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We study perturbations of the self-adjoint periodic Sturm–
Liouville operator

A0 =
1
r0

(
− d

dx
p0

d
dx

+ q0

)

and conclude under L1-assumptions on the differences of 
the coefficients that the essential spectrum and absolutely 
continuous spectrum remain the same. If a finite first moment 
condition holds for the differences of the coefficients, then 
at most finitely many eigenvalues appear in the spectral 
gaps. This observation extends a seminal result by Rofe-
Beketov from the 1960s. Finally, imposing a second moment 
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Discrete eigenvalues condition we show that the band edges are no eigenvalues of 
the perturbed operator.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Consider a periodic Sturm–Liouville differential expression of the form

τ0 = 1
r0

(
− d

dxp0
d
dx + q0

)
on R, where 1/p0, q0, r0 ∈ L1

loc(R) are real-valued and ω-periodic functions, and r0 > 0, 
p0 > 0 a.e. Let A0 be the corresponding self-adjoint operator in the weighted L2-Hilbert 
space L2(R; r0) and recall that the spectrum of A0 is semibounded from below, purely 
absolutely continuous and consists of (finitely or infinitely many) spectral bands; cf. [1], 
[9] or [15, Section 12].

Now let 1/p1, q1, r1 ∈ L1
loc(R) be real-valued functions with r1 > 0, p1 > 0 a.e., assume 

that the condition∫
R

(
|r1(t) − r0(t)| +

∣∣∣∣ 1
p1(t)

− 1
p0(t)

∣∣∣∣ + |q1(t) − q0(t)|
)
|t|k dt < ∞ (1.1)

holds for k = 0, and consider the corresponding perturbed Sturm–Liouville differential 
expression

τ1 = 1
r1

(
− d

dxp1
d
dx + q1

)
on R. It turns out that τ1 is in the limit point case at both singular endpoints ±∞ and 
hence there is a unique self-adjoint realization A1 of τ1 in the weighted L2-Hilbert space 
L2(R; r1). The first observation in Theorem 1.1 below is that the essential spectra of A0
and A1 coincide and the interior is purely absolutely continuous spectrum of A1. In the 
special case r0 = r1 = p0 = p1 = 1 this result is known from [13] and for p0 �= p1 a 
related result is contained in [1]; cf. Remark 2.2.

Theorem 1.1. Assume that condition (1.1) holds for k = 0 and let A0 and A1 be the 
self-adjoint realizations of τ0 and τ1 in L2(R; r0) and L2(R; r1), respectively. Then we 
have

σess(A0) = σess(A1),

the spectrum of A1 is purely absolutely continuous in the interior of the spectral bands, 
and A1 is semibounded from below.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In particular, the band structure of the spectrum of the periodic operator A0 is pre-
served for the essential spectrum of A1 and in the gaps of σess(A1) discrete eigenvalues 
may appear that may accumulate to the edges of the spectral bands; for a detailed dis-
cussion in the case r0 = r1 we refer to [1, Section 5.3]. Our second main objective in this 
note is to verify that under a finite first moment condition on the difference of the coef-
ficients there are at most finitely many discrete eigenvalues in the gaps of the essential 
spectrum of A1. The question whether eigenvalues accumulate at the band edges has a 
long tradition going back to the seminal results of Rofe-Beketov [10], which were later 
extended by Schmidt [11] (see also [1, §5.4] for the special case r0 = r1 = 1 and p0 = p1). 
They play also an important role for the scattering theory in this setting [2,4,3,7]. The 
currently best results in this direction can be found in [8], which apply in the special 
case r0 = r1.

Theorem 1.2. Assume that condition (1.1) holds for k = 1 and let A0 and A1 be the 
self-adjoint realizations of τ0 and τ1 in L2(R; r0) and L2(R; r1), respectively. Then every 
gap of the spectral bands σess(A0) = σess(A1) contains at most finitely many eigenvalues 
of A1.

In the third result we pay special attention to the edges of the spectral bands. If (1.1)
holds for k = 1 (and hence also for k = 0), then the interior of the spectral bands consists 
of purely absolutely continuous spectrum of A1 and the eigenvalues of A1 in the gaps do 
not accumulate to the band edges. If we further strengthen the assumptions and impose 
a finite second moment condition k = 2 in (1.1) (and hence also k = 1 and k = 0), then 
it turns out that the band edges are no eigenvalues of A1.

Theorem 1.3. Assume that condition (1.1) holds for k = 2 and let A0 and A1 be the 
self-adjoint realizations of τ0 and τ1 in L2(R; r0) and L2(R; r1), respectively. Then the 
edges of the spectral bands σess(A0) = σess(A1) are no eigenvalues of A1 and the spectral 
bands consist of purely absolutely continuous spectrum of A1.

In Section 2 we also show that the claim in Theorem 1.3 remains valid if (1.1) holds 
for k = 1 and some other additional assumptions for r1 and q1 are satisfied; cf. Proposi-
tion 2.5. Our proofs of Theorems 1.1–1.3 are based on a careful analysis of the solutions 
of (τ0 − λ)u = 0 and (τ1 − λ)u = 0 for λ ∈ R; cf. Lemma 2.6 and Lemma 2.7. While 
the properties of the solutions of the periodic problem in Lemma 2.6 are mainly conse-
quences of well-known properties of the Hill discriminant, the properties of the solutions 
of the perturbed problem in Lemma 2.7 require some slightly more technical arguments. 
It is convenient to first verify variants of Theorems 1.1–1.3 for self-adjoint realizations 
of τ0 and τ1 on half-lines (−∞, a) and (a, ∞) with finite endpoint a, and use a coupling 
argument to conclude the corresponding results on R. One of the key ingredients is the 
connection of the zeros of a modified Wronskian with the finiteness of the spectrum from 
[5].
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2. Perturbations of periodic Sturm–Liouville operators on a half-line

We prove variants of Theorems 1.1–1.3 for self-adjoint realizations H0 and H1 of τ0
and τ1, respectively, in the L2-spaces L2((a, ∞); r0) and L2((a, ∞); r1) with some finite 
endpoint a. For the real-valued coefficients we have 1/pj, qj , rj ∈ L1

loc([a, ∞)) and rj > 0, 
pj > 0 a.e., and 1/p0, q0, r0 are ω-periodic.

The differential expression τ0 is in the limit point case at ∞ and regular at a. In 
the following let H0 be any self-adjoint realization of τ0 in L2((a, ∞); r0). Similar as in 
the full line case also on the half-line the essential spectrum of H0 is purely absolutely 
continuous and consists of infinitely many closed intervals

σess(H0) =
∞⋃
k=1

[λ2k−1, λ2k], (2.1)

where the endpoints λ2k−1 and λ2k, λ2k−1 < λ2k, denote the k-th eigenvalues of the reg-
ular Sturm–Liouville operator in L2((a, a +ω); r0) (in nondecreasing order) with periodic 
and semiperiodic boundary conditions, respectively; cf. [1] or [15, Section 12] for more 
details. Recall that the closed intervals may adjoin and that also σess(H0) = [λ1, ∞) may 
happen in (2.1). Each interval (−∞, λ1) and (λ2k, λ2k+1), k ∈ N, may contain at most 
one (simple) eigenvalue of H0. In particular, H0 is semibounded from below and (2.1)
implies that the interior of σess(H0) is non-empty.

Theorem 2.1. Assume that
∞∫
a

(
|r1(t) − r0(t)| +

∣∣∣∣ 1
p1(t)

− 1
p0(t)

∣∣∣∣ + |q1(t) − q0(t)|
)

dt < ∞ (2.2)

and let H0 and H1 be arbitrary self-adjoint realizations of τ0 and τ1 in L2((a, ∞); r0)
and L2((a, ∞); r1), respectively. Then we have

σess(H0) = σess(H1),

the spectrum of H1 is purely absolutely continuous in the interior of the spectral bands, 
and H1 is semibounded from below.

It follows that H1 has non-empty essential spectrum, hence, the differential expression 
τ1 is in the limit point case at ∞.

https://www.cost.eu


J. Behrndt et al. / Advances in Mathematics 422 (2023) 109022 5
Remark 2.2. For the special case r0 = r1 = p0 = p1 = 1 the result in Theorem 2.1 goes 
back to the paper [13] of G. Stolz, where instead of the assumption q1 − q0 ∈ L1(a, ∞)
in (2.2) the weaker conditions

∞∫
c

|(q1 − q0)(t + ω) − (q1 − q0)(t)|dt < ∞ (2.3)

for some c > a and

lim
x→∞

x+1∫
x

|q1(t) − q0(t)|dt = 0 (2.4)

are imposed. The considerations from [13] are extended in [1, Chapter 5.2] to the case 
r0 = r1 and p0 �= p1 with 1/p1 − 1/p0 satisfying similar conditions (2.3)–(2.4). More 
precisely, in [1, Corollary 5.2.3] it was shown that the interior of the essential spectrum 
of H0 is purely absolutely continuous spectrum of H1 and hence σess(H0) ⊂ σess(H1). 
For the other inclusion in [1, Theorem 5.3.1] it is assumed that r0 = r1, p0 = p1 together 
with additional limit conditions for q1 − q0. For details we refer to [1, Chapter 5].

In the next theorem we strengthen the assumptions by imposing a finite first moment 
condition (see (2.5) below) on the differences of the coefficients; note that (2.5) implies 
(2.2) since the coefficients (and their differences) are integrable at a. In this situation it 
turns out that there appear at most finitely many simple eigenvalues of H1 in each 
spectral gap and hence there is no accumulation of eigenvalues to the edges of the 
band gaps. Concerning the history of this result we refer to the discussion before the 
corresponding result on R, Theorem 1.2.

Theorem 2.3. Assume that

∞∫
a

(
|r1(t) − r0(t)| +

∣∣∣∣ 1
p1(t)

− 1
p0(t)

∣∣∣∣ + |q1(t) − q0(t)|
)
|t|dt < ∞ (2.5)

holds, and let H1 be an arbitrary self-adjoint realization of τ1 in L2((a, ∞); r1). Then 
every gap of σess(H1) contains at most finitely many eigenvalues.

In the next result we assume a stronger integrability condition and conclude that the 
edges of the spectral bands are no embedded eigenvalues of A1; note that (2.6) implies 
(2.5) and (2.2). As pointed out before, this question is important for scattering theory 
and was first established by Firsova [2,4] in the case r0 = r1 = p0 = p1 = 1.
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Theorem 2.4. Assume that
∞∫
a

(
|r1(t) − r0(t)| +

∣∣∣∣ 1
p1(t)

− 1
p0(t)

∣∣∣∣ + |q1(t) − q0(t)|
)
|t|2 dt < ∞ (2.6)

holds, and let H1 be an arbitrary self-adjoint realization of τ1 in L2((a, ∞); r1). Then 
the edges of the spectral bands are no eigenvalues of H1 and the spectral bands consist of 
purely absolutely continuous spectrum of H1.

We find it worthwhile to provide another set of assumptions that also imply absence 
of eigenvalues at the edges of the spectral bands. Here we only assume the integrability 
condition (2.5), but for r1 and q1 additional assumptions are required. It is left to the 
reader to formulate a variant of Proposition 2.5 for the self-adjoint realization A1 of τ1
in L2(R; r1).

Proposition 2.5. Assume that (2.5) holds and that there exist positive constants C0, C1
such that r1 and q1 satisfy C0 ≤ r1(t) ≤ C1 and 

∫ t+1
t−1 |q1(s)|2ds ≤ C1 for t in some 

neighbourhood of ∞. Let H1 be an arbitrary self-adjoint realization of τ1 in L2((a, ∞); r1). 
Then the edges of the spectral bands are no eigenvalues of H1 and the spectral bands 
consist of purely absolutely continuous spectrum of H1.

The proofs of Theorem 2.1, Theorem 2.3, Theorem 2.4, and Proposition 2.5 are at 
the end of this section. In what follows, we investigate solutions of the periodic and 
the perturbed periodic problem. The first lemma is more or less a variant of standard 
working knowledge in periodic differential operators and is essentially contained in [1, 
Chapter 1] or [15]. For the convenience of the reader we provide a short proof.

Lemma 2.6. For λ ∈ R there exist linearly independent solutions u0 = u0(·, λ) and 
v0 = v0(·, λ) of (τ0 − λ)u = 0 and c = c(λ) ∈ C such that the functions U0 = U0(·, λ)
and V0 = V0(·, λ) given by

U0(x) = exp
(
c
x− a

ω

)
·
(

u0(x)
(p0u

′
0)(x)

)
,

V0(x) = exp
(
−c

x− a

ω

)
·
(

v0(x)
(p0v

′
0)(x)

) (2.7)

on (a, ∞) have the following property:

(i) If λ ∈ R \ σess(H0), then U0 and V0 are both ω-periodic and bounded on (a, ∞), 
where Re c > 0.

(ii) If λ is an interior point of σess(H0), then U0 and V0 are both ω-periodic and bounded 
on (a, ∞), where Re c = 0. In particular, |u0| and |v0| are ω-periodic and bounded 
on (a, ∞).
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(iii) If λ is a boundary point of σess(H0), then U0 is ω-periodic and bounded on (a, ∞), 
where Re c = 0 and, in particular, |u0| is ω-periodic and bounded on (a, ∞). Fur-
thermore, V0 satisfies

‖V0(x)‖C2 ≤ C

(
1 + x− a

ω

)
(2.8)

on (a, ∞) for some positive constant C.

In the cases (i) and (iii) the solutions u0 and v0 can be chosen to be real-valued. Moreover, 
if λ ∈ σess(H0), then for every non-trivial solution of (τ0−λ)u = 0 there exists a positive 
constant E such that

a+(n+1)ω∫
a+nω

|u(t)|2r0(t) dt ≥ E for all n ∈ N. (2.9)

Proof. Let L be the two-dimensional complex space of solutions of (τ0−λ)u = 0. As the 
coefficients of τ0 are ω-periodic, for every f ∈ L the function f(· +ω) is again in L. Now 
we identify the linear map M : L → L, f 
→ f(· + ω) with the matrix

M =
(

û(a + ω) v̂(a + ω)
(p0û

′)(a + ω) (p0v̂
′)(a + ω)

)
,

where û, ̂v ∈ L are chosen such that û(a) = 1, (p0û
′)(a) = 0 and v̂(a) = 0, (p0v̂

′)(a) = 1. 
Since detM coincides with the Wronskian the spectrum is

σ(M) = σ(M) = {ec, e−c}, where c ∈ C.

From now on fix the Floquet exponent c such that Re c ≥ 0. The eigenvalues e±c solve 
the quadratic equation det(M − z) = z2 − Dz + 1 = 0, where the Hill discriminant 
D := D(λ) = û(a + ω) + (p0v̂

′)(a + ω) is real. Therefore,

e±c = D

2 ±
√

D2

4 − 1 or e±c = D

2 ∓
√

D2

4 − 1. (2.10)

Recall that by [15, Chapter 12 and Appendix] and [16, Chapter 16]

σess(H0) = {λ ∈ R : |D(λ)| ≤ 2} and ∂σess(H0) = {λ ∈ R : |D(λ)| = 2}. (2.11)

(i) For λ ∈ R \σess(H0) we have |D| > 2 and hence ec �= e−c are both real by (2.10), which 
leads to Re c > 0. As M has two distinct eigenvalues, we find corresponding eigenvectors 
u0, v0 ∈ L satisfying
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u0(x + ω) = (Mu0)(x) = e−cu0(x), (p0u
′
0)(x + ω) = e−c(p0u

′
0)(x), (2.12)

v0(x + ω) = (Mv0)(x) = ecv0(x), (p0v
′
0)(x + ω) = ec(p0v

′
0)(x), (2.13)

on (a, ∞), where the equalities in (2.12) and (2.13) for the derivatives follow from the 
periodicity of p0. From (2.12) and (2.13) one also sees that the functions U0 and V0
defined in (2.7) are both ω-periodic, and hence also bounded. This completes the proof 
of (i).
(ii) For an interior point λ of σess(H0) we have |D| < 2 by (2.11), and hence ec and 
e−c are non-real and complex conjugates of each other, which yields Re c = 0. As in the 
proof of (i) M has a pair of distinct eigenvalues and we find corresponding eigenvectors 
u0, v0 ∈ L satisfying (2.12), (2.13), which shows the periodicity of the U0 and V0 given 
in (2.7) and finishes the proof of (ii).
(iii) For λ ∈ ∂σess(H0) we have |D| = 2 and hence ec = e−c = D/2 ∈ {−1, 1} by 
(2.10), and therefore Re c = 0. Again, we find u0 ∈ L such that (2.12) holds and this 
shows the periodicity of the function U0 defined in (2.7). If the geometric multiplicity of 
ec = e−c is two, then there is a second linearly independent solution v0 ∈ L which satisfies 
(2.13). In this case the function V0 in (2.7) is ω-periodic and the estimate (2.8) holds 
for C = supx∈[a,a+ω]‖V0(x)‖C2 . Otherwise, if the geometric multiplicity of ec = e−c

is one, then there is a Jordan chain of length two, that is, there exists v0 ∈ L with 
Mv0 = ecv0 + u0. One has

v0(x + ω) = ecv0(x) + u0(x), (p0v
′
0)(x + ω) = ec(p0v

′
0)(x) + (p0u

′
0)(x) (2.14)

for all x ∈ (a, ∞). Now consider

V0(x) := exp
(
−c

x− a

ω

)
·
(

v0(x)
(p0v

′
0)(x)

)
,

as in (2.7) and recall that Re c = 0. With (2.14) we have

‖V0(x + ω)‖C2 =
∥∥∥∥( ecv0(x) + u0(x)

ec(p0v
′
0)(x) + (p0u

′
0)(x)

)∥∥∥∥
C2

≤ ‖V0(x)‖C2 + ‖U0(x)‖C2 . (2.15)

Let x ∈ (a, ∞) and k ∈ N with k ≤ (x − a)/ω < k + 1. Then (2.15) and the periodicity 
of U0 give successively

‖V0(x)‖C2 ≤ ‖V0(x− kω)‖C2 + k‖U0(x− kω)‖C2

≤ ‖V0(x− kω)‖C2 + x− a

ω
‖U0(x− kω)‖C2

≤ sup
t∈[a,a+ω]

(
‖V0(t)‖C2 + ‖U0(t)‖C2

)
·
(

1 + x− a

ω

)
.

This shows (iii).
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Since in the cases (i) and (iii) the spectrum of M is real, M can be regarded as a 
mapping in the real space of real-valued solutions of (τ0−λ)u = 0 instead of the complex 
space L. Hence, u0 and v0 can be chosen as real-valued solutions. Finally, to show (2.9), 
consider λ ∈ σess(H0) and let u0, v0 be as in (ii) or (iii). Choose d1 ∈ C such that 
w0 := d1u0 + v0 is orthogonal to u0 in L2((a, a + ω); r0). We have Mu0 = e−cu0 and 
Mv0 = ecv0 + d0u0, where d0 ∈ {0, 1}. Thus,

Mw0 =
(
e−cd1 + d0

)
u0 + ecv0 =

(
e−cd1 + d0 − ecd1

)
u0 + ecw0

and successively for all n ∈ N

Mnw0 = γnu0 + ecnw0, where γn ∈ C.

We consider a non-trivial linear combination αu0 + βw0, where α, β ∈ C. Note that by 
(2.12) u0(t + nω) = (Mnu0)(t) = e−ncu0(t) for t ∈ [a, ∞) and n ∈ N. Recall also that 
Re c = 0. If β = 0, then

a+(n+1)ω∫
a+nω

|αu0(t)|2r0(t) dt =
a+ω∫
a

|αu0(t)|2r0(t) dt > 0

for all n ∈ N. Otherwise, if β �= 0, then

a+(n+1)ω∫
a+nω

|αu0(t) + βw0(t)|2r0(t) dt

=
a+ω∫
a

|α(Mnu0)(t) + β(Mnw0)(t)|2r0(t) dt

=
a+ω∫
a

|(αe−cn + βγn)u0(t) + βecnw0(t)|2r0(t) dt

≥
a+ω∫
a

|βw0(t)|2r0(t) dt > 0

for all n ∈ N. In both cases we conclude (2.9) and Lemma 2.6 is shown. �
The solution’s asymptotics are basically preserved under L1-perturbations of τ0 with 

respect to its coefficients. This is the content of the next lemma.

Lemma 2.7. Let λ ∈ R, assume that condition (2.2) holds and let u0, v0 and c be as 
in Lemma 2.6. Then there exist linearly independent solutions u1 = u1(·, λ) and v1 =
v1(·, λ) of (τ1 − λ)u = 0 such that the following holds:
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(i) If λ ∈ R \ σess(H0), that is, Re c > 0, then

exp
(

Re cx− a

ω

)
·
∥∥∥∥( u1(x)

(p1u
′
1)(x)

)
−

(
u0(x)

(p0u
′
0)(x)

)∥∥∥∥
C2

→ 0 as x → ∞ (2.16)

and ∥∥∥∥( u1(x)
(p1u

′
1)(x)

)∥∥∥∥
C2

≤ C exp
(
−Re cx− a

ω

)
,∥∥∥∥( v1(x)

(p1v
′
1)(x)

)∥∥∥∥
C2

≤ C exp
(

Re cx− a

ω

) (2.17)

on (a, ∞), where C = C(λ) is a positive constant. In particular, u1 is bounded on 
(a, ∞).

(ii) If λ is an interior point of σess(H0), that is, Re c = 0, then (2.16) and (2.17) hold 
on (a, ∞), and ∥∥∥∥( v1(x)

(p1v
′
1)(x)

)
−

(
v0(x)

(p0v
′
0)(x)

)∥∥∥∥
C2

→ 0 as x → ∞. (2.18)

In particular, u1 and v1 are bounded on (a, ∞).
(iii) If λ is a boundary point of σess(H0), that is, Re c = 0, and (2.5) (and hence also 

(2.2)) holds, then u1 satisfies (2.16) and the first inequality in (2.17) on (a, ∞). In 
particular, u1 is bounded on (a, ∞). If (2.6) (and hence also (2.2) and (2.5)) holds, 
then v1 satisfies (2.18).

The solutions in (i) and (iii) can be chosen to be real-valued.

Proof. Let λ ∈ R. We consider the systems φ′ = Aφ and ξ′ = (A + B)ξ corresponding 
to (τ0 − λ)u = 0 and (τ1 − λ)u = 0, respectively, where

A =
(

0 1
p0

q0 − λr0 0

)
and B =

(
0 1

p1
− 1

p0
(q1 − q0) − λ(r1 − r0) 0

)
.

From (2.2) we obtain ‖B(·)‖C2×2 ∈ L1(a, ∞). With u0 and v0 from Lemma 2.6 we 
consider the fundamental solution Φ of the system φ′ = Aφ given by

Φ(x) =
(

u0(x) v0(x)
(p0u

′
0)(x) (p0v

′
0)(x)

)
, x ∈ (a,∞), (2.19)

so that

(
Φ(t)

)−1 = 1
(

(p0v
′
0)(t) −v0(t)

−(p u′ )(t) u (t)

)
, t ∈ (a,∞),
W (u0, v0) 0 0 0
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where W is the Wronskian. With (2.7) in Lemma 2.6 we estimate for all x, t ∈ [a, ∞)

‖Φ(x)(Φ(t))−1‖C2×2 ≤ ẼeRe c t−x
ω ‖U0(x)‖C2‖V0(t)‖C2

+ ẼeRe c x−t
ω ‖U0(t)‖C2‖V0(x)‖C2

(2.20)

where Ẽ is a suitable positive constant.
We show (i) and (ii). In this case, Re c ≥ 0 and U0, V0 are bounded. We consider the 

Banach space B of all continuous C2-valued functions with exponential decay of order 
− Re c/ω, that is,

B :=
{
ξ : [a,∞) → C2 continuous : ‖ξ(x)‖C2 ≤ γe−Re c x

ω for some γ ≥ 0 on [a,∞)
}

and the corresponding norm

‖ξ‖B := sup
x∈[a,∞)

eRe c x−a
ω ‖ξ(x)‖C2 < ∞.

For ξ ∈ B we define

(Tξ)(x) := −Φ(x)
∞∫
x

(Φ(t))−1B(t)ξ(t) dt, x ∈ [a,∞). (2.21)

The integral in (2.21) converges. Indeed, the estimate in (2.20) yields

‖Φ(x)(Φ(t))−1‖C2×2 ≤ EeRe c t−x
ω (2.22)

for a ≤ x ≤ t < ∞, where E is a suitable positive constant. Then (2.21) with (2.22) give

eRe c x−a
ω ‖(Tξ)(x)‖C2 ≤ eRe cx−a

ω

∞∫
x

EeRe c t−x
ω ‖B(t)‖C2×2‖ξ(t)‖C2dt

≤ ‖ξ‖B E

∞∫
x

‖B(t)‖C2×2dt < ∞

(2.23)

and hence the integral in (2.21) exists. Moreover, we also conclude that Tξ ∈ B and T
is a bounded everywhere defined operator in B.

We claim that for n ∈ N the estimate

‖(Tnξ)(x)‖C2 ≤ e−Re c x−a
ω ‖ξ‖B

1
n!

⎛⎝E

∞∫
‖B(t)‖C2×2 dt

⎞⎠n

, x ∈ [a,∞), (2.24)

x
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holds. In fact, for n = 1 this is true by (2.23). Now assume that (2.24) holds for some 
n ∈ N. We set G(t) := 1

n+1
(
E
∫∞
t

‖B(s)‖C2×2 ds
)n+1 and compute

‖(Tn+1ξ)(x)‖C2 ≤
∞∫
x

‖Φ(x)(Φ(t))−1‖C2×2‖B(t)‖C2×2‖(Tnξ)(t)‖C2dt

≤ e−Re c x−a
ω

∞∫
x

E‖B(t)‖C2×2‖ξ‖B
1
n!

⎛⎝E

∞∫
t

‖B(s)‖C2×2 ds

⎞⎠n

dt

= e−Re c x−a
ω ‖ξ‖B

1
n!

∞∫
x

−G′(t)dt

= e−Re c x−a
ω ‖ξ‖B

1
(n + 1)!

⎛⎝E

∞∫
x

‖B(t)‖C2×2 dt

⎞⎠n+1

which shows (2.24) for any n ∈ N. Hence,

‖Tnξ‖B ≤ ‖ξ‖B
1
n!

⎛⎝E

∞∫
a

‖B(t)‖C2×2 dt

⎞⎠n

and the Neumann series (I − T )−1 =
∑

n∈N Tn converges in the operator norm induced 
by ‖·‖B. Observe that for a solution φ ∈ B of φ′ = Aφ the function ξ := (I − T )−1φ ∈ B
satisfies ξ′ = (A + B)ξ since

ξ = Tξ + φ (2.25)

yields

ξ′ = Φ′Φ−1Tξ + Bξ + φ′ = A(Tξ + φ) + Bξ = (A + B)ξ. (2.26)

Furthermore, from (2.25) and (2.23) we also conclude

eRe c x−a
ω ‖φ(x) − ξ(x)‖C2 → 0 as x → ∞. (2.27)

Now let us consider the continuous function (u0, p0u
′
0)� : [a, ∞) → C2. According to 

Lemma 2.6 (i)–(ii) we have (u0, p0u
′
0)� ∈ B. From the above considerations we see that 

(I − T )−1(u0, p0u
′
0)� is a solution of ξ′ = (A + B)ξ and hence

(
u1
p u′

)
:= (I − T )−1

(
u0
p u′

)
∈ B
1 1 0 0
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gives a solution u1 of (τ1 − λ)u = 0 such that the assertions in (i) and (ii) hold for 
u1; note that (2.27) implies (2.16) and (u1, p1u

′
1)� ∈ B shows the first inequality in 

(2.17). Observe, that if λ is an interior point of σess(H0) then also (v0, p0v
′
0)� ∈ B by 

Lemma 2.6 (ii) as Re c = 0. Again it follows that(
v1
p1v

′
1

)
:= (I − T )−1

(
v0
p0v

′
0

)
∈ B

gives a solution v1 of (τ1 − λ)u = 0 and (2.18) follows from (2.27). Thus we have shown 
(ii) and it remains to check in (i) the second inequality in (2.17). In fact, for any solution 
v1 of (τ1 − λ)u = 0 and ξ = (v1, p1v

′
1)� one has

ξ(x) = Φ(x)

⎛⎝(
Φ(a)

)−1
ξ(a) +

x∫
a

(
Φ(t)

)−1
B(t)ξ(t) dt

⎞⎠ .

From (2.20) we obtain ‖Φ(x)(Φ(t))−1‖C2×2 ≤ EeRe c x−t
ω for a ≤ t ≤ x < ∞ (cf. (2.22)) 

with some E > 0. Hence,

e−Re c x−a
ω ‖ξ(x)‖C2 ≤ E‖ξ(a)‖C2 + E

x∫
a

‖B(t)‖C2×2

(
e−Re c t−a

ω ‖ξ(t)‖C2

)
dt

for all x ∈ [a, ∞). Now Gronwall’s inequality yields

‖ξ(x)‖C2 ≤ eRe c x−a
ω E‖ξ(a)‖C2eE

∫ x
a
‖B(t)‖C2×2 dt,

and hence the second inequality in (2.17) holds for any solution v1 of (τ1−λ)u = 0. This 
completes the proof of (i) and (ii).

We prove (iii). In the case λ ∈ ∂σess(H0) Lemma 2.6 (iii) implies Re c = 0 and the 
Banach space B from above is the usual space of bounded continuous functions. Let 
φ ∈ B and let T be as in (2.21). From Lemma 2.6 (iii) and (2.20) we obtain

‖Φ(x)(Φ(t))−1‖C2×2 ≤ E

(
1 + t− a

ω

)
(2.28)

for a ≤ x ≤ t < ∞ and hence

‖(Tφ)(x)‖C2 ≤ ‖φ‖B E

∞∫
x

(
1 + t− a

ω

)
‖B(t)‖C2×2 dt, (2.29)

where the integral converges since (1 + | · |)‖B(·)‖C2×2 ∈ L1(a, ∞) by assumption (2.5). 
In the same way as in the proof of items (i) and (ii) one verifies with G(t) replaced by 
H(t) = 1 (

E
∫∞(1 + s−a )‖B(s)‖C2×2 ds

)n+1 that
n+1 t ω
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‖(Tnφ)(x)‖C2 ≤ ‖φ‖B
1
n!

⎛⎝E

∞∫
x

(
1 + t− a

ω

)
‖B(t)‖C2×2 dt

⎞⎠n

and

‖(Tnφ)‖B ≤ ‖φ‖B
1
n!

⎛⎝E

∞∫
a

(
1 + t− a

ω

)
‖B(t)‖C2×2 dt

⎞⎠n

hold for all n ∈ N and x ∈ [a, ∞). As above it follows that (I − T )−1 is an everywhere 
defined bounded operator in B and for a solution φ ∈ B of φ′ = Aφ the function 
ξ = (I − T )−1φ ∈ B satisfies (2.25) and (2.26). Hence it follows from (2.29) that (2.27)
holds with Re c = 0. Now consider (u0, p0u

′
0)�, which is in B by Lemma 2.6 (iii), and set(

u1
p1u

′
1

)
:= (I − T )−1

(
u0
p0u

′
0

)
∈ B. (2.30)

Then u1 is a solution of (τ1 − λ)u = 0 and the assertions for u1 in (iii) follow.
Now assume that the integrability condition (2.6) (and hence also (2.2) and (2.5)) 

holds. Then (1 +| ·|2)‖B(·)‖C2×2 ∈ L1(a, ∞) and for continuous functions ξ : [a, ∞) → C2

such that

Cξ := sup
x∈[a,∞)

(
1 + x−a

ω

)−1 ‖ξ(x)‖C2 < ∞ (2.31)

we can consider the integral (2.21), where we shall use the notation T̃ to distinguish 
from the operator T acting in the Banach space B. In fact, by (2.28) we have

‖(T̃ ξ)(x)‖C2 ≤ E Cξ

∞∫
x

(
1 + t− a

ω

)2

‖B(t)‖C2×2 dt (2.32)

for x ∈ (a, ∞) and hence T̃ ξ ∈ B. Now let φ = (v0, p0v
′
0)� and observe that 

by Lemma 2.6 (iii) φ satisfies an estimate of the form (2.31). The function ξ :=
(I − T )−1T̃ φ + φ also satisfies (2.31) and ξ − φ = (I − T )−1T̃ φ ∈ B. Hence,

T̃ φ = (I − T )(ξ − φ) = (ξ − φ) − T̃ (ξ − φ) = ξ − φ− T̃ ξ + T̃ φ,

which implies

ξ = φ + T̃ ξ. (2.33)

As in (2.26) we see that ξ solves ξ′ = (A + B)ξ and hence ξ = (v1, p1v
′
1)� with some 

solution v1 of (τ1 − λ)u = 0. From (2.32) and (2.33) we obtain ‖φ(x) − ξ(x)‖C2 → 0 as 
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x → ∞, which shows (2.18). To see that v1 and u1 in the present situation are linearly 
independent assume the contrary. Then also (v1, p1v

′
1)� and (u1, p1u

′
1)� are multiples of 

each other and hence (v1, p1v
′
1)� ∈ B. But then also

(I − T̃ )(v1, p1v
′
1)� = (I − T )(v1, p1v

′
1)� = (v0, p0v

′
0)�

and (I − T )(u1, p1u
′
1)� = (u0, p0u

′
0)� (see (2.30)) are multiples of each other; a contra-

diction.
Note that in the cases (i) and (iii) the solutions u0 and v0 from Lemma 2.6 can be 

chosen to be real-valued. Then Φ in (2.19) has values in R2×2 and the solution u1 and 
v1 in (i) and (iii) constructed via T in (2.21) are also real-valued. �
Proof of Theorem 2.1. For λ ∈ R let c = c(λ) and uj = uj(·, λ), vj(·, λ), j = 0, 1, be as 
in Lemma 2.6 and Lemma 2.7. The proof is divided into four steps.

Step 1. Let λ be an arbitrary element of the non-empty interior of σess(H0), that is, 
Re c = 0 by Lemma 2.6 (ii). We show that for every nonzero solution w1 of (τ1−λ)u = 0
there exist positive constants E1 and E2 such that

E1 ≤
a+(n+1)ω∫
a+nω

|w1(t)|2r1(t) dt ≤ E2 (2.34)

holds for all sufficiently large n ∈ N. Fix an arbitrary nontrivial linear combination 
w1 = αu1 + βv1, α, β ∈ C. For the same constants α and β let w0 = αu0 + βv0. From 
Lemma 2.6 (ii) and the periodicity of U0 and V0 we obtain for n ∈ N and t ∈ [a, ∞)

u0(t + nω) = e−ncu0(t) and v0(t + nω) = encv0(t).

This, |e−nc| = |enc| = 1, and the periodicity of r0 imply

a+(n+1)ω∫
a+nω

|w0(t)|2r0(t) dt ≤ 2
a+(n+1)ω∫
a+nω

(
|αu0(t)|2 + |βv0(t)|2

)
r0(t) dt

= 2
a+ω∫
a

(
|αe−ncu0(t)|2 + |βencv0(t)|2

)
r0(t) dt,

and hence together with (2.9) we conclude

E ≤
a+(n+1)ω∫
a+nω

|w0(t)|2r0(t) dt ≤ E′
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for some E, E′ > 0 and all n ∈ N. Furthermore,∣∣|w1|2r1 − |w0|2r0
∣∣ =

∣∣|w1|2(r1 − r0) +
(
|w1|2 − |w0|2

)
r0
∣∣

≤ |w1|2|r1 − r0| + |w1 − w0|
(
|w1| + |w0|

)
r0

(2.35)

holds pointwise a.e. on (a, ∞). By Lemma 2.6 (ii) and Lemma 2.7 (ii) the solutions w0, 
w1 are bounded and

|w1(x) − w0(x)| ≤ |α| · |u1(x) − u0(x)| + |β| · |v1(x) − v0(x)| → 0, as x → ∞

by (2.16) and (2.18). Thus, (2.35) together with r1 − r0 ∈ L1(a, ∞) and the periodicity 
of r0 imply the existence of n0 ∈ N such that∣∣∣∣∣∣∣

a+(n+1)ω∫
a+nω

|w1(t)|2r1(t) dt−
a+(n+1)ω∫
a+nω

|w0(t)|2r0(t) dt

∣∣∣∣∣∣∣ ≤
E

2

for all n ≥ n0. Choosing E1 = E
2 and E2 = E′ + E

2 shows (2.34) for all n ≥ n0.
As an immediate consequence, τ1 is in the limit-point case at ∞ and no non-trivial 

solution of (τ1−λ)u = 0 is in L2((a, ∞); r1), and thus λ ∈ σess(H1); cf. [15, Theorem 11.5]. 
Since the essential spectra are closed sets we obtain

σess(H0) ⊂ σess(H1).

Step 2. Let λ be an arbitrary element of the non-empty interior of σess(H0). We prove 
now the statement on the absolute continuous spectrum of H1. A non-trivial solution u
of (τ1−λ)u = 0 for real λ is called sequentially subordinant at ∞ with respect to another 
non-trivial solution v of (τ1 − λ)u = 0 if

lim inf
x→∞

∫ x

a
|u(t)|2r1(t) dt∫ x

a
|v(t)|2r1(t) dt

= 0,

see [14, Section 9.5] and also [12]. By (2.34) in the first step of proof above we see that 
for all interior points λ of σess(H1) no sequentially subordinate solution of (τ1 −λ)u = 0
exists. Standard subordinancy theory (cf. Theorem 9.27 together with the remark below 
in [14]) implies that the absolutely continuous spectrum of H1 equals σess(H1) and the 
interior of σess(H1) is purely absolutely continuous.

Step 3. We proceed to prove the converse inclusion σess(H1) ⊂ σess(H0). Suppose λ /∈
σess(H0), that is, Re c > 0 by Lemma 2.6 (i). By Lemma 2.7 (i) there exist real-valued 
solutions u1 and v1. For g ∈ L2((a, ∞); r1) set

(Sg)(x) := 1
W (u1, v1)

∞∫
G(x, t)g(t)r1(t) dt, G(x, t) :=

{
u1(x)v1(t) if a ≤ t ≤ x,

u1(t)v1(x) if a ≤ x ≤ t,

a
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that is

(Sg)(x) = 1
W (u1, v1)

⎛⎝u1(x)
x∫

a

v1(t)g(t)r1(t) dt + v1(x)
∞∫
x

u1(t)g(t)r1(t) dt

⎞⎠ , (2.36)

where W stands again for the Wronskian. Define

E := sup
n∈N

a+(n+1)ω∫
a+nω

r1(t) dt,

which is finite since r0−r1 ∈ L1(a, ∞) and r0 is periodic and locally integrable. Consider 
an arbitrary x ∈ [a, ∞). By (2.17) in Lemma 2.7 (i)

∞∫
a

|G(x, t)|r1(t) dt ≤ C2

⎛⎝ x∫
a

eRe c t−x
ω r1(t) dt +

∞∫
x

eRe c x−t
ω r1(t) dt

⎞⎠ .

Let k ∈ N with kω + a ≤ x < (k + 1)ω + a. We continue estimating

∞∫
a

|G(x, t)|r1(t) dt ≤ C2
k∑

n=0
eRe c·(1−n)

a+(k+1−n)ω∫
a+(k−n)ω

r1(t) dt

+ C2
∞∑

n=0
eRe c·(1−n)

a+(n+1+k)ω∫
a+(n+k)ω

r1(t) dt

≤ 2C2E

∞∑
n=0

eRe c·(−n+1) < ∞.

Due to the symmetry G(x, t) = G(t, x) the same bound holds for 
∫∞
a

|G(x, t)|r1(x) dx
evaluated at t ∈ [a, ∞). As a consequence of the Schur criterion (see, e.g., [14, 
Lemma 0.32]) one obtains that S is a bounded operator in L2((a, ∞); r1). For g ∈
L2((a, ∞); r1) a straightforward calculation using (2.36) and (τ1 −λ)u1 = (τ1 −λ)v1 = 0
shows that Sg, p1(Sg)′ are absolutely continuous on (a, ∞), and that Sg solves the inho-
mogeneous differential equation (τ1 − λ)u = g. Thus, τ1(Sg) = λSg + g ∈ L2((a, ∞); r1)
and hence Sg is in the domain of the maximal operator associated to τ1 in L2((a, ∞); r1)
and S is injective. Moreover, since u1 and v1 are real-valued it follows that S is self-
adjoint, so that S−1 is a self-adjoint restriction of the maximal operator associated with 
τ1 − λ. In other words, S is the resolvent at λ of some self-adjoint realization of τ1 and 
as all self-adjoint realizations of τ1 have the same essential spectrum, we obtain

λ /∈ σess(H1).
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Thus σess(H1) ⊂ σess(H0) and together with the first step

σess(H1) = σess(H0).

Step 4. Recall that the periodic Sturm–Liouville operator H0 is semibounded from below. 
Let λ < inf σess(H0), that is, Re c > 0 by Lemma 2.6 (i). It is no restriction to assume 
that the solutions u0 and u1 provided by Lemma 2.6 (i) and Lemma 2.7 (i) are real-
valued. Since H0 is semibounded from below the differential expression τ0 − λ is non-
oscillatory (see [15, Theorem 14.9]), that is, u0 has at most finitely many zeros in (a, ∞). 
Furthermore, Lemma 2.6 (i) implies that the function ũ0 given by

ũ0(x) = ec
x−a
ω u0(x)

is ω-periodic. Therefore, the solution u0 has no zeros and

γ := inf
t∈(a,∞)

|ũ0(t)| = min
t∈[a,a+ω]

|ũ0(t)| > 0.

Assume that H1 is not semibounded from below. Then [15, Theorem 14.9] implies that 
the differential expression τ1−λ is oscillatory, and hence the solution u1 of (τ1−λ)u = 0
has infinitely many zeros x0 < x1 < x2 < . . . accumulating at ∞. Together with (2.16)
we obtain

0 < γ ≤ |ũ0(xn)| = |ec xn−a
ω u0(xn)| = eRe c xn−a

ω |u0(xn) − u1(xn)| → 0 as n → ∞;

a contradiction. This shows the semiboundedness of H1. �
Proof of Theorem 2.3. Suppose that (2.5) (and hence also (2.2)) holds. We show that 
every gap of the essential spectrum of H1 contains at most finitely many eigenvalues of 
H1. The proof is similar as in Step 4 in the proof of Theorem 2.1, but instead of the 
zeros of solutions we consider the zeros of modified Wronskians. Let μ, λ ∈ R such that 
μ < λ with σess(H0) ∩ (μ, λ) = σess(H1) ∩ (μ, λ) = ∅. We have

λ, μ ∈ ∂σess(H0) ∪
(
R \ σess(H0)

)
.

Let c(λ), c(μ) be the Floquet exponents associated with (τ0−λ)u = 0 and (τ0−μ)u = 0, 
respectively. For the real-valued solutions uj(·, λ) and uj(·, μ), where j = 0, 1, provided 
by Lemma 2.6 (i), (iii) and Lemma 2.7 (i), (iii) we consider the modified Wronskians

Wj(x) := W (uj(·, μ), uj(·, λ))(x) =
(

uj(x, λ)
pj(x)u′

j(x, λ)

)� (
0 −1
1 0

)(
uj(x, μ)

pj(x)u′
j(x, μ)

)
Observe that
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W̃0(x) := exp
((

c(λ) + c(μ)
)x− a

ω

)
W0(x) =

(
U0(x, λ)

)� (
0 −1
1 0

)
U0(x, μ), (2.37)

where U0(·, λ) and U0(·, μ) are ω-periodic functions given by (2.7) in Lemma 2.6. There-
fore, the function W̃0 is ω-periodic. Since there is at most one simple eigenvalue of H0 in 
(μ, λ) we conclude from [5, Theorem 7.5 (i)] that W0 has at most finitely many zeros in 
(a, ∞). According to the periodicity of W̃0 together with (2.37), the modified Wronskian 
W0 has no zeros and

γ := inf
t∈(a,∞)

|W̃0(t)| = min
t∈[a,a+ω]

|W̃0(t)| > 0.

The difference of W0 and W1 can be written as

W0(x) −W1(x) =
((

u0(x, λ)
(p0(x)u′

0(x, λ)

)
−
(

u1(x, λ)
p1(x)u′

1(x, λ)

))� (
0 −1
1 0

)(
u0(x, μ)

p0(x)u′
0(x, μ)

)

+
(

u1(x, λ)
p1(x)u′

1(x, λ)

)� (
0 −1
1 0

)((
u0(x, μ)

p0(x)u′
0(x, μ)

)
−
(

u1(x, μ)
p1(x)u′

1(x, μ)

))
.

Combining this with Lemma 2.6 (i), (iii) and Lemma 2.7 (i), (iii) we conclude

exp
((

c(λ) + c(μ)
)x− a

ω

)
· (W0(x) −W1(x)) → 0 as x → ∞. (2.38)

Now assume that H1 has infinitely many eigenvalues in (μ, λ). Then the modified 
Wronskian W1 has infinitely many zeros x0 < x1 < x2 < . . . which necessarily accumu-
late at ∞; cf. [5, Theorem 7.5 (i)]. Then (2.38) implies

0 < γ ≤ |W̃0(xn)| = |exp
((

c(λ) + c(μ)
)xn − a

ω

)
W0(xn)|

= |exp
((

c(λ) + c(μ)
)xn − a

ω

)(
W0(xn) −W1(xn)

)
| → 0 as n → ∞;

a contradiction. Hence, dim ran(P(μ,λ)(H1)) < ∞. �
Proof of Theorem 2.4. Suppose that (2.6) (and hence also (2.2) and (2.5)) holds. We 
show that the boundary points of the essential spectrum of H1 are no eigenvalues of H1
and, therefore, σess(H1) is purely absolutely continuous. Let λ ∈ ∂σess(H1) and consider 
an arbitrary non-trivial linear combination w1 := αu1 + βv1, where α, β ∈ C. For the 
same coefficients α, β let w0 := αu0 + βv0 and observe that by Lemma 2.7 (iii)

w1(x) − w0(x) → 0 and hence |w1(x)|2 − |w0(x)|2 → 0 as x → ∞. (2.39)

We estimate with (2.8) and the boundedness of |u0| from Lemma 2.6 (iii) for some M > 0
and all t ∈ [a, ∞)
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|w0(t)|2 ≤
(
|α||u0(t)| + |β|C

(
1 + t− a

ω

))2

≤ M(1 + t2),

and hence

|w0(t)|2|r1(t) − r0(t)| ≤ M(1 + t2)|r1(t) − r0(t)|. (2.40)

Moreover,∣∣|w1|2r1 − |w0|2r0
∣∣ ≤ ∣∣|w1|2 − |w0|2

∣∣ |r1 − r0|+ |w0|2|r1 − r0|+
∣∣|w1|2 − |w0|2

∣∣ r0 (2.41)

holds pointwise a.e. on (a, ∞) and by (2.6) the functions t 
→ t2|r1(t) − r0(t)| and 
t 
→ |r1(t) − r0(t)| are in L1(a, ∞). Thus, (2.41) together with (2.39), (2.40), and the 
periodicity of r0 imply the existence of n0 ∈ N such that for all n ≥ n0∣∣∣∣∣∣∣

a+(n+1)ω∫
a+nω

|w1(t)|2r1(t) dt−
a+(n+1)ω∫
a+nω

|w0(t)|2r0(t) dt

∣∣∣∣∣∣∣ ≤
E

2 ,

where the constant E is from (2.9). This gives for all n ≥ n0

a+(n+1)ω∫
a+nω

|w1(t)|2r1(t) dt ≥ E

2 .

Therefore, w1 does not belong to L2((a, ∞); r1), which shows that λ ∈ ∂σess(H1) is not 
an eigenvalue of H1. �
Proof of Proposition 2.5. Suppose that (2.5) (and hence also (2.2)) holds and that r1
satisfies C0 ≤ r1(t) ≤ C1 for t in some neighbourhood of ∞ for some positive constants 
C0, C1. Let λ be a boundary point of σess(H1), let u1 = u1(·, λ) be the solution found 
in Lemma 2.7 (iii), and suppose v1 = v1(·, λ) were an eigenfunction. Then, by (2.16)
and (2.9), u1 and v1 must be linearly independent and we can rescale v1 such that the 
Wronskian with u1 satisfies

1 = W (u1, v1) = u1(p1v
′
1) − (p1u

′
1)v1.

In particular, we obtain

1
2 ≤ r1u

2
1
(p1v

′
1)2

r1
+ r1v

2
1
(p1u

′
1)2

r1

Now since v1 is an eigenfunction, we have r1v2
1 → 0 (at least for some subsequence). 

Moreover, by (2.16) and our assumption on r1 both r1u2
1 and (p1u

′
1)2/r1 are bounded. 
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Finally, the assumption 
∫ t+1
t−1 |q1(s)|2ds ≤ C1 together with the other assumptions on r1

and p1 ensure that the first integral on the right hand side of [12, Eq. (2.21) in Lemma 2.7]
is bounded and hence this lemma implies (p1v

′
1)2/r1 → 0, which gives a contradiction. 

Thus, there is no square summable solution for λ. �
3. Proof of the main results

Proofs of Theorem 1.1–1.3. Our main results follow from a coupling argument and ap-
plications of Theorems 2.1, 2.3 and 2.4 and their counterparts on the half-line (−∞, a). 
More precisely, choose any self-adjoint realization A0,− and A0,+ of τ0 in L2((−∞, a); r0)
and L2((a, ∞); r0), respectively, and observe that the resolvent difference of A0 and 
A0,−⊕A0,+ is an operator of rank one or rank two. In particular, A0 and A0,−⊕A0,+ have 
the same essential spectrum, and the periodicity also implies σess(A0,−) = σess(A0,+).

Let A1,− and A1,+ be arbitrary self-adjoint realizations of τ1 in L2((−∞, a); r1) and 
L2((a, ∞); r1), respectively. It follows from Theorem 2.1 that A1,± are semibounded, 
σess(A0,±) = σess(A1,±), and hence A1,− ⊕A1,+ is semibounded and

σess(A0) = σess(A0,− ⊕A0,+) = σess(A1,− ⊕A1,+).

As also the resolvent difference of A1 and A1,−⊕A1,+ is an operator of rank one or rank 
two we conclude that A1 is semibounded and

σess(A0) = σess(A1).

In order to prove Theorem 1.1 it remains to show the statement on the absolutely 
continuous spectrum of A1. Let λ be an interior point of σess(A1) and let u be a non-
trivial solution of (τ1 − λ)u = 0. Step 2 of the proof of Theorem 2.1 shows that the 
restrictions of u onto (−∞, a) and (a, ∞) are not sequentially subordinant at ±∞ and 
from [6, Theorem 2] we conclude that the spectrum of A1 is purely absolutely continuous 
in the interior of the spectral bands. This completes the proof of Theorem 1.1. Arguing 
with the restrictions of u onto (−∞, a) and (a, ∞) in the same way as in the proof of 
Theorem 2.4 we also conclude that the band edges are no eigenvalues of A1 under the 
assumptions of Theorem 1.3. To conclude Theorem 1.2 note that by Theorem 2.3 each 
gap contains at most finitely many eigenvalues of A1,−⊕A1,+. As the resolvent difference 
of A1 and A1,− ⊕ A1,+ is at most of rank two the number of eigenvalues of A1 in each 
gap can increase by at most two, which shows Theorem 1.2. �
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