
ε→0+

Iε,0a(s),b(s)(g(s, · )) = lim
ε→0+

∞∫
b(s)

e(ia(s)−ε)y2
g(s, y)dy,

and for every 0 < ε ≤ 1 we have the estimate∣∣Iε,0a(s),b(s)(g(s, · ))
∣∣ ≤ Da(s),b(s),n,α+2(n + 1)‖g(s, · )‖Cn

α+2([b0,∞)). (3.26)

It follows from the continuity of a(s), b(s) and the continuous dependency of Da,b,n,α+2 on a, b in Theo-
rem 3.3, that s �→ Da(s),b(s),n,α+2 is continuous. In particular, it follows that the right hand side of (3.26) is 
locally integrable over any compact subset [s0, s1] ⊆ I. The dominated convergence theorem then ensures 
that

s1∫
s0

Ia(s),b(s)(g(s, · ))ds =
s1∫

s0

lim
ε→0+

Iε,0a(s),b(s)(g(s, · ))ds = lim
ε→0+

s1∫
s0

Iε,0a(s),b(s)(g(s, · ))ds. (3.27)

Next, the derivative of an integral with parameter dependent integrand and boundary is given by

d

ds

∞∫
b(s)

e(ia(s)−ε)y2
f(s, y)dy = −b′(s)e(ia(s)−ε)b(s)2f(s, b(s)) +

∞∫
b(s)

e−εy2 d

ds

(
eia(s)y2

f(s, y)
)
dy

= −b′(s)e(ia(s)−ε)b(s)2f(s, b(s)) + Iε,0a(s),b(s)(g(s, · )).

Hence, equation (3.27) can be rewritten as
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s1∫
s0

Ia(s),b(s)(g(s, · ))ds = lim
ε→0+

s1∫
s0

(
b′(s)e(ia(s)−ε)b(s)2f(s, b(s)) + d

ds

∞∫
b(s)

e(ia(s)−ε)y2
f(s, y)dy

)
ds

=
s1∫

s0

b′(s)eia(s)b(s)2f(s, b(s))ds + lim
ε→0+

[ ∞∫
b(s)

e(ia(s)−ε)y2
f(s, y)dy

]∣∣∣∣s1
s=s0

=
s1∫

s0

b′(s)eia(s)b(s)2f(s, b(s))ds + ψ(s)
∣∣∣s1
s=s0

,

where in the last equation we used the definition of ψ(s), and in the second equation we were allowed to 
carry the limit ε → 0+ inside the first integral because we integrate a continuous function over the compact 
interval [s0, s1]. This equation now shows that ψ ∈ AC(I) and together with (3.25) we conclude that the 
derivative is almost everywhere given by

d

ds
ψ(s) = −b′(s)eia(s)b(s)2f(s, b(s)) + Ia(s),b(s)(g(s, · ))

= −b′(s)eia(s)b(s)2f(s, b(s)) + lim
ε→0+

∞∫
b(s)

e−εy2 d

ds

(
eia(s)y2

f(s, y)
)
dy. �

The next result is of a similar nature as the previous theorem. Here we provide conditions on a function 
f : U × [b, ∞) → C such that the oscillatory integral Ia,b(f(z, · )) is holomorphic as a function in z.

Theorem 3.8. Let U ⊆ C be open, a ∈ R \ {0}, and b > 0. Assume that f : U × [b, ∞) → C satisfies the 
following conditions (i) and (ii).

(i) f( · , y) is holomorphic on U for every y ∈ [b, ∞);
(ii) There exist n ∈ N, α ≥ 0 with n > α+ 1, such that f(z, · ) ∈ Cn

α([b, ∞)) for every z ∈ U and the norm 
‖f(z, · )‖Cn

α([b,∞)) is locally bounded on U .

Then the oscillatory integral

ψ(z) := Ia,b(f(z, · )) = lim
ε→0+

Iε,y0
a,b (f(z, ·)) = lim

ε→0+

∞∫
b

e−ε(y−y0)2eiay
2
f(z, y)dy (3.28)

exists for every z ∈ U , is independent of y0 ∈ R, and defines a holomorphic function ψ.

Proof. Assumption (ii) and Theorem 3.3 show that the limit in (3.28) exists for every z ∈ U , is independent 
of y0 ∈ R, and for every 0 < ε ≤ 1 one has the estimate

|Iε,y0
a,b (f(z, · ))| ≤ Da,b,n,α‖f(z, · )‖Cn

α([b,∞)). (3.29)

In order to show that the resulting function ψ is holomorphic, we integrate ψ along the boundary of an 
arbitrary closed triangle Δ ⊆ U , i.e. we consider∮

ψ(z)dz =
∮

lim
ε→0+

Iε,y0
a,b (f(z, · ))dz = lim

ε→0+

∮
Iε,y0
a,b (f(z, · ))dz
∂Δ ∂Δ ∂Δ
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= lim
ε→0+

∮
∂Δ

∞∫
b

e−ε(y−y0)2eiay
2
f(z, y)dydz, (3.30)

where in the second equality we were allowed to interchange the limit and integral since the right hand side 
of the ε-uniform estimate (3.29) is integrable over the compact boundary ∂Δ by assumption (ii). Next, for 
every ε > 0, using (2.3) we can estimate∣∣e−ε(y−y0)2eiay

2
f(z, y)

∣∣ ≤ e−ε(y−y0)2‖f(z, ·)‖Cn
α([b,∞))y

n+α, z ∈ ∂Δ, y ∈ [b,∞).

Since the right hand side is integrable over ∂Δ × [b, ∞) we are also allowed to interchange the order of 
integration in (3.30). Hence, we conclude

∮
∂Δ

ψ(z)dz = lim
ε→0+

∞∫
b

e−ε(y−y0)2eiay
2
( ∮
∂Δ

f(z, y)dz
)
dy = 0

where we have used 
∮
∂Δ f(z, y)dz = 0 as f( · , y) is holomorphic on U by assumption (i). Now Morera’s 

theorem implies that the function ψ is holomorphic on U . �
4. The one dimensional time dependent Schrödinger equation

In this section we will use the general theory from Section 3 to express the solution of the time dependent 
Schrödinger equation

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2 + V (t, x)
)
Ψ(t, x), f.a.e. t ∈ (0, T ), x ∈ R,

Ψ(0, x) = F (x), x ∈ R,

(4.1)

for some measurable potential V : (0, T ) × R → C, T ∈ (0, ∞], via an oscillatory integral involving the 
Green’s function G and the initial condition F ; cf. Theorem 4.2 below. For our purposes it is convenient to 
use the space

AC1,2((0, T ) ×R) :=
{

Ψ : (0, T ) ×R → C

∣∣∣∣∣ Ψ( · , x) ∈ AC((0, T )), x ∈ R

Ψ(t, · ), ∂Ψ
∂x (t, · ) ∈ AC(R), t ∈ (0, T )

}
,

which was also considered in [3] (and in a similar form in [33]). In fact, in [3,33] the solution of (4.1) is 
also represented as an integral of the form (4.6), but only for holomorphic Green’s functions and initial 
conditions. Theorem 4.2 and Theorem 4.3 below can be viewed as improvements in the sense that the 
regularity requirements on the Green’s function in Assumption 4.1 and the initial condition in Theorem 4.2
and Theorem 4.3 are less restrictive.

Assumption 4.1. Let T ∈ (0, ∞] and suppose that the Green’s function

G : (0, T ) ×R×R → C

satisfies the following conditions (i)–(iii).

(i) For every y ∈ R the function G( · , · , y) ∈ AC1,2((0, T ) × R) is a solution of the time dependent 
Schrödinger equation in (4.1);
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(ii) For every x0 > 0 and ϕ ∈ C1([−x0, x0]) one has

lim
t→0+

x0∫
−x0

G(t, x, y)ϕ(y)dy = ϕ(x), x ∈ (−x0, x0); (4.2)

(iii) For some a ∈ AC((0, T )) with a(t) > 0, t ∈ (0, T ), and limt→0+ a(t) = ∞ one has the decomposition

G(t, x, y) = eia(t)(y−x)2G̃(t, x, y), t ∈ (0, T ), x, y ∈ R, (4.3)

with a function G̃, which for some α ≥ 0, n ∈ N with n > α + 3 satisfies

G̃(t, x, · ) ∈ Cn(R, rα), (4.4a)

G̃x(t, x, · ) ∈ Cn(R, rα+1), (4.4b)

G̃xx(t, x, · ), G̃t(t, x, · ) ∈ Cn(R, rα+2). (4.4c)

Moreover, the norms ‖G̃(t, x, · )‖Cn(R,rα), ‖G̃x(t, x, · )‖Cn(R,rα+1), ‖G̃xx(t, x, · )‖Cn(R,rα+2), and
‖G̃t(t, x, · )‖Cn(R,rα+2) are locally bounded on (0, T ) ×R and

lim
t→0+

‖G̃(t, x, · )‖Cn(R,rα)

a(t) = 0. (4.5)

The next theorem is the main result of this section.

Theorem 4.2. Let T ∈ (0, ∞] and G : (0, T ) × R × R → C be as in Assumption 4.1, where (4.4) holds for 
some α ≥ 0, n ∈ N with n > α + 3. Then for every F ∈ Cn(R, rβ), 0 ≤ β < n − α− 3, the limit

Ψ(t, x) := lim
ε→0+

∫
R

e−εy2
G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ R, (4.6)

exists and yields a solution Ψ ∈ AC1,2((0, T ) ×R) of the Schrödinger equation (4.1).

Proof. As a preparation for the main part of the proof, we set

Ĝ(t, x, y) := e−ia(t)y2
G(t, x, y) = eia(t)(x2−2xy)G̃(t, x, y), (4.7)

which is, beside (4.3), another decomposition of the function G. We will prove that

Ĝ(t, x, · ) ∈ Cn(R, rα), (4.8a)

Ĝx(t, x, · ) ∈ Cn(R, rα+1) (4.8b)

Ĝt(t, x, · ), Ĝxx(t, x, · ) ∈ Cn(R, rα+2), (4.8c)

where the corresponding norms ‖Ĝ(t, x, · )‖Cn(R,rα), ‖Ĝx(t, x, · )‖Cn(R,rα+1), ‖Ĝt(t, x, · )‖Cn(R,rα+2), and 
‖Ĝxx(t, x, · )‖Cn(R,rα+2) are locally bounded on (0, T ) ×R.

Since G̃(t, x, · ) ∈ Cn(R, rα) by (4.4a) we also have Ĝ(t, x, · ) ∈ Cn(R, rα) by Lemma 2.10 (ii), with norm 
bounded by

‖Ĝ(t, x, · )‖Cn(R,rα) ≤ (1 + 2a(t)|x|)n‖G̃(t, x, · )‖Cn(R,rα);
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thus (4.8a) is clear. Since a is continuous and ‖G̃(t, x, · )‖Cn(R,rα) is assumed to be locally bounded on 
(0, T ) × R, also ‖Ĝ(t, x, · )‖Cn(R,rα) is locally bounded on (0, T ) × R. For the proof of (4.8b), we first 
compute the x-derivative of Ĝ in (4.7), namely

Ĝx(t, x, y) = 2ia(t)(x− y)Ĝ(t, x, y) + eia(t)(x2−2xy)G̃x(t, x, y).

Since we have already shown Ĝ(t, x, · ) ∈ Cn(R, rα) and since G̃x(t, x, · ) ∈ Cn(R, rα+1) by assumption 
(4.4b), it follows from Lemma 2.10 that Ĝx(t, x, · ) ∈ Cn(R, rα+1), with

‖Ĝx(t, x, · )‖Cn(R,rα+1) ≤ 2a(t)‖(x− y)Ĝ(t, x, · )‖Cn(R,rα+1) + ‖e−2ia(t)xyG̃x(t, x, · )‖Cn(R,rα+1)

≤ 2a(t)(|x| + 2n)‖Ĝ(t, x, · )‖Cn(R,rα) + (1 + 2a(t)|x|)n‖G̃x(t, x, · )‖Cn(R,rα+1).

In particular, this norm is locally bounded on (0, T ) ×R. For the proof of (4.8c) we compute the t- and the 
second x-derivative

Ĝt(t, x, y) = ia′(t)(x2 − 2xy)Ĝ(t, x, y) + eia(t)(x2−2xy)G̃t(t, x, y),

Ĝxx(t, x, y) = 2a(t)
(
2a(t)(x− y)2 + i

)
Ĝ(t, x, y) + 4ia(t)(x− y)Ĝx(t, x, y) + eia(t)(x2−2xy)G̃xx(t, x, y).

Similarly, also these functions satisfy Ĝt(t, x, · ), Ĝxx(t, x, · ) ∈ Cn(R, rα+2) by Lemma 2.10, with norms 
which are locally bounded on (0, T ) ×R. Hence we have proven all three properties (4.8).

For the main part of the proof we first fix some arbitrary b > 0, and note that it is sufficient to verify 
the assertions for x ∈ (−b, b) only. Let us split up for every ε > 0 the integral in (4.6) into

∫
R

e−εy2
G(t, x, y)F (y)dy =

∞∫
b

e−εy2
G(t, x, y)F (y)dy (4.9a)

+
b∫

−b

e−εy2
G(t, x, y)F (y)dy (4.9b)

+
−b∫

−∞

e−εy2
G(t, x, y)F (y)dy. (4.9c)

The proof will now be done in four steps. In first three steps we prove that the limits ε → 0+ in (4.9a), 
(4.9b), and (4.9c) exist and are solutions of the Schrödinger equation in (4.1). In Step 4 we will verify the 
initial condition in (4.1).

Step 1. In the first step we will use Theorem 3.7 to show that the limit

Ψ1(t, x) := lim
ε→0+

∞∫
b

e−εy2
G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ R, (4.10)

exists, and that we are allowed to carry the t- and x-derivatives inside the integral. Plugging in the function 
Ĝ from (4.7), we rewrite

∞∫
e−εy2

G(t, x, y)F (y)dy =
∞∫
e(ia(t)−ε)y2

Ĝ(t, x, y)F (y)dy = Iε,0a(t),b(f(t, x, · )), (4.11)

b b
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using the function

f(t, x, y) := Ĝ(t, x, y)F (y). (4.12)

Let us now fix x ∈ (−b, b) and verify that the function f( · , x, · ) satisfies conditions (i) and (ii) in 
Theorem 3.7. In fact, for (i) recall that G( · , · , y) ∈ AC1,2((0, T ) × R) by Assumption 4.1 (i), so that 
Ĝ( · , x, y) ∈ AC((0, T )) and hence also f( · , x, y) ∈ AC((0, T )). For condition (ii) in Theorem 3.7, note 
that Ĝ(t, x, · ) ∈ Cn(R, rα) and F ∈ Cn(R, rβ). It then follows from Proposition 2.9 and Lemma 2.12 that 
f(t, x, · ) ∈ Cn

α+β([b, ∞)), with norm bounded by

‖f(t, x, · )‖Cn
α+β([b,∞)) ≤

(
1 + 1

b

)n+α+β

‖f(t, x, · )‖Cn(R,rα+β)

≤
(
1 + 1

b

)n+α+β

2n‖Ĝ(t, x, · )‖Cn(R,rα)‖F‖Cn(R,rβ). (4.13)

Since ‖Ĝ(t, x, · )‖Cn(R,rα) is locally bounded on (0, T ) ×R, the same is true for ‖f(t, x, · )‖Cn
α+β([b,∞)). Similar 

estimates as in (4.13) show that also

∂f

∂t
(t, x, · ) = Ĝt(t, x, · )F ( · ) ∈ Cn

α+β+2([b,∞)),

with locally bounded norm ‖∂f
∂t (t, x, · )‖Cn

α+β+2([b,∞)). Since n > α+ β + 3, the assumptions of Theorem 3.7
are satisfied, and it follows that the limit (4.10) exists, namely

Ia(t),b(f(t, x, · )) = lim
ε→0+

Iε,0a(t),b(f(t, x, · ))

= lim
ε→0+

∞∫
b

e−εy2
G(t, x, y)F (y)dy (4.14)

= Ψ1(t, x),

and leads to a function Ψ1( · , x) ∈ AC((0, T )) with derivative

∂

∂t
Ψ1(t, x) = lim

ε→0+

∞∫
b

e−εy2
Gt(t, x, y)F (y)dy. (4.15)

In order to show that Ψ1 is differentiable with respect to x, we will again verify conditions (i) and (ii) in 
Theorem 3.7, this time for f(t, · , · ) in (4.12) with t ∈ (0, T ) fixed. Condition (i) in this context reads as 
f(t, · , y) ∈ AC(R), and holds since G( · , · , y) ∈ AC1,2((0, T ) ×R) and consequently Ĝ(t, · , y) ∈ AC(R). We 
have already shown that f(t, x, · ) ∈ Cn

α+β([b, ∞)), and the corresponding norm bound (4.13) is also locally 
integrable in x. Similar estimates as in (4.13) show that the x-derivative satisfies

∂f

∂x
(t, x, · ) = Ĝx(t, x, · )F ( · ) ∈ Cn

α+β+1([b,∞)),

with locally bounded norm ‖∂f
∂x (t, x, · )‖Cn

α+β+1([b,∞)). Hence, from Theorem 3.7 there follows the absolute 
continuity Ψ1(t, · ) ∈ AC(R), with x-derivative given by

∂

∂x
Ψ1(t, x) = lim

ε→0+

∞∫
e−εy2

Gx(t, x, y)F (y)dy. (4.16)

b
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For the second x-derivative, we have to differentiate (4.16) once more and in a similar way as above we 
verify ∂Ψ1

∂x (t, · ) ∈ AC(R) and obtain

∂2

∂x2 Ψ1(t, x) = lim
ε→0+

∞∫
b

e−εy2
Gxx(t, x, y)F (y)dy. (4.17)

Combining now (4.15) and (4.17), and the fact that G is a solution of the Schrödinger equation (4.1), shows 
Ψ1 ∈ AC1,2((0, T ) ×R) and

i
∂

∂t
Ψ1(t, x) =

(
− ∂2

∂x2 + V (t, x)
)
Ψ1(t, x), f.a.e. t ∈ (0, T ), x ∈ R.

Step 2. In the second step we consider the integral (4.9c). If we substitute y → −y, we conclude in the same 
way as in Step 1 that

Ψ−1(t, x) := lim
ε→0+

−b∫
−∞

e−εy2
G(t, x, y)F (y)dy = lim

ε→0+

∞∫
b

e−εy2
G(t, x,−y)F (−y)dy (4.18)

exists, and that Ψ−1 ∈ AC1,2((0, T ) ×R) satisfies

i
∂

∂t
Ψ−1(t, x) =

(
− ∂2

∂x2 + V (t, x)
)
Ψ−1(t, x), f.a.e. t ∈ (0, T ), x ∈ R.

Step 3. For the integral (4.9b), we note that the integrand is continuous and the integration interval [−b, b]
is compact. Hence the limit

Ψ0(t, x) := lim
ε→0+

b∫
−b

e−εy2
G(t, x, y)F (y)dy =

b∫
−b

G(t, x, y)F (y)dy (4.19)

exists. Next, the t-derivative of the Green’s function, in the decomposition (4.7), can be estimated using 
Lemma 2.10 (i) by

‖Gt(t, x, · )‖Cn(R,rα+2) =
∥∥ia′(t)y2Ĝ(t, x, · ) + Ĝt(t, x, · )

∥∥
Cn(R,rα+2)

≤ 3n|a′(t)|‖Ĝ(t, x, · )‖Cn(R,rα) + ‖Ĝt(t, x, · )‖Cn(R,rα+2).

Since a′ ∈ L1
loc((0, T )) because of a ∈ AC((0, T )), and since both norms ‖Ĝ(t, x, · )‖Cn(R,rα) and 

‖Ĝt(t, x, · )‖Cn(R,rα+2) are locally bounded on (0, T ) × R by (4.4a) and (4.4c), the right hand side of this 
inequality is integrable over [t0, t1] × [−b, b] for every compact interval [t0, t1] ⊆ (0, T ). Interchanging the 
order of integration then gives

t1∫
t0

( b∫
−b

Gt(t, x, y)F (y)dy
)
dt =

b∫
−b

( t1∫
t0

Gt(t, x, y)dt
)
F (y)dy

=
b∫

−b

G(t, x, y)F (y)dy
∣∣∣t1
t=t0

= Ψ0(t, x)
∣∣t1
t=t0

.
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This proves that Ψ0( · , x) ∈ AC((0, T )) with t-derivative

∂

∂t
Ψ0(t, x) =

b∫
−b

Gt(t, x, y)F (y)dy. (4.20)

In the same way one also verifies Ψ0(t, · ), ∂Ψ0
∂x (t, · ) ∈ AC(R) with second x-derivative

∂2

∂x2 Ψ0(t, x) =
b∫

−b

Gxx(t, x, y)F (y)dy. (4.21)

Combining now (4.20) and (4.21) shows Ψ0 ∈ AC1,2((0, T ) ×R) and

i
∂

∂t
Ψ0(t, x) =

(
− ∂2

∂x2 + V (t, x)
)
Ψ0(t, x), f.a.e. t ∈ (0, T ), x ∈ R.

From the considerations in Step 1, 2, and 3 above, it now follows that the limit

Ψ(t, x) = lim
ε→0+

∫
R

e−εy2
G(t, x, y)F (y)dy = Ψ1(t, x) + Ψ0(t, x) + Ψ−1(t, x) (4.22)

in (4.6) exists, and Ψ ∈ AC1,2((0, T ) ×R) is a solution of the Schrödinger equation in (4.1).

Step 4. Now the initial condition in (4.1) will be verified, again for the three functions Ψ1, Ψ0 and Ψ−1
separately. We start with Ψ1 in (4.14) and note that by Theorem 3.3 with y0 = x and (4.7) the oscillatory 
integral can also be written in the form

Ψ1(t, x) = lim
ε→0+

∞∫
b

e(ia(t)−ε)(y−x)2G̃(t, x, y)F (y)dy

= lim
ε→0+

∞∫
b−x

e(ia(t)−ε)y2
G̃(t, x, y + x)F (y + x)dy (4.23)

= Ia(t),b−x(g(t, x, · )),

using the function

g(t, x, y) := G̃(t, x, y + x)F (y + x).

Note that g(t, x, · ) ∈ Cn
α+β([b −x, ∞)) (this is clear from the norm estimate below) and since we have assumed 

x ∈ (−b, b) the lower integration bound b − x > 0 in Ia(t),b−x is positive. From G̃(t, x, · ) ∈ Cn(R, rα) and 
F ∈ Cn(R, rβ) we conclude together with Lemma 2.12, Proposition 2.9, and Lemma 2.11 that

‖g(t, x, · )‖Cn
α+β([b−x,∞)) ≤

(
1 + 1

b− x

)n+α+β

‖g(t, x, · )‖Cn(R,rα+β)

≤
(
1 + 1

b− x

)n+α+β

2n‖G̃(t, x, x + · )‖Cn(R,rα)‖F (x + · )‖Cn(R,rβ)

≤
(
1 + 1

b− x

)n+α+β

2n(1 + |x|)α+β‖G̃(t, x, · )‖Cn(R,rα)‖F‖Cn(R,rβ).
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With (3.10) we can now estimate the function Ψ1 in (4.23) by

|Ψ1(t, x)| ≤ Da(t),b−x,n,α+β

(
1 + 1

b− x

)n+α+β

2n(1 + |x|)α+β‖G̃(t, x, · )‖Cn(R,rα)‖F‖Cn(R,rβ).

Since limt→∞ a(t) = ∞ we have lim supt→∞ a(t)Da(t),b−x,n,α,β < ∞ by (3.11). Together with the assumption 
(4.5) we then conclude

lim
t→0+

Ψ1(t, x) = 0.

For the same reason one also has

lim
t→0+

Ψ−1(t, x) = 0.

Eventually, it follows from (4.2) that

lim
t→0+

Ψ0(t, x) = lim
t→0+

b∫
−b

G(t, x, y)F (y)dy = F (x),

and hence the initial condition in (4.1) is clear from the decomposition (4.22). �
The next result complements Theorem 4.2 and shows that the solution of the time dependent Schrödinger 

equation depends continuously on the initial condition. In order to emphasize the initial condition we will 
denote the solution of (4.1) by Ψ( · , · ; F ).

Theorem 4.3. Let T ∈ (0, ∞] and G : (0, T ) × R × R → C be as in Assumption 4.1, where (4.4) holds for 
some α ≥ 0, n ∈ N with n > α + 3. Assume that F, (Fm)m ∈ Cn(R, rβ), 0 ≤ β < n − α− 3, are such that

lim
m→∞

‖F − Fm‖Cn(R,rβ) = 0.

Then also the corresponding solutions of (4.1) satisfy

lim
m→∞

Ψ(t, x;Fm) = Ψ(t, x;F ),

where the convergence is locally uniform on (0, T ) ×R.

Proof. Using the decomposition (4.22), it suffices to prove the convergence for the three functions Ψ1, Ψ0
and Ψ−1 in (4.10), (4.19) and (4.18), respectively. For Ψ1 we write similarly as in (4.11)

Ψ1(t, x;Fm) − Ψ1(t, x;F ) = lim
ε→0+

∞∫
b

e(ia(t)−ε)y2
Ĝ(t, x, y)(Fm(y) − F (y))dy

= lim
ε→0+

Iε,0a(t),b(fm(t, x, · )),

where we have set fm(t, x, y) := Ĝ(t, x, y)(Fm(y) − F (y)). Following the same reasoning as in (4.13), we 
obtain the norm bound

‖fm(t, x, · )‖Cn ([b,∞)) ≤
(
1 + 1)n+α+β

2n‖Ĝ(t, x, · )‖Cn(R,rα)‖Fm − F‖Cn(R,rβ).
α+β b
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Using the bound (3.10) for the oscillatory integral, we conclude

|Ψ1(t, x;Fm) − Ψ1(t, x;F )| ≤ Da(t),b,n,α+β‖fm(t, x, · )‖Cn
α+β([b,∞))

≤ Da(t),b,n,α+β

(
1 + 1

b

)n+α+β

2n‖Ĝ(t, x, · )‖Cn(R,rα)‖Fm − F‖Cn(R,rβ) → 0,

as m → ∞. Since the coefficient Da(t),b,n,α+β is continuous in t and ‖Ĝ(t, x, · )‖Cn(R,rα) is locally bounded 
on (0, T ) ×R by Assumption 4.1 (iii), this limit is locally uniform on (0, T ) ×R. The same reasoning shows 
that also Ψ−1( · , · ; Fm) converges locally uniformly on (0, T ) ×R to Ψ−1( · , · ; F ). For Ψ0 in (4.19) we again 
use (4.3), and by the definition of the norm (2.6), we estimate

∣∣Ψ0(t, x;F ) − Ψ0(t, x;Fm)
∣∣ =

∣∣∣∣
b∫

−b

eia(t)(y−x)2G̃(t, x, y)(F (y) − Fm(y))dy
∣∣∣∣

≤ ‖G̃(t, x, · )‖Cn(R,rα)‖F − Fm‖Cn(R,rβ)

b∫
−b

r(y)α+βdy → 0

as m → ∞. Since the norm ‖G̃(t, x, · )‖Cn(R,rα) is locally bounded, this convergence is also locally uniform 
on (0, T ) ×R. �
5. An example: The free particle

In this section we illustrate and apply Theorem 4.2 to the special case of the free particle, i.e. the potential 
V (t, x) = 0 in the Schrödinger equation (4.1). The wave function Ψ(t, x), defined via the oscillatory integral 
(4.6), will be computed for the plane wave initial condition F (y) = eiκy in Example 5.2 and for monomials 
F (y) = ym in Example 5.3. We refer to [3–5,12,17,20] for many other explicit examples of Green’s functions 
and related considerations in the context of supershifts and superoscillations.

Corollary 5.1. For every initial condition F ∈ Cn(R, rβ), with n ≥ 4, 0 ≤ β < n − 3, the limit

Ψ(t, x) := 1
2
√
iπt

lim
ε→0+

∫
R

e−εy2
e

i(y−x)2
4t F (y)dy, t ∈ (0,∞), x ∈ R, (5.1)

exists and defines a solution Ψ ∈ AC1,2((0, T ) ×R) of the time dependent Schrödinger equation

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2 Ψ(t, x), f.a.e. t ∈ (0,∞), x ∈ R,

lim
t→0+

Ψ(t, x) = F (x), x ∈ R.

Proof. The result follows from Theorem 4.2, if we verify that the Green’s function

G(t, x, y) = 1
2
√
iπt

e
i(y−x)2

4t , t ∈ (0,∞), x, y ∈ R,

satisfies Assumption 4.1 for α = 0 and every n ≥ 4. It is easy to see that for every y ∈ R the function 
G( · , · , y) ∈ AC1,2((0, ∞) ×R) is a solution of the time dependent Schrödinger equation

i
∂
G(t, x, y) = − ∂2

G(t, x, y), t ∈ (0,∞), x ∈ R.

∂t ∂x2
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In order to verify the initial condition (4.2), we choose x0 > 0 and ϕ ∈ C1([−x0, x0]). Then for every 
x ∈ (−x0, x0) we use the error function (3.20) to write

x0∫
−x0

G(t, x, y)ϕ(y)dy = 1
2
√
iπt

x0∫
−x0

e
i(y−x)2

4t ϕ(y)dy

= 1
2

x0∫
−x0

d

dy
erf

(y − x

2
√
it

)
ϕ(y)dy

= 1
2 erf

(y − x

2
√
it

)
ϕ(y)

∣∣∣x0

y=−x0
− 1

2

x0∫
−x0

erf
(y − x

2
√
it

)
ϕ′(y)dy.

Using the limit limt→0+ erf
(
y−x

2
√
it

)
= sgn(y − x), we can now compute the initial condition

lim
t→0+

x0∫
−x0

G(t, x, y)ϕ(y)dy = 1
2 sgn(y − x)ϕ(y)

∣∣∣x0

y=−x0
− 1

2

x0∫
−x0

sgn(y − x)ϕ′(y)dy

= 1
2 sgn(y − x)ϕ(y)

∣∣∣x0

y=−x0
+ 1

2ϕ(y)
∣∣∣x
y=−x0

− 1
2ϕ(y)

∣∣∣x0

y=x

= ϕ(x),

so that Assumption 4.1 (ii) holds. Next, the decomposition G(t, x, y) = eia(t)(y−x)2G̃(t, x, y) in (4.3) is 
satisfied with

a(t) = 1
4t and G̃(t, x, y) = 1

2
√
iπt

.

Since G̃ is independent of y, it is clear that G̃(t, x, · ) ∈ Cn(R, r0), with norm given by

‖G̃(t, x, · )‖Cn(R,r0) = 1
2
√
πt

.

In particular, this norm is locally bounded on (0, ∞) ×R and one has

lim
t→0+

‖G̃(t, x, · )‖Cn(R,r0)

a(t) = 2
√
t√
π

= 0,

that is, (4.5) is satisfied. Moreover, the t- and x-derivatives of G̃ are explicitly given by

G̃x(t, x, y) = 0, G̃xx(t, x, y) = 0, and G̃t(t, x, y) = −1
4
√
iπ t

3
2
.

Clearly, G̃x(t, x, · ) ∈ Cn(R, r1) and G̃xx(t, x, · ), G̃t(t, x, · ) ∈ Cn(R, r2), with norms given by

‖G̃x(t, x, · )‖Cn(R,r1) = 0, ‖G̃xx(t, x, · )‖Cn(R,r2) = 0, and ‖G̃t(t, x, · )‖Cn(R,r2) = 1
4
√
π t

3
2
,

and hence all three norms are locally bounded on (0, ∞) ×R. Therefore, also Assumption 4.1 (iii) is satisfied 
and the assertions follow from Theorem 4.2. �
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In the next example we compute the wave function (5.1) of the free particle with a plane wave initial 
condition F (y) = eiκy of frequency κ ∈ R.

Example 5.2. Plugging the initial condition F (y) = eiκy into the oscillatory integral (5.1) gives

Ψ(t, x; eiκy) = 1
2
√
iπt

lim
ε→0+

∫
R

e−εy2
e

i(y−x)2
4t eiκydy

= e
ix2
4t

2
√
iπt

lim
ε→0+

∫
R

e−(ε− i
4t )y2+i(κ− x

2t )ydy.

In order to solve this integral for fixed ε > 0 we use the explicit value of the absolutely convergent Gauss 
integral [1, Equation 7.4.2]

∫
R

e−λy2+μydy =
√
π√
λ
e

μ2
4λ , λ, μ ∈ C with Re(λ) > 0.

Indeed, choosing λ = ε − i
4t and μ = i(κ − x

2t ) shows that the wave function has the following explicit form

Ψ(t, x; eiκy) = e
ix2
4t

2
√
iπt

lim
ε→0+

√
π√

ε− i
4t

e

−(κ− x
2t )2

4(ε− i
4t ) = eiκx−iκ2t.

Now we turn to the moments of the free particle Green’s function; here we also refer the reader to [31], 
where the moments of the Green’s function also appear in the context of the time evolution of superoscil-
lations.

Example 5.3. As initial conditions we now consider the monomials F (y) = ym. This leads to the moments

gm(t, x) := Ψ(t, x; ym) = 1
2
√
iπt

lim
ε→0+

∫
R

e−εy2
e

i(y−x)2
4t ymdy

of the Green’s function. Substituting y → y + x
1+4iεt in this integral gives

gm(t, x) = 1
2
√
iπt

lim
ε→0+

e−
εx2

1+4iεt

∫
R

e−(ε− i
4t )y2

(
y + x

1 + 4iεt

)m

dy

= 1
2
√
iπt

lim
ε→0+

e−
εx2

1+4iεt

m∑
k=0

(
m

k

)( x

1 + 4iεt

)m−k
∫
R

e−(ε− i
4t )y2

ykdy

= 1
2
√
iπt

m∑
k=0

(
m

k

)
xm−k lim

ε→0+

∫
R

e−(ε− i
4t )y2

ykdy.

For the remaining integral we will now use the moments of the Gaussian

∫
e−λy2

ykdy =

⎧⎨⎩0, if k is odd,
k!
√
π

k
k √ , if k is even, Re(λ) > 0,
R ( 2 )!(4λ) 2 λ
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where for odd k the integral vanishes due to the antisymmetric integrand and for even k the value is given 
in [1, Equation 7.4.4]. Hence we get

gm(t, x) = 1
2
√
iπt

m∑
k=0,k even

(
m

k

)
xm−k lim

ε→0+

k!
√
π

(k2 )!2k(ε− i
4t )

k
2

√
ε− i

4t

= m!
m∑

k=0,k even

xm−k(it) k
2

(k2 )!(m− k)!

= m!
�m

2 �∑
k=0

xm−2k(it)k

k!(m− 2k)! .
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