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Abstract

We study singular Sturm–Liouville operators of the form
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(
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dx
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)
, j = 0,1,

in L2((a, b); rj ) with endpoints a and b in the limit point case, where, in contrast to the usual assumptions, 
the weight functions rj have different signs near a and b. In this situation the associated maximal operators 
become self-adjoint with respect to indefinite inner products and their spectral properties differ essentially 
from the Hilbert space situation. We investigate the essential spectra and accumulation properties of nonreal 
and real discrete eigenvalues; we emphasize that here also perturbations of the indefinite weights rj are 
allowed. Special attention is paid to Kneser type results in the indefinite setting and to L1 perturbations of 
periodic operators.
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1. Introduction

The purpose of this paper is to develop perturbation methods and to study spectral properties 
of singular Sturm–Liouville operators K0 and K1 associated with the differential expressions

�0 = 1

r0
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− d

dx
p0

d

dx
+ q0

)
and �1 = 1

r1

(
− d

dx
p1

d

dx
+ q1

)
(1.1)

on some interval (a, b), where −∞ ≤ a < b ≤ ∞. As usual, we impose the standard assumptions 
1/pj , qj , rj ∈ L1

loc(a, b) real, rj �= 0, pj > 0 a.e., and furthermore the endpoints a and b are 
assumed to be singular and in the limit point case. We will be interested in so-called indefinite
Sturm–Liouville operators, i.e., we consider sign changing weight functions rj ; more precisely, 
here we treat the case rj < 0 in a neighborhood of a and rj > 0 in a neighborhood of b, j = 0, 1. 
In this situation the maximal operators Kj , j = 0, 1, associated to �j in the weighted L2-spaces 
L2((a, b); rj ) are self-adjoint with respect to the corresponding Krein space inner products

[f,g] =
b∫

a

f (x)g(x)rj (x)dx, f, g ∈ L2((a, b); rj ).

Various aspects in the spectral theory of indefinite Sturm–Liouville operators have been studied 
intensively in the mathematical literature and we refer the reader to [6,9–11,17,23,24,33,45,59,
60,62] for different types of eigenvalue estimates and to [19,20,26,27,41–43,47–49,69] and the 
references therein for a discussion of so-called critical points, similarity, and special cases as, 
e.g., left definite problems.

A natural and intuitive approach to the spectral theory of indefinite Sturm–Liouville operators 
is to reduce a part of the analysis to the definite case near the singular endpoints via Glazman’s 
decomposition method and to apply perturbation techniques; this idea appears already in the 
fundamental paper [25] and has been further applied and developed in, e.g., [3,8,12,14,18,44]. 
More precisely, fix a < α < β < b such that both weights rj are negative on (a, α) and positive 
on (β, b) and view the operators Kj as finite rank perturbations in resolvent sense of the block 
diagonal operators

Hj :=
⎛⎝−Hj,− 0 0

0 Kj,αβ 0
0 0 Hj,+

⎞⎠ (1.2)

in the Krein spaces

L2((a, b); rj ) = L2((a,α); rj ) ⊕ L2((α,β); rj ) ⊕ L2((β, b); rj ). (1.3)

Note that sign changes of the weight functions are possible only inside the finite interval [α, β]. 
Hence Kj,αβ are regular indefinite Sturm–Liouville operators associated to �j in the Krein spaces 
L2((α, β); rj ), and Hj,± are definite singular Sturm–Liouville operators associated with the dif-
ferential expressions

τ0 = 1
(

− d
p0

d + q0

)
and τ1 = 1

(
− d

p1
d + q1

)
(1.4)
|r0| dx dx |r1| dx dx
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in the weighted L2-Hilbert spaces L2((a, α); −rj ) and L2((β, b); rj ), respectively. By imposing 
Dirichlet boundary conditions at α and β the operators Hj,± become self-adjoint in the corre-
sponding Hilbert spaces and Kj,αβ becomes self-adjoint in the Krein space L2((α, β); rj ). Due 
to the diagonal form it is clear that the spectra of Hj coincide with the union of the spectra of 
the diagonal entries. It is well-known that the spectrum of Kj,αβ is purely discrete and hence 
the essential spectrum of the block diagonal operators Hj in (1.2) is given by the union of the 
essential spectra of the Hilbert space self-adjoint operators ±Hj,±.

In order to conclude spectral properties of the operators Kj from (1.2) a careful analysis of the 
underlying rank two perturbation (the functions in the domains of Hj satisfy Dirichlet boundary 
conditions at α and β) is necessary, which is particularly subtle due to the indefinite nature of the 
problem as self-adjoint operators in Krein spaces may have a rather arbitrary spectral structure. 
A priori it is not even clear if the resolvent sets of Kj are nonempty, even rank one perturbations 
may lead to nonreal eigenvalues accumulating towards the essential spectrum, and other spectral 
effects can appear.

An additional substantial difficulty when comparing the indefinite Sturm–Liouville operators 
K0 and K1 stems from the fact that the operators act in different Krein spaces (as the weight func-
tions r0 and r1 are different in general) and hence H0,± and H1,± act in different Hilbert spaces; 
at the same time also the regular indefinite Sturm–Liouville operators K0,αβ and K1,αβ act in 
different Krein spaces. We emphasize that perturbation theory for Sturm–Liouville operators 
with different weights r0 �= r1 has not obtained much attention and to the best of our knowledge 
there is only the contribution [15] for the definite case that contains (nontrivial) results on the 
invariance of the essential spectrum.

In this paper we use recent results from perturbation theory of definite Sturm–Liouville oper-
ators from our publications [15,16] and abstract perturbation results for self-adjoint operators in 
Krein spaces from [4,10,11] together with the above methodology to obtain a number of spectral 
results for singular indefinite Sturm–Liouville operators. In Theorem 2.5 we provide conditions 
on the coefficients rj , pj , qj such that the essential spectra of K0 and K1 coincide,

σess(K0) = σess(K1),

which can be considered as one of the main results. In Corollary 2.6 we illustrate this general 
result in a more explicit situation, where it is assumed that (a, b) =R and the coefficients admit 
limits at the singular endpoints ±∞.

The accumulation of nonreal eigenvalues towards certain regions of the real axis and the accu-
mulation of discrete real eigenvalues towards the essential spectrum is investigated in Section 3. 
In Theorem 3.1 and Theorem 3.4 these problems are treated for K0 in a general setting in terms 
of the essential spectra of the operators H0,±; the concept behind is the so-called local definitiz-
ability of self-adjoint operators in Krein spaces and the stability of this property under finite rank 
perturbations in resolvent sense; cf. [4,10,38–40]. We pay special attention to the accumulation 
of real discrete eigenvalues in the case (a, b) =R, where the coefficients rj , pj , qj admit limits 
at ±∞ such that a gap arises in the essential spectra of Kj . This allows to conclude Kneser type 
results in the spirit of [15,51,52] in the indefinite setting in Theorem 3.9 and Theorem 3.12; cf. 
[46] and also [9,29,31,35,37,63,64,67].

Another interesting situation appears in Section 4 in the periodic setting under L1-perturba-
tions of the periodic coefficients of K0: The band structure of the periodic operators ±H0,± is 
preserved and leads to a band structure of the perturbed periodic operators ±H1,±, and hence 
to a band structure of K1; cf. Theorem 4.1. An additional finite first moment condition on the 
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coefficient differences together with [16, Theorem 2.3] combined with the results in Section 3
allows us to prove finiteness of eigenvalues in the spectral band gaps of the perturbed periodic 
operator K1 outside a certain compact region; this can be viewed as an extension of a seminal 
result by Rofe-Beketov from the 1960s to general indefinite Sturm–Liouville operators; cf. [22,
30,51,64]. We also refer the reader to [9,28,50,61] for other related studies on indefinite Sturm–
Liouville operators in the periodic setting.

For the convenience of the reader the paper contains a short appendix on operators in Krein 
spaces, where some spectral properties and perturbation results for self-adjoint operators with 
finitely many negative squares and locally definitizable self-adjoint operators from the mathe-
matical literature are recalled.

Throughout the paper we shall use the notions of essential and discrete spectrum for operators 
that are not necessarily self-adjoint in a Hilbert space. To avoid possible confusion we recall 
that for a closed operator T in a Hilbert space λ ∈ C is a discrete eigenvalue if λ ∈ σp(T ) is 
an isolated point in the spectrum σ(T ) and the corresponding Riesz projection is a finite rank 
operator. The essential spectrum σess(T ) is the complement of the discrete eigenvalues in σ(T ). 
We emphasize that under our assumptions the essential spectra of the Sturm–Liouville operators 
appearing in this paper is automatically real and remains invariant under compact perturbations 
in resolvent sense.
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2. Essential spectrum

Let −∞ ≤ a < b ≤ ∞ and let �j and τj , j = 0, 1, be the Sturm–Liouville expressions 
on (a, b) in (1.1) and (1.4), respectively, and assume that the coefficients satisfy the standard 
assumptions 1/pj , qj , rj ∈ L1

loc(a, b) real, rj �= 0, and pj > 0 almost everywhere. The next hy-
pothesis on the different signs of the weight functions near a and b is central for the present 
paper.

Hypothesis 2.1. There exist α, β ∈ R with a < α ≤ β < b such that rj < 0 on (a, α) and rj > 0
on (β, b) for j = 0, 1.

The Hilbert spaces of measurable complex valued functions f defined on (a, b) such that 
rjf

2 ∈ L1(a, b) are denoted by L2((a, b); |rj |) and are equipped with the standard scalar prod-
ucts

(f, g) =
b∫
f (x)g(x)|rj (x)|dx, f, g ∈ L2((a, b); |rj |).
a
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Besides these scalar products we shall also consider the inner products

[f,g] =
b∫

a

f (x)g(x)rj (x)dx, f, g ∈ L2((a, b); |rj |), (2.1)

which are both indefinite by Hypothesis 2.1. The spaces L2((a, b); |rj |) equipped with [·, ·]
become Krein spaces and will be denoted by L2((a, b); rj ). The corresponding fundamental 
symmetries J = sgn(rj ) connect the inner products via [f, g] = (Jf, g). Note also that the dif-
ferential expressions �j are formally symmetric with respect to the indefinite inner products [·, ·]
and that �j = Jτj , j = 0, 1. For the basic properties of indefinite inner product spaces and linear 
operators therein we refer to [1,21,32].

Next we will define various Sturm–Liouville operators associated with �j and τj . For our 
purposes the following hypothesis on the definite Sturm–Liouville expression τ0 is appropriate.

Hypothesis 2.2. The endpoints a and b are singular and in the limit point case with respect to τ0.

Let j = 0, 1 and denote the maximal domains by

Dj (a, b) =
{
f ∈ L2((a, b); |rj |) : f,pf ′ ∈ AC(a, b), τjf ∈ L2((a, b); |rj |)

}
, (2.2)

where AC(a, b) stands for the space of absolutely continuous functions on (a, b). Note that 
τjf ∈ L2((a, b); |rj |) if and only if �jf ∈ L2((a, b); |rj |). The maximal operators associated to 
�j and τj are defined as

Kjf = �jf domKj = Dj (a, b),

Ljg = τjg domLj = Dj (a, b),
(2.3)

for j = 0, 1. Observe that Hypothesis 2.2 ensures that the definite Sturm–Liouville operator L0 is 
self-adjoint in the Hilbert space L2((a, b); |r0|) and from K0 = JL0 it follows that the indefinite 
Sturm–Liouville operator K0 is self-adjoint in the Krein space L2((a, b); r0); cf. Appendix A. 
Besides the natural maximal operators in (2.3) we shall also make use of Sturm–Liouville opera-
tors associated to �j and τj on the subintervals (a, α), (α, β), and (β, b) equipped with Dirichlet 
boundary conditions at the regular endpoints α and β . More precisely, for j = 0, 1 we define the 
operators

Hj,−f = τjf, domHj,− = {
f ∈ Dj (a,α) : f (α) = 0

}
,

Kj,αβg = �jg, domKj,αβ = {
g ∈ Dj (α,β) : g(α) = g(β) = 0

}
, (2.4)

Hj,+h = τjh, domHj,+ = {
h ∈Dj (β, b) : h(β) = 0

}
,

where the maximal domains Dj (a, α), Dj (α, β), and Dj (β, b) are defined in the same way 
as Dj (a, b) in (2.2). It follows from Hypothesis 2.2 that the operator H0,− is self-adjoint in 
the Hilbert space L2((a, α); |r0|) and the operator H0,+ is self-adjoint in the Hilbert space 
L2((β, b); |r0|). The next hypothesis ensures that the operators L0 and H0,± are semibounded 
from below (see, e.g. [15, Proof of Theorem 3.2]).
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Hypothesis 2.3. The function q0/r0 is bounded near a and b.

We emphasize that the regular indefinite Sturm–Liouville operators Kj,αβ are self-adjoint in 
L2((α, β); rj ) (see, e.g., [25]), where these spaces are equipped with the inner product (2.1)
restricted to (α, β).

Remark 2.4. Note that the inner product (2.1) on (α, β) can be indefinite or definite, depending 
on the properties of the weight functions rj , j = 0, 1, on (α, β). To avoid confusion we will 
always view L2((α, β); rj ) as a Krein space (which reduces to a Hilbert space in the special case 
rj > 0 a.e. on (α, β)). Furthermore, the case α = β in Hypothesis 2.1 is understood in the sense 
that the regular indefinite Sturm–Liouville operators Kj,αβ and the Krein spaces L2((α, β); rj )
are absent in the operator and space decompositions appearing later in the text.

The next result is the first main result in this paper. We provide criteria on the coefficients of 
�0 and �1 such that the essential spectra of the indefinite Sturm–Liouville operators K0 and K1
coincide. It also turns out that the assumptions on the coefficients imply that the resolvent sets of 
K0 and K1 are both nonempty.

Theorem 2.5. Assume Hypotheses 2.1, 2.2, and 2.3, and suppose that for each endpoint e ∈ {a, b}
the following conditions hold:

lim
x→e

r1(x)

r0(x)
= 1, lim

x→e

p1(x)

p0(x)
= 1, lim

x→e

q1(x) − q0(x)

r0(x)
= 0.

Then both indefinite Sturm–Liouville operators K0 and K1 are self-adjoint in the Krein spaces 
L2((a, b); r0) and L2((a, b); r1), respectively, the resolvent sets ρ(K0) and ρ(K1) are nonempty, 
and

σess(K0) = σess(K1) ⊂ R. (2.5)

Proof. In the present situation it follows from [15, Theorem 3.2] that both singular endpoints a
and b are also in the limit point case with respect to τ1 and hence the maximal definite Sturm–
Liouville operator L1 associated to τ1 is self-adjoint in L2((a, b); |r1|). It also follows from 
Hypothesis 2.3 and one more application of [15, Theorem 3.2] that the operators Hj,± are self-
adjoint and semibounded in the corresponding Hilbert spaces L2((b, β); rj ) and L2((a, α); −rj ), 
and that

σess(H0,+) = σess(H1,+) and σess(H0,−) = σess(H1,−). (2.6)

The semiboundedness of H0,± and H1,± also implies the semiboundedness of L0 and L1, respec-
tively. Hence it follows from [12, Theorem 4.5] that both indefinite Sturm–Liouville operators 
K0 and K1 are self-adjoint in the Krein spaces L2((a, b); r0) and L2((a, b); r1), respectively, and 
that the resolvent sets ρ(K0) and ρ(K1) are nonempty.

We now turn to the essential spectra of K0 and K1 and verify the remaining assertion (2.5). 
For this we first consider the orthogonal sums Hj , j = 0, 1, given by
156
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H0 =
⎛⎝−H0,− 0 0

0 K0,αβ 0
0 0 H0,+

⎞⎠ and H1 =
⎛⎝−H1,− 0 0

0 K1,αβ 0
0 0 H1,+

⎞⎠ , (2.7)

on their natural domains

domHj = domHj,− × domKj,αβ × domHj,+, j = 0,1,

in the Krein spaces

L2((a, b); rj ) = L2((a,α); rj ) ⊕ L2((α,β); rj ) ⊕ L2((β, b); rj ), j = 0,1;

cf. (1.2) and (1.3). Note that the operators K0,αβ and K1,αβ are both regular indefinite Sturm–
Liouville operators that are self-adjoint in the Krein space L2((α, β); r0) and L2((α, β); r1), 
respectively, and that the spectra of these operators consist of real discrete eigenvalues accu-
mulating to ∞ and −∞. In addition, there may appear at most finitely many pairs of nonreal 
discrete eigenvalues which are symmetric with respect to the real line. This is a consequence of 
the fact that K0,αβ and K1,αβ have finitely many negative squares; we refer the reader to [25] and 
Theorem A.3 in Appendix A.

Therefore, we conclude that H0 and H1 are self-adjoint in the Krein spaces L2((a, b); r0) and 
L2((a, b); r1), respectively, and from (2.6) and (2.7) we obtain that the essential spectra of H0
and H1 coincide and

σess(H0) = σess(H0,+) ∪ σess(−H0,−)

= σess(H1,+) ∪ σess(−H1,−) = σess(H1).
(2.8)

As the resolvent sets ρ(K0) and ρ(K1) are both nonempty we see that for λ ∈ ρ(K0) ∩ ρ(H0)

and μ ∈ ρ(K1) ∩ ρ(H1) the resolvent differences

(K0 − λ)−1 − (H0 − λ)−1 and (K1 − μ)−1 − (H1 − μ)−1 (2.9)

are rank two operators. In fact, this follows from the observation that Kjf = Hjf for all 
f ∈ Dj (a, b) such that f (α) = f (β) = 0, and it is clear that this subspace of functions is a 
two-dimensional restriction of the maximal domains. Hence the essential spectra of K0 and H0
coincide and the essential spectra of K1 and H1 coincide, that is,

σess(K0) = σess(H0) and σess(K1) = σess(H1). (2.10)

This observation together with (2.8) leads to (2.5); note that the essential spectrum is real as H0,±
and H1,± are self-adjoint in Hilbert spaces. �

In the next corollary we use Theorem 2.5 to express the essential spectrum in a more explicit 
way for the case where the coefficients of �0 and �1 admit the same limits r±∞, p±∞, q±∞ at 
±∞.
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Corollary 2.6. Assume that (a, b) = R and that the coefficients rj , pj , qj , j = 0, 1, admit the 
limits

r±∞ = lim
x→±∞ r0(x) = lim

x→±∞ r1(x),

p±∞ = lim
x→±∞p0(x) = lim

x→±∞p1(x),

q±∞ = lim
x→±∞q0(x) = lim

x→±∞q1(x),

where ±r±∞ > 0, p±∞ > 0, and q±∞ ∈ R. Then both indefinite Sturm–Liouville operators K0
and K1 are self-adjoint in the Krein spaces L2(R; r0) and L2(R; r1), respectively, the resolvent 
sets ρ(K0) and ρ(K1) are nonempty, and

σess(K0) = σess(K1) =
(

−∞,
q−∞
r−∞

]
∪

[
q+∞
r+∞

,∞
)

. (2.11)

In particular, there is a gap in the essential spectrum if q−∞/r−∞ < q+∞/r+∞.

Proof. We shall define a suitable comparison operator K with constant coefficients and apply 
Theorem 2.5 to the pairs {K, K0} and {K, K1}. Consider the piecewise constant coefficients 
r, p, q defined by

r(x) =
{

r+∞ if x ≥ 0,

r−∞ if x < 0,
p(x) =

{
p+∞ if x ≥ 0,

p−∞ if x < 0
, q(x) =

{
q+∞ if x ≥ 0,

q−∞ if x < 0,

and note that the corresponding definite Sturm–Liouville expression

τ = 1

|r|
(

− d

dx
p

d

dx
+ q

)
is in the limit point case at both singular endpoints ±∞, that is, Hypothesis 2.2 holds. From 
the choice of q and r , and the assumptions on r0, r1 it is also clear that Hypothesis 2.1 and 
Hypothesis 2.3 are satisfied. Now we associate the operators K, L, H+, Kαβ, H− to τ and its 
indefinite counterpart � = sgn(r)τ in the same way as in (2.2), (2.3), and (2.4). Then the essential 
spectrum of the operators

H−f = τf, domH− = {
f ∈D(−∞, α) : f (α) = 0

}
,

H+h = τh, domH+ = {
h ∈D(β,∞) : h(β) = 0

}
,

is given by

σess(H+) =
[
q+∞
r+∞

,∞
)

and σess(H−) =
[
−q−∞

r−∞
,∞

)
(2.12)

(cf. [65, Example on p. 209]), and hence we conclude in the same way as in (2.7), (2.8), and 
(2.10) that
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σess(K) =
(

−∞,
q−∞
r−∞

]
∪

[
q+∞
r+∞

,∞
)

. (2.13)

It is easy to see that the conditions

lim
x→±∞

rj (x)

r(x)
= 1, lim

x→±∞
pj (x)

p(x)
= 1, lim

x→±∞
qj (x) − q(x)

r(x)
= 0

hold for j = 0, 1 and hence we conclude from Theorem 2.5 that the indefinite Sturm–Liouville 
operators K0 and K1 are self-adjoint in the Krein spaces L2(R; r0) and L2(R; r1), the resolvent 
sets ρ(K0) and ρ(K1) are nonempty, and (2.11) follows from (2.13) and (2.5). �
3. Discrete spectrum

In this section we study the point spectrum of the indefinite Sturm–Liouville operator K0 from 
the previous section. Here we concentrate on the nonreal point spectrum and accumulation points 
in gaps of the essential spectrum. Recall from the previous section that under Hypotheses 2.1, 
2.2, and 2.3 the essential spectrum of K0 is given by

σess(K0) = σess(H0,+) ∪ σess(−H0,−) (3.1)

and hence it is clear that the nonreal spectrum of K0 consists of discrete eigenvalues that may 
only accumulate to points in (3.1). In the next theorem we observe that accumulation of nonreal 
eigenvalues is possible only towards certain subsets of (3.1).

Theorem 3.1. Assume Hypotheses 2.1, 2.2, and 2.3. Then the following assertions hold.

(i) The nonreal spectrum of K0 consists of discrete eigenvalues with geometric multiplicity one 
which are contained in a compact subset of C.

(ii) The nonreal spectrum may only accumulate to points in

σess(H0,+) ∩ σess(−H0,−).

Furthermore, the nonreal spectrum cannot accumulate to any of the points λ from the 
boundary (in R)

∂
(
σess(H0,+) ∩ σess(−H0,−)

)
(3.2)

with the following property (P): There exists ε > 0 such that

(λ − ε,λ) ⊂ ρ(H0,+) and (λ,λ + ε) ⊂ ρ(−H0,−)

or

(λ − ε,λ) ⊂ ρ(−H0,−) and (λ,λ + ε) ⊂ ρ(H0,+).
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(iii) In particular, if the interior (in R)

int
(
σess(H0,+) ∩ σess(−H0,−)

) = ∅
and all λ in the set (3.2) satisfy property (P), then K0 has at most finitely many nonreal 
eigenvalues.

Proof. We shall first show in Step 1 and Step 2 that the self-adjoint operator

H0 =
⎛⎝−H0,− 0 0

0 K0,αβ 0
0 0 H0,+

⎞⎠ (3.3)

acting in the Krein space

L2((a, b); r0) = L2((a,α); r0) ⊕ L2((α,β); r0) ⊕ L2((β, b); r0);
is definitizable over the domain(

C \ (σess(H0,+) ∩ σess(−H0,−))
)

∪ {
λ ∈ ∂

(
σess(H0,+) ∩ σess(−H0,−)

) : λ has property (P)
} (3.4)

in the sense of Definition A.4 (see also [38,40] and [66]). Using the perturbation result in The-
orem A.5 (i) we conclude in Step 3 that the same is true for K0, which implies the assertions 
(i)–(iii).

Step 1. We verify Definition A.4 (ii). By Hypothesis 2.1 L2((a, α); r0) is an anti-Hilbert space, 
L2((β, b); r0) is a Hilbert space, and L2((α, β); r0) is (in general) a Krein space. Since H0,+ and 
−H0,− are self-adjoint in Hilbert spaces their spectra are real. In the present situation σ(H0,+)

is of positive type in the sense of Definition A.1 and σ(−H0,−) is of negative type in the sense 
of Definition A.1. As mentioned in the proof of Theorem 2.5 the operator K0,αβ is a regular in-
definite Sturm–Liouville operator with finitely many negative squares (for the notion of negative 
squares we refer to Appendix A) and the spectrum consists only of discrete eigenvalues; the real 
eigenvalues accumulate to ∞ and −∞. Hence for every real λ not in σess(H0,+) ∩ σess(−H0,−)

and all points in (3.2) which satisfy property (P) item (ii) from Definition A.4 is satisfied for the 
operator H0 in (3.3).

We show next that item (ii) from Definition A.4 is also satisfied for λ = ∞. In fact, it follows 
from Hypothesis 2.3 that H0,+ is semibounded from below and −H0,− is semibounded from 
above and hence (−∞, −γ ) ⊂ ρ(H0,+) and (γ, ∞) ⊂ ρ(−H0,−) for some γ ≥ 0. As mentioned 
above the spectrum of H0,+ is of positive type and the spectrum of −H0,− is of negative type. 
Since K0,αβ has finitely many negative squares Theorem A.3 (iii) implies that one can choose 
γ in such a way that (−∞, −γ ) ∩ σ(K0,αβ) is of negative type and (γ, ∞) ∩ σ(K0,αβ) is of 
positive type. Now the claim follows for λ = ∞.

Step 2. Observe that the nonreal spectrum of H0 coincides with the nonreal spectrum of K0,αβ

and hence it follows from Theorem A.3 (i) that the nonreal spectrum of H0 consists of isolated 
points which are poles of the resolvent of H0 and no point of R ∪ {∞} is an accumulation 
point of non-real spectrum of H0. It remains to verify Definition A.4 (i). In fact, the growth 
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condition for the resolvent of H0 is valid since the resolvents of H0,+ and −H0,− are bounded 
by |Im λ|−1 for nonreal λ and the operator K0,αβ satisfies the growth condition for the resolvent 
by Theorem A.3 (iv). Hence H0 is definitizable over the domain (3.4).

Step 3. By (2.9) the difference of the resolvents of H0 and K0 is a rank two operator and hence 
Theorem A.5 implies that the operator K0 is also definitizable over the domain (3.4); note that 
ρ(K0) �= ∅ follows from Hypothesis 2.3 and [12, Theorem 4.5]. This yields (ii) in Theorem 3.1. 
Observe that the nonreal spectrum of K0 is discrete by (3.1) and Hypothesis 2.2 implies that all 
eigenvalues of K0 have geometric multiplicity one. As ∞ is contained in the domain (3.4) it is 
also clear that ∞ is not an accumulation point of nonreal eigenvalues of K0. This shows (i) and 
assertion (iii) is an immediate consequence of (i) and (ii). �

Next we illustrate the decisive role of points with property (P) from Theorem 3.1 (ii) with 
some examples.

Example 3.2. Let (a, b) =R and consider the shifted Coulomb potential

r0(x) = sgnx, p0(x) = 1 and q0(x) = − 1

1 + |x| , x ∈R,

where α = β = 0 in Hypothesis 2.1, see also [7,59] and [34]. In this situation Corollary 2.6 and 
(2.12) show σess(H0,+) = [0, ∞) and σess(−H0,−) = (−∞, 0] and hence (3.2) turns into

∂
(
σess(H0,+) ∩ σess(−H0,−)

) = {0}. (3.5)

Note that the operators ±H0,± from (2.4) act in L2(R±) and the operator K0,αβ is not present in 
the decomposition (1.2); cf. Remark 2.4. A Kneser type argument (see, e.g., [65, Corollary 9.43]) 
shows that the discrete spectrum in (−∞, 0) of the operator H0,+ accumulates to zero from 
below and the discrete spectrum in (0, ∞) of the operator −H0,− accumulates to zero from 
above. Hence property (P) is not fulfilled for the point zero and thus accumulation of nonreal 
eigenvalues of K0 to zero may appear.

In fact, it was shown in [59] that for the shifted (indefinite) Coulomb potential the nonreal 
discrete eigenvalues indeed accumulate to zero. In general it is an open problem formulated 
in [5] whether the accumulation of discrete eigenvalues from below to the lower boundary of 
the essential spectrum of H0,+ or the accumulation of discrete eigenvalues from above to the 
upper boundary of the essential spectrum of −H0,− leads to nonreal accumulation of discrete 
eigenvalues to points from (3.2) not satisfying property (P).

Example 3.3. Let again (a, b) =R, α = β = 0, and consider a potential with fast decay towards 
±∞ as in [8],

r0(x) = sgnx p0(x) = 1 and q0(x) = −κ(κ + 1)sech2(x), x ∈ R,

for some κ ∈N . Then again the essential spectrum of ±H0,± coincides with R± and (3.5) holds. 
In contrast to Example 3.2 here a Kneser type argument shows that the discrete spectra of H0,+
in (−∞, 0) and of −H0,− in (0, ∞) are finite. Hence, zero has property (P) and Theorem 3.1 (iii) 
shows that the operator K0 has finitely many nonreal eigenvalues; cf. [8].
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In the next theorem we complement the previous observations in Theorem 3.1 and study the 
possible accumulation of real discrete eigenvalues of K0 to boundary points of (3.1). In this 
context we recall from [36, Corollary 6] that σess(±H0,±) can be any closed subset of R and, in 
particular, spectral points as in Theorem 3.4 (iii) below may appear.

Theorem 3.4. Assume Hypotheses 2.1, 2.2, and 2.3. Then the following assertions hold.

(i) If λ+ ∈ ∂σess(H0,+) (boundary in R) and λ+ �∈ σess(−H0,−), then the real discrete eigen-
values of K0 accumulate at λ+ if and only if the discrete eigenvalues of H0,+ accumulate 
at λ+.

(ii) If λ− ∈ ∂σess(−H0,−) (boundary in R) and λ− �∈ σess(H0,+), then the real discrete eigen-
values of K0 accumulate at λ− if and only if the discrete eigenvalues of −H0,− accumulate 
at λ−.

(iii) If λ in (3.2) satisfies (P) and λ �∈ int(σess(K0)) (interior in R), then the real discrete eigen-
values of K0 accumulate at λ.

Proof. (i) and (ii): In the proof of Theorem 3.1 it was shown that H0 and K0 are definitizable 
over the domain (3.4) in all points λ ∈ R ∪ {∞} not in σess(H0,+) ∩ σess(−H0,−) and in all 
points in (3.2) which satisfy property (P). Then the statement on the accumulation of eigenvalues 
follows from Theorem A.5 (ii).

(iii) Assume that λ in (3.2) satisfies (P) and λ �∈ int(σess(K0)). Consider the case where a 
left-sided neighborhood in R of λ is contained in ρ(H0,+) and a right-sided neighborhood in R
of λ is contained in ρ(−H0,−). Since λ ∈ σess(±H0,±) it follows from the assumption

λ �∈ int(σess(K0)) = int(σess(H0,+) ∪ σess(−H0,−))

that λ is an isolated point in the set σess(H0,+) or in the set σess(−H0,−). In the present situation 
it follows that (λ, λ + ε) ∩ σ(H0,+) or (λ − ε, λ) ∩ σ(−H0,−) consists of discrete eigenvalues 
that accumulate to λ. Now the statement follows again from Theorem A.5 (ii). �
Remark 3.5. Note that (3.1), Theorem 3.1, and Theorem 3.4 remain true if instead of Hypoth-
esis 2.3 one assumes that the operators H0,+ and H0,− are both semibounded from below; 
equivalently one may assume that L0 is semibounded from below.

We shall illustrate the statements in the Theorems 3.1 and 3.4 in the next example for a special 
case with q0 chosen as a so-called finite-zone potential near ±∞; cf. [57,58].

Example 3.6. Let n± ∈ N and consider finitely many real numbers λ±
k , λ+

n++1, μ±
k , μ−

n−+1, 
k ∈ {1, . . . , n±}, such that

λ+
1 < μ+

1 < λ+
2 < μ+

2 < · · · < λ+
n+ < μ+

n+ < λ+
n++1,

μ−
n−+1 < λ−

n− < μ−
n− < · · · < λ−

2 < μ−
2 < λ−

1 < μ−
1 .

Let (a, b) = R and for r0 in Hypothesis 2.1 we shall assume, in addition, that r0 = 1 on (β, ∞)

and r0 = −1 on (−∞, α). Moreover, we set p0 = 1 on (−∞, α) and (β, ∞). In other words, the 
differential expression �0 in (1.1) leads to operators ±H0,± of the form
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H0,+ = − d2

dx2 + q0,+ and − H0,− = d2

dx2 − q0,−,

with Dirichlet boundary conditions at β (for H0,+) and at α (for −H0,−), and where q0,± denote 
the restrictions of q0 onto (β, ∞) and (−∞, α), respectively. According to [57, Chapter 8] there 
exist finite-zone potentials q0,± such that Hypothesis 2.2 is satisfied,

σess(H0,+) = [λ+
1 ,μ+

1 ] ∪ [λ+
2 ,μ+

2 ] ∪ · · · ∪ [λ+
n+ ,μ+

n+] ∪ [λ+
n++1,∞),

σess(−H0,−) = (−∞,μ−
n−+1] ∪ [λ−

n− ,μ−
n−] ∪ · · · ∪ [λ−

2 ,μ−
2 ] ∪ [λ−

1 ,μ−
1 ], (3.6)

and ±H0,± have at most finitely many discrete (real) eigenvalues.
According to Theorem 3.1 the nonreal spectrum of K0 consists of discrete eigenvalues (with 

geometric multiplicity one) which are contained in a compact subset of C. Possible accumulation 
points of nonreal eigenvalues are contained in the intersection of the two sets of bands of essential 
spectra in (3.6). Note that in the present situation possible points μ+

i = λ−
j for some i, j or 

μ−
l = λ+

k for some l, k satisfy property (P) in Theorem 3.1 (ii) as ±H0,± have at most finitely 
many discrete eigenvalues. Hence, if μ−

n−+1 ≤ λ+
1 and μ−

1 ≤ λ+
n++1 and

(λ+
k ,μ+

k ) ∩ (λ−
l ,μ−

l ) = ∅ (3.7)

for all k, l, then K0 has at most finitely many nonreal eigenvalues.
Concerning the real discrete eigenvalues Theorem 3.4 implies the following: real discrete 

eigenvalues of K0 may only accumulate (from the left) to points λ+
k = λ−

l or (from the right) to 
points μ+

i = μ−
j for some k, l or i, j . Therefore, under the assumptions

λ+
k �= λ−

l and μ+
i �= μ−

j (3.8)

for all k, l and i, j the operator K0 has at most finitely many discrete real eigenvalues. Note 
that condition (3.7) implies (3.8) and hence it follows under the assumptions μ−

n−+1 ≤ λ+
1 and 

μ−
1 ≤ λ+

n++1 and (3.7) that K0 has at most finitely many discrete (real and nonreal) eigenvalues.

In the next theorem we discuss a more special situation that arises when, roughly speaking, 
the essential spectra of H0,+ and −H0,− are separated by a gap. More precisely, if η± denote the 
lower bounds of the essential spectra of H0,±,

η+ := minσess(H0,+) and η− := minσess(H0,−),

where η± := ∞ if σess(H0,±) = ∅, then we shall assume that

−η− < η+.

In the following we fix some

η ∈ (−η−, η+). (3.9)

Let H0 be the operator in (1.2) and define the hermitian form 〈·, ·〉 on domH0 for f, g ∈ domH0
by
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〈f,g〉 := [(H0 − η)f,g] = (
(−H0,− − η)f−, g−

)
L2((a,α);r0)

+ (
(K0,αβ − η)fαβ, gαβ

)
L2((α,β);r0)

+ (
(H0,+ − η)f+, g+

)
L2((β,b);r0)

,

where f, g have the obvious decomposition with respect to (1.3) with j = 0, f = f− +fαβ +f+
and g = g− + gαβ + g+. Then the operator H0 − η has finitely many negative squares and the 
number κ of negative squares is given by the sum of the negative squares of the three entries on 
the diagonal, that is,

κ = κ+ + κη + κ−, (3.10)

where

κη is the number of negative squares of the operator K0,αβ − η,

κ+ is the number of eigenvalues of the operator − H0,− − η in (0,∞),

κ− is the number of eigenvalues of the operator H0,+ − η in (−∞,0).

This is due to the fact that the weight r0 is negative on (a, α) and positive on (β, b). In the next 
theorem we discuss further properties of the eigenvalues of K0 and their algebraic eigenspaces.

Theorem 3.7. Assume Hypotheses 2.1, 2.2, and 2.3, and let η±, η be as above. Then the operator 
K0 − η has at most

κ0 := κ+ + κη + κ− + 2

negative squares which implies the following statements for the eigenvalues of K0.

(i) There are at most κ0 different real eigenvalues of K0 with corresponding Jordan chains of 
length greater than one. The length of each of these chains is at most 2κ0 + 1.

(ii) The nonreal spectrum of K0 consists of at most κ0 pairs {μi, μi}, Imμi > 0, of discrete 
eigenvalues with corresponding Jordan chains of length at most κ0.

Proof. The operator H0 − η has κ squares with κ as in (3.10). By (2.9) the resolvent difference 
of the resolvents of the operators H0 and K0 is a rank two operator and, hence, by Theorem A.3
(v) the operator K0 − η has at most κ + 2 negatives squares. Now the assertions in Theorem 3.7
follow from Theorem A.3. �

Next we provide quantitative estimates on the number of eigenvalues of K0 in the setting 
of Theorem 3.7. Recall that a finite rank perturbation of self-adjoint operators in Krein spaces 
may change the discrete spectrum dramatically, in particular, for general self-adjoint operators in 
(infinite dimensional) Krein spaces the number of eigenvalues in a gap of the essential spectrum 
may change arbitrarily under a rank one or rank two perturbation; cf. [13, Theorem 3.1]. The 
situation is different if the operators have finitely many negative squares; in the next example we 
illustrate how the estimates for rank one perturbations in [11] can be applied successively in the 
present situation to obtain upper bounds on the number of eigenvalues.
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Example 3.8. Consider the case η = 0 in (3.9) and in Theorem 3.7, and fix some interval I ⊂
R \ σess(H0) such that I ⊂ (0, η+) or I ⊂ (−η−, 0). In the following we denote the number of 
eigenvalues of a closed operator A in I by nA(I).

In the case α < β we make use of the auxiliary self-adjoint operator K0,α in the Krein 
space L2((a, b); r0), which is defined as the direct sum of the maximal realizations of �0 in 
L2((a, α); r0) and L2((α, b); r0) with Dirichlet boundary conditions at α. Then ρ(K0,α) �= ∅
follows in the same way as in the proof of Theorem 2.5 from [12, Theorem 4.5] and since the 
resolvents of K0,α and H0 differ by a rank one operator we can apply [11, Corollary 3.2] to I
and obtain

nK0,α
(I ) ≤ nH0(I ) + nH0,K0,α

(I ) + 2κ + 3, (3.11)

where nH0,K0,α
(I ) stands for the number of joint eigenvalues of the operators H0 and K0,α in I

and κ is the number of negative squares of H0 in (3.10). Of course, nH0,K0,α
(I ) ≤ nH0(I ) which 

gives

nK0,α
(I ) ≤ 2nH0(I ) + 2κ + 3. (3.12)

The same argument for the operators K0 and K0,α , where one also uses that the operator K0,α

has at most κ + 1 negative squares by Theorem A.3 (v), leads to the estimate

nK0(I ) ≤ 2nK0,α
(I ) + 2(κ + 1) + 3,

and with (3.12) we conclude

nK0(I ) ≤ 4nH0(I ) + 4κ + 6 + 2(κ + 1) + 3 = 4nH0(I ) + 6κ + 11. (3.13)

Under the additional assumption I ⊂ ρ(H0) the estimate (3.13) improves and reduces to 
nK0(I ) ≤ 6κ + 11.

In the case α = β the above reasoning simplifies (see also Remark 2.4) and one can directly 
apply [11, Corollary 3.2] to the operators K0 and H0, so that instead of (3.11) we obtain imme-
diately

nK0(I ) ≤ nH0(I ) + nH0,K0(I ) + 2κ + 3, (3.14)

where κ in (3.10) now has the form κ = κ+ + κ−. Note that under the additional assumption 
I ⊂ ρ(H0) the estimate (3.14) simplifies to nK0(I ) ≤ 2κ + 3.

Next we take a closer look at the discrete eigenvalues of K0 in the situation of Corollary 2.6
and consider again the case (a, b) =R, where the coefficients r0, p0, q0 admit the limits

r±∞ = lim
x→±∞ r0(x), p±∞ = lim

x→±∞p0(x), and q±∞ = lim
x→±∞q0(x), (3.15)

with ±r±∞ > 0, p±∞ > 0, q±∞ ∈ R, and, in addition, we assume

q−∞/r−∞ < q∞/r∞. (3.16)
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Then, by Corollary 2.6, the essential spectrum of K0 is given by

σess(K0) =
(

−∞,
q−∞
r−∞

]
∪

[
q∞
r∞

,∞
)

(3.17)

and by (3.16) there is a gap in (3.17), that is, the set σ(K0) ∩ (q−∞/r−∞, q∞/r∞) consists of 
discrete eigenvalues. It is also clear from Theorem 3.7 that K0 −η with q−∞/r−∞ < η < q∞/r∞
has finitely many negative squares, and hence the nonreal spectrum of K0 consists of at most 
finitely many discrete eigenvalues.

We proceed by providing a Kneser type result for the indefinite Sturm–Liouville operator 
K0, i.e., we obtain criteria for the accumulation/non-accumulation of eigenvalues of K0 in 
(q−∞/r−∞, q∞/r∞) to the edges of the essential spectrum (see, e.g., [65, Theorem 9.42 and 
Corollary 9.43] or [15,51] for such type of results in the definite case). We first recall some 
notation from [15,51]: the iterated (natural) logarithm logn is defined recursively via

log0(x) := x, logn(x) := log(logn−1(x)), n ∈N,

with the convention log(x) := log |x| for negative values of x. Then logn(x) will be continuous 
for x > en−1 and positive for x > en, where e−1 := −∞ and en := een−1 . Furthermore, abbreviate

Ln(x) := 1

log′
n+1(x)

=
n∏

j=0

logj (x)

and

Pn(x) :=
n−1∑
j=0

1

Lj (x)
and Qn(x) := −1

4

n−1∑
j=0

1

Lj(x)2 .

Here the convention 
∑−1

j=0 ≡ 0 is used, so that, P0(x) = Q0(x) = 0.

Theorem 3.9. Let (a, b) =R and assume that the coefficients r0, p0, q0 admit the limits in (3.15)
with ±r±∞ > 0, p±∞ > 0, q±∞ ∈ R such that (3.16) holds. For n ∈ N ∪ {0} and x ∈ R \
[−en, en] let

�0,±(x) := Ln(x)2
(

q0(x)

p±∞
− Qn(x) ∓ q±∞

p±∞r±∞
r0(x) + Pn(x)2

4

(
1 − p±∞

p0(x)

))
.

Then the set σ(K0) ∩ (q−∞/r−∞, q∞/r∞) consists of discrete eigenvalues of K0 which accu-
mulate at q±∞/r±∞ if

lim sup
x→±∞

�0,±(x) < −1

4

and do not accumulate at q±∞/r±∞ if

lim inf �0,±(x) > −1
.

x→±∞ 4

166



J. Behrndt, P. Schmitz, G. Teschl et al. Journal of Differential Equations 405 (2024) 151–178
Proof. It follows directly from [15, Theorem 3.5] that σess(H0,+) = [q∞/r∞, ∞) and the set 
σ(H0,+) ∩ (−∞, q∞/r∞) consists of discrete eigenvalues of H0,+ which accumulate at q∞/r∞
if

lim sup
x→∞

�0,+(x) < −1

4

and do not accumulate at q∞/r∞ if

lim inf
x→∞ �0,+(x) > −1

4
.

In the same way one also obtains from [15, Theorem 3.5] that σess(−H0,−) = (−∞, q−∞/r−∞]
and the set σ(−H0,−) ∩ (q−∞/r−∞, ∞) consists of discrete eigenvalues of −H0,− which accu-
mulate at q−∞/r−∞ if

lim sup
x→−∞

�0,−(x) < −1

4

and do not accumulate at q−∞/r−∞ if

lim inf
x→−∞�0,−(x) > −1

4
.

The assumption (3.16) ensures that q∞/r∞ �∈ σess(−H0,−) and q−∞/r−∞ �∈ σess(H0,+) and 
hence the assertions follow directly from Theorem 3.4. �
Remark 3.10. As mentioned above the operator K0 − η with q−∞/r−∞ < η < q∞/r∞ has 
finitely many negative squares. In the case that the discrete eigenvalues of K0 in the gap 
(q−∞/r−∞, q∞/r∞) do not accumulate to q±∞/r±∞ one may also choose η = q±∞/r±∞, that 
is, also the operator K0 − q±∞/r±∞ has finitely many negative squares; cf. Theorem 3.7.

For the case n = 0 Theorem 3.9 reduces to the following statement.

Corollary 3.11. Let (a, b) = R and assume that the coefficients r0, p0, q0 admit the limits in 
(3.15) with ±r±∞ > 0, p±∞ > 0, q±∞ ∈ R such that (3.16) holds. Then the set σ(K0) ∩
(q−∞/r−∞, q∞/r∞) consists of discrete eigenvalues of K0 which accumulate at q±∞/r±∞ if

lim sup
x→±∞

x2
(

q0(x) ∓ q±∞
r±∞

r0(x)

)
< −p±∞

4

and do not accumulate at q±∞/r±∞ if

lim inf x2
(

q0(x) ∓ q±∞
r0(x)

)
> −p±∞

.

x→±∞ r±∞ 4
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We end this section with the study of the point spectrum of the perturbed indefinite Sturm–
Liouville operator K1. Under the assumptions of Theorem 2.5 the indefinite Sturm–Liouville 
operator K1 is self-adjoint in the Krein space L2((a, b); r1) with ρ(K1) �= ∅ and the essential 
spectrum of K1 is given by

σess(K0) = σess(K1) = σess(H1,+) ∪ σess(−H1,−).

It is clear that the above considerations and results in this section also hold for K1. In partic-
ular, the Kneser type results Theorem 3.9 and Corollary 3.11 can be formulated in the same 
way with the coefficients r1, p1, q1. However, it is also possible to use information of the coeffi-
cients r0, p0, q0 of the unperturbed operator K0 to investigate possible accumulation of discrete 
eigenvalues of the perturbed operator K1.

Theorem 3.12. Let (a, b) = R and assume that the coefficients r0, p0, q0 admit the limits (3.15)
with ±r±∞ > 0, p±∞ > 0, q±∞ ∈ R such that (3.16) holds. Let �0,± be as in Theorem 3.9 and 
assume that

lim
x→±∞Ln(x)2

(
|r1(x) − r0(x)| + Pn(x)2

∣∣∣∣ 1

p1(x)
− 1

p0(x)

∣∣∣∣ + |q1(x) − q0(x)|
)

= 0 (3.18)

holds for some n ∈N . Then the following assertions hold.

(i) The essential spectrum of K1 is given by

σess(K1) =
(

−∞,
q−∞
r−∞

]
∪

[
q∞
r∞

,∞
)

,

the nonreal spectrum of K1 consists of at most finitely many discrete eigenvalues, and K1 −η

with q−∞/r−∞ < η < q∞/r∞ has finitely many negative squares.
(ii) The set σ(K1) ∩ (q−∞/r−∞, q∞/r∞) consists of discrete eigenvalues of K1 which accumu-

late at q±∞/r±∞ if

lim sup
x→±∞

�0,±(x) < −1

4

and do not accumulate at q±∞/r±∞ if

lim inf
x→∞ �0,±(x) > −1

4
.

Proof. Observe first that (3.18) implies

lim
x→∞Ln(x)2|r1(x) − r0(x)| = 0,

lim
x→∞Ln(x)2Pn(x)2

∣∣∣∣ 1

p1(x)
− 1

p0(x)

∣∣∣∣ = 0,

lim Ln(x)2|q1(x) − q0(x)| = 0,

(3.19)
x→∞

168



J. Behrndt, P. Schmitz, G. Teschl et al. Journal of Differential Equations 405 (2024) 151–178
and since limx→∞ Ln(x) = ∞,

Ln(x)2Pn(x)2 =
( n−1∑

j=0

Ln(x)

Lj (x)

)2

,

and Ln(x) ≥ Lj (x) for |x| > en, j ∈ {1, . . . , n − 1}, it follows from (3.15) and (3.19) that

r±∞ = lim
x→±∞ r1(x), p±∞ = lim

x→±∞p1(x), and q±∞ = lim
x→±∞q1(x). (3.20)

Now the statement on the essential spectrum in (i) of the indefinite Sturm–Liouville operator 
K1 follows from Corollary 2.6. It is a consequence of (3.20), (3.15), and [15, Theorem 3.2] that 
Hypotheses 2.1, 2.2, and 2.3 hold for the differential expression τ1 with coefficients r1, p1, q1. 
Hence Theorem 3.1 implies that the nonreal spectrum of K1 consists of at most finitely many 
discrete eigenvalues and from Theorem 3.7 applied to K1 we obtain that the operator K1 − η

with q−∞/r−∞ < η < q∞/r∞ has finitely many negative squares.
We now turn to the proof of the accumulation properties of the discrete eigenvalues of K1 in 

(ii). For this, define (in the same way as �0,±) the functions

�1,±(x) :=Ln(x)2

(
q1(x)

p±∞
− Qn(x) ∓ q±∞

p±∞r±∞
r1(x) + Pn(x)2

4

(
1 − p±∞

p1(x)

))

for |x| > en. It is easy to see that

�1,±(x) − �0,±(x) = Ln(x)2

(
q1(x) − q0(x)

p±∞
∓ q±∞

p±∞r±∞
(r1(x) − r0(x))

+ p±∞Pn(x)2

4

(
− 1

p1(x)
+ 1

p0(x)

))
,

and from (3.19) we conclude

lim
x→±∞

(
�1,±(x) − �0,±(x)

) = 0.

Therefore, the limes superior and limes inferior of �1,± and �0,± at ±∞ coincide. Now asser-
tion (ii) follows from Theorem 3.9 applied to K1. �

Next we consider the case n = 0, which was excluded in the previous result, as one has to 
assume in this case, in addition, that p1 and p0 have the same limits at ±∞.

Corollary 3.13. Let (a, b) =R and assume that the coefficients r0, p0, q0 admit the limits (3.15)
with ±r±∞ > 0, p±∞ > 0, q±∞ ∈R such that (3.16) holds. If

lim x2(|r1(x) − r0(x)| + |q1(x) − q0(x)|) = 0 and lim |p1(x) − p0(x)| = 0,

x→±∞ x→±∞
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then (i) in Theorem 3.12 holds and the set σ(K1) ∩ (q−∞/r−∞, q∞/r∞) consists of discrete 
eigenvalues of K1 which accumulate at q±∞/r±∞ if

lim sup
x→±∞

x2
(

q0(x) ∓ q±∞
r±∞

r0(x)

)
< −p±∞

4

and do not accumulate at q±∞/r±∞ if

lim inf
x→±∞x2

(
q0(x) ∓ q±∞

r±∞
r0(x)

)
> −p±∞

4
.

4. Periodic problems

In this section we study indefinite Sturm–Liouville operators with periodic coefficients 
near the singular endpoints ±∞ and we treat L1-perturbations in the spirit of [16], see also 
[9,28,50,61] for related considerations in the indefinite setting. More precisely, we shall assume 
that Hypothesis 2.1 holds and that the coefficients 1/p0, q0, r0 are ω-periodic in (β, ∞) and θ -
periodic in (−∞, α) for some ω, θ > 0; this also implies that ∞ and −∞ are both in the limit 
point case, that is, Hypothesis 2.2 is automatically satisfied. In this situation the essential spec-
tra of H0,+ and −H0,− are purely absolutely continuous and consist of infinitely many closed 
intervals

σess(H0,+) =
∞⋃

k=1

[λ+
k ,μ+

k ] and σess(−H0,−) =
∞⋃
l=1

[λ−
l ,μ−

l ] (4.1)

where the endpoints λ+
k and μ+

k , λ+
k < μ+

k , denote the k-th eigenvalues of the regular Sturm–
Liouville operator in L2((β, β +ω); r0) (in nondecreasing order) with periodic and semiperiodic 
boundary conditions, respectively, and −μ−

l and −λ−
l , −μ−

l < −λ−
l , denote the l-th eigenval-

ues of the regular Sturm–Liouville operator in L2((α − θ, α); r0) (in nondecreasing order) with 
periodic and semiperiodic boundary conditions, respectively; cf. [22] or [68, Section 12].

Below we determine the essential spectra of the indefinite Sturm–Liouville operators K0 and 
K1, where K0 is periodic near the endpoints and K1 is an L1-perturbation.

Theorem 4.1. Assume that Hypothesis 2.1 holds and suppose that 1/p0, q0, r0 are ω-periodic in 
(β, ∞) and θ -periodic in (−∞, α) for some ω, θ > 0. Then the following assertions hold.

(i) The indefinite Sturm–Liouville operator K0 is self-adjoint in the Krein space L2(R; r0), the 
resolvent set ρ(K0) is nonempty, and the essential spectrum is given by

σess(K0) =
∞⋃

k=1

[λ+
k ,μ+

k ] ∪
∞⋃
l=1

[λ−
l ,μ−

l ]. (4.2)

(ii) If ∫
R

(
|r1(t) − r0(t)| +

∣∣∣∣ 1

p1(t)
− 1

p0(t)

∣∣∣∣ + |q1(t) − q0(t)|
)

dt < ∞, (4.3)
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then also the indefinite Sturm–Liouville operator K1 is self-adjoint in the Krein space 
L2(R; r1), the resolvent set ρ(K1) is nonempty, and the essential spectrum is given by

σess(K1) =
∞⋃

k=1

[λ+
k ,μ+

k ] ∪
∞⋃
l=1

[λ−
l ,μ−

l ]. (4.4)

Proof. (i) The periodicity of the coefficients 1/p0, q0, r0 implies the limit point condition at both 
singular endpoints ±∞. Hence the maximal operator L0 in (2.3) is self-adjoint in the Hilbert 
space L2(R; |r0|). Define H0,+ and H0,− as in (2.4). Then H0,+ and H0,− are both semibounded 
from below; cf. [22] or [68]. This implies the semiboundedness of L0. Hence we conclude from 
[12, Theorem 4.5] that the indefinite Sturm–Liouville operator K0 is self-adjoint in the Krein 
space L2(R; r0) and that ρ(K0) is nonempty. Furthermore, taking into account (4.1) it follows 
that the essential spectrum of the block diagonal operator H0 in (2.7) is given by

σess(H0) = σess(H0,+) ∪ σess(−H0,−) =
∞⋃

k=1

[λ+
k ,μ+

k ] ∪
∞⋃
l=1

[λ−
l ,μ−

l ].

Now the same perturbation argument as in the end of the proof of Theorem 2.5 leads to (4.2).
(ii) The assumption (4.3) together with [16, Theorem 2.1] implies that the operators H1,− and 
H1,+ are self-adjoint and semibounded from below in L2((−∞, α); |r1|) and L2((β, ∞); |r1|), 
respectively. It then follows that also the maximal operator L1 is self-adjoint and semibounded 
in the Hilbert space L2(R; |r1|) and we again conclude from [12, Theorem 4.5] that the indefi-
nite Sturm–Liouville operator K1 is self-adjoint in the Krein space L2(R; r1) and that ρ(K1) is 
nonempty. Since

σess(H0,+) = σess(H1,+) and σess(−H0,−) = σess(−H1,−)

by (4.3) and [16, Theorem 2.1] we obtain σess(H0) = σess(H1) and in the same way as in the end 
of the proof of Theorem 2.5 a perturbation argument leads to σess(K0) = σess(K1), which finally 
shows (4.4). �

For the discrete spectrum of the operator K0 we obtain the following corollary as an immedi-
ate consequence of Theorem 3.1, Theorem 3.4 (see also Remark 3.5), and Theorem 4.1 (i). Note 
that the periodic operators ±H0,± have no discrete (real) eigenvalues and that in the present sit-
uation property (P) holds for points that satisfy λ+

k = μ−
l or μ+

k = λ−
l for some k, l ∈ N; these 

points are automatically in int(σess(K0)).

Corollary 4.2. Assume that Hypothesis 2.1 holds and suppose that 1/p0, q0, r0 are ω-periodic 
in (β, ∞) and θ -periodic in (−∞, α) for some ω, θ > 0. Then the following assertions hold.

(i) The nonreal spectrum of K0 consists of discrete eigenvalues with geometric multiplicity one 
which are contained in a compact subset of C and may only accumulate to points in

[λ+,μ+] ∩ [λ−,μ−], k, l ∈N.
k k l l
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Furthermore, the nonreal eigenvalues do not accumulate to points that satisfy λ+
k = μ−

l or 
μ+

k = λ−
l for some k, l ∈ N .

(ii) If λ+
k �∈ [λ−

l , μ−
l ] (μ+

k �∈ [λ−
l , μ−

l ]) for all l ∈ N , then the real discrete eigenvalues of K0

do not accumulate from the left at λ+
k (from the right at μ+

k , respectively). In particular, if 
μ−

1 < μ+
i , then (μ+

k , λ+
k+1) ∩ σess(K0) = ∅ for all k ≥ i and there are at most finitely many 

discrete eigenvalues of K0 in (μ+
k , λ+

k+1).
(iii) If λ−

l �∈ [λ+
k , μ+

k ] (μ−
l �∈ [λ+

k , μ+
k ]) for all k ∈ N , then the real discrete eigenvalues of K0

do not accumulate from the left at λ−
l (from the right at μ−

l , respectively). In particular, if 
λ−

j < λ+
1 , then (μ−

l+1, λ
−
l ) ∩ σess(K0) = ∅ for all l ≥ j and there are at most finitely many 

discrete eigenvalues of K0 in (μ−
l+1, λ

−
l ).

Note that the first statement in Corollary 4.2 (i) holds also for the perturbed operator K1 in 
Theorem 4.1 (ii); this follows directly from Theorem 3.1, Remark 3.5, and Theorem 4.1 (ii). 
However, in order to exclude accumulation of eigenvalues of K1 one has to impose a stronger 
“finite-first-moment” condition.

Theorem 4.3. Assume that Hypothesis 2.1 holds and suppose that 1/p0, q0, r0 are ω-periodic in 
(β, ∞) and θ -periodic in (−∞, α) for some ω, θ > 0. Assume, in addition, that∫

R

(
|r1(t) − r0(t)| +

∣∣∣∣ 1

p1(t)
− 1

p0(t)

∣∣∣∣ + |q1(t) − q0(t)|
)

|t |dt < ∞. (4.5)

Then the following assertions hold.

(i) The nonreal spectrum of K1 consists of discrete eigenvalues with geometric multiplicity one 
which are contained in a compact subset of C and may only accumulate to points in

[λ+
k ,μ+

k ] ∩ [λ−
l ,μ−

l ], k, l ∈N.

Furthermore, the nonreal eigenvalues do not accumulate to points that satisfy λ+
k = μ−

l or 
μ+

k = λ−
l for some k, l ∈ N .

(ii) If λ+
k �∈ [λ−

l , μ−
l ] (μ+

k �∈ [λ−
l , μ−

l ]) for all l ∈ N , then the real discrete eigenvalues of K1

do not accumulate from the left at λ+
k (from the right at μ+

k , respectively). In particular, if 
μ−

1 < μ+
i , then (μ+

k , λ+
k+1) ∩ σess(K1) = ∅ for all k ≥ i and there are at most finitely many 

discrete eigenvalues of K1 in (μ+
k , λ+

k+1).
(iii) If λ−

l �∈ [λ+
k , μ+

k ] (μ−
l �∈ [λ+

k , μ+
k ]) for all k ∈ N , then the real discrete eigenvalues of K1

do not accumulate from the left at λ−
l (from the right at μ−

l , respectively). In particular, if 
λ−

j < λ+
1 , then (μ−

l+1, λ
−
l ) ∩ σess(K1) = ∅ for all l ≥ j and there are at most finitely many 

discrete eigenvalues of K1 in (μ−
l+1, λ

−
l ).

Proof. Observe first that condition (4.5) implies (4.3) and hence the indefinite Sturm–Liouville 
operator K1 is self-adjoint in the Krein space L2(R; r1), the resolvent set ρ(K1) is nonempty, 
and the essential spectrum is given by (4.4). It follows from the condition (4.5) and [16, The-
orem 2.3] that every gap in σess(H1,+) and every gap in σess(−H1,−) contains at most finitely 
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many eigenvalues and hence the same is true for the operator H1. Therefore property (P) in The-
orem 3.1 (ii) holds for points that satisfy λ+

k = μ−
l or μ+

k = λ−
l for some k, l ∈ N and now (i) 

follows from Theorem 3.1. Furthermore, the same arguments as in the proof of Theorem 3.4
show that the discrete eigenvalues of K1 do not accumulate to boundary points λ+

k or μ+
k of 

the essential spectrum, where λ+
k �∈ [λ−

l , μ−
l ] or μ+

k �∈ [λ−
l , μ−

l ] for all l ∈ N . This implies (ii); 
assertion (iii) follows in the same way (see also the discussion below Corollary 4.2). �
Data availability

No data was used for the research described in the article.

Appendix A. Some facts on self-adjoint operators in Krein spaces

In this appendix we recall the concept of Krein spaces and some properties of certain classes 
of self-adjoint operators therein, which appear in this paper. We refer the interested reader to the 
monographs [1,21,32] for a thorough introduction to operator theory in Krein spaces.

In the following (K, (·, ·)) denotes a Hilbert space and J is a bounded self-adjoint operator in 
K with the property J 2 = I . Define a new inner product by

[x, y] := (Jx, y), x, y ∈ K.

Since σ(J ) ⊂ {−1, 1} we have the fundamental decomposition

K = K+ ⊕K−, where K± = ker(J ∓ 1).

Note that K+ and K− are also orthogonal with respect to [·, ·] and that the inner product [·, ·] is 
indefinite if K± �= {0}, that is, [·, ·] takes positive and negative values:

[x+, x+] > 0 and [x−, x−] < 0, x± ∈ K± \ {0}.

The space (K, [·, ·]) is then called a Krein space and the operator J is called fundamental sym-
metry. We mention that often Krein spaces are introduced by starting with an indefinite inner 
product and a fundamental decomposition, see [1,21,32].

Let (K, [·, ·]) be a Krein space and let A be a bounded or unbounded (with respect to the 
Hilbert space norm) operator in K. The adjoint A+ is defined via the indefinite inner product 
[·, ·] and one has A+ = JA∗J , where ∗ denotes the adjoint with respect to the Hilbert space 
scalar product (·, ·). It follows that A is self-adjoint with respect to (·, ·) if and only if JA is 
self-adjoint with respect to [·, ·]. It is important to note that the spectral properties of operators 
which are self-adjoint with respect to a Krein space inner product differ essentially from the ones 
of self-adjoint operators in Hilbert spaces, e.g., the spectrum is in general not real and may also 
coincide with C. However, the indefiniteness of the inner product [·, ·] can be used to further 
classify eigenvalues of operators in Krein spaces, e.g. an isolated point λ0 ∈ σp(A) is called 
of positive (negative) type if all corresponding eigenvectors x satisfy [x, x] > 0 ([x, x] < 0, 
respectively). This notion is extended to all points from the approximate point spectrum σap(A)

in the next definition. Recall that for a self-adjoint operator A in a Krein space all real spectral 
points belong to σap(A); cf. [21, Corollary VI.6.2].
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Definition A.1. For a self-adjoint operator A in the Krein space (K, [·, ·]) a point λ0 ∈ σ(A) is 
called a spectral point of positive (negative) type of A if λ0 ∈ σap(A) and every sequence (xn) in 
domA with ‖xn‖ = 1 and ‖(A − λ0)xn‖ → 0 as n → ∞ satisfies

lim inf
n→∞ [xn, xn] > 0

(
lim sup
n→∞

[xn, xn] < 0, respectively
)
.

Spectral theory in Krein spaces is often focusing on sign-type spectrum and further properties 
in a neighborhood of such spectral points. The following proposition is of this nature; for a proof 
see [56] and also [2,40].

Proposition A.2. Let A be a self-adjoint operator in the Krein space (K, [·, ·]) and let λ0 be a 
spectral point of positive type of A. Then λ0 is real, the non-real spectrum of A cannot accumu-
late to λ0, and there exists an open neighborhood U in C of λ0 such that the following statements 
hold.

(i) All spectral points in U ∩R are of positive type.
(ii) There exists a number M > 0 such that

‖(A − λ)−1‖ ≤ M

|Imλ| for all λ ∈ U \R.

(iii) There exists a local spectral function of A of positive type: To each interval δ with δ ⊂ U
there exists a self-adjoint projection E(δ) which commutes with A, the space (E(δ)K, [·, ·])
is a Hilbert space and σ(A|E(δ)K) ⊂ σ(A) ∩ δ.

An analogous statement holds for spectral points of negative type.

Roughly speaking, Proposition A.2 (iii) states that in a neighborhood of a spectral point of 
positive type A behaves (locally) like a self-adjoint operator in a Hilbert space. In what follows 
we present two classes of operators with the property that they have intervals with spectrum of 
positive or negative type: operators with finitely many squares and locally definitizable operators.

We shall say that a self-adjoint operator A in a Krein space (K, [·, ·]) has κ negative squares, 
κ ∈N ∪ {0}, if the hermitian form 〈·, ·〉 on domA, defined by

〈f,g〉 := [Af,g], f, g ∈ domA,

has κ negative squares, that is, there exists a κ-dimensional subspace M in domA such that 
〈v, v〉 < 0 if v ∈ M, v �= 0, but no κ +1 dimensional subspace with this property. In the following 
theorem we recall some spectral properties of self-adjoint operators with finitely many negative 
squares. The statements are well known and are consequences of the general results in [25,54,55], 
see also [18, Theorem 3.1]. In item (iv) below we shall use the notation R = R ∪ {∞} and 
C = C ∪ {∞}.

Theorem A.3. Let A be a self-adjoint operator in the Krein space (K, [·, ·]) such that ρ(A) �= ∅
and assume that A has κ negative squares. Then the following holds.
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(i) The nonreal spectrum of A consists of at most κ pairs {μi, μi}, Imμi > 0, of discrete 
eigenvalues. Denote for an eigenvalue λ of A the signature of the inner product [·, ·] on the 
algebraic eigenspace by {κ−(λ), κ0(λ), κ+(λ)}. Then∑

λ∈σp(A)∩(−∞,0)

(κ+(λ) + κ0(λ)) +
∑

λ∈σp(A)∩(0,∞)

(κ−(λ) + κ0(λ)) +
∑

i

κ0(μi) ≤ κ, (A.1)

and, if 0 �∈ σp(A), then equality holds in (A.1).
(ii) There are at most κ different real nonzero eigenvalues of A with corresponding Jordan 

chains of length greater than one. The length of each of these chains is at most 2κ + 1.
(iii) There exists a set � consisting of at most κ real eigenvalues of A such that all spectral points 

in (0, ∞) \� are of positive type and all spectral points in (−∞, 0) \� are of negative type 
with respect to A.

(iv) There exist an open neighborhood U of R in C and M > 0 such that

‖(A − λ)−1‖ ≤ M
(|λ| + 1)4κ+2

|Imλ|2κ+2 for all λ ∈ U \R.

(v) Let B be a self-adjoint operator in (K, [·, ·]) with ρ(A) ∩ ρ(B) �= ∅ and assume

dim
(
ran

(
(A − λ)−1 − (B − λ)−1)) = n0 < ∞

for some (and hence for all) λ ∈ ρ(A) ∩ ρ(B). Then B has ̃κ ≥ 0 negative squares, where 
|̃κ − κ| ≤ n0.

The second class of operators is the class of locally definitizable operators. They appeared 
first in a paper by H. Langer in 1967 [53] (without that name). Later, P. Jonas introduced the 
notion of locally definitizable operators, see, e.g., [38–40].

Definition A.4. Let � be a domain in C which is symmetric with respect to R and assume that 
� ∩R �= ∅ and the intersections with the open upper and lower half-plane are simply connected. 
Let A be a self-adjoint operator in the Krein space (K, [·, ·]) such that σ(A) ∩ (� \R) consists of 
isolated points which are poles of the resolvent of A, and no point of � ∩R is an accumulation 
point of the non-real spectrum of A. The operator A is called definitizable over � if the following 
holds.

(i) For every closed subset � of � ∩ R there exist an open neighborhood U of � in C and 
numbers m ≥ 1, M > 0 such that

‖(A − λ)−1‖ ≤ M
(|λ| + 1)2m−2

|Imλ|m for all λ ∈ U \R.

(ii) For every λ ∈ � ∩R there exists an open connected neighborhood Iλ in R and two disjoint 
open intervals I ′, I ′′ with Iλ \ {λ} = I ′ ∪ I ′′ and the following property: All spectral points in 
I ′ are either of positive or of negative type and all spectral points in I ′′ are either of positive 
or of negative type with respect to A.
175



J. Behrndt, P. Schmitz, G. Teschl et al. Journal of Differential Equations 405 (2024) 151–178
Obviously, Theorem A.3 implies that a self-adjoint operator in a Krein space with finitely 
many negative squares is definitizable over C. Operators definitizable over C are definitizable in 
the sense of H. Langer [55] (see also [40]), which is a well-studied class of operators in Krein 
spaces.

Roughly speaking, the property of an operator to be locally definitizable is stable under finite 
rank perturbations and the local sign type properties are preserved. A similar statement is valid 
for the accumulation of real discrete eigenvalues. This is the content of the next theorem from 
[4] and item (ii) from [10].

Theorem A.5. Let � be as in Definition A.4 and let A and B be self-adjoint operators in a Krein 
space (K, [·, ·]) with ρ(A) ∩ ρ(B) ∩ � �= ∅, and assume that for some λ0 ∈ ρ(A) ∩ ρ(B) the 
difference

(A − λ0)
−1 − (B − λ0)

−1

is a finite rank operator. Then the operator A is definitizable over � if and only if B is definitiz-
able over �; in this case the following holds.

(i) If I ⊂ � ∩ R is an open interval with boundary point λ ∈ � ∩ R and the spectral points 
in I are of positive (negative) type with respect to A, then there exists an open interval I ′, 
I ′ ⊂ I , with boundary point λ such that the spectral points in I ′ are of positive (negative, 
respectively) type with respect to B .

(ii) Let J be an open interval such that J ⊂ � ∩ R. Then σ(A) ∩ J consists of finitely many 
discrete eigenvalues if and only if σ(B) ∩ J consists of finitely many discrete eigenvalues.
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