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Abstract

The number of negative squares of all self-adjoint extensions of a simple symmetric
operator of defect one with finitely many negative squares in a Krein space is char-
acterized in terms of the behaviour of an abstract Titchmarsh-Weyl function near
0 and ∞. These results are applied to a large class of symmetric and self-adjoint
indefinite Sturm-Liouville operators with indefinite weight functions.
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1 Introduction

Let p−1, q, r ∈ L1
loc(R+) be real functions such that p > 0, r 6= 0 almost

everywhere and assume that the Sturm-Liouville differential expression

ℓ =
1

|r|

(
− d

dx

(
p
d

dx

)
+ q

)
(1.1)
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is regular at 0 and in the limit point case at +∞, that is, there exists a (up to
scalar multiples) unique solution u of ℓ(y) = λy which belongs to the Hilbert
space L2

|r|(R+) of measurable functions f satisfying |f |2|r| ∈ L1(R+). Then
the minimal operator

Tf = ℓ(f), domT =
{
f ∈ Dmax : f(0) = f ′(0) = 0

}
,

is symmetric in L2
|r|(R+) and has deficiency indices (1, 1). Here Dmax denotes

the usual maximal domain consisting of all functions f ∈ L2
|r|(R+) such that

f and pf ′ are absolutely continuous and ℓ(f) belongs to L2
|r|(R+). It is well

known that the maximal operator is given by T ∗f = ℓ(f), domT ∗ = Dmax,
and that all self-adjoint extensions of T in L2

|r|(R+) can be parametrized in
the form

Bτ = T ∗ ↾ domBτ , domBτ =
{
f ∈ Dmax : f ′(0) = τf(0)

}
, τ ∈ R,

where τ = ∞ corresponds to the Dirichlet boundary condition f(0) = 0. Let
λ0 ∈ C\R and denote by ϕ the unique solution of ℓ(y) = λ0y which belongs
to L2

|r|(R+) and satisfies ϕ(0) = 1. Then the spectral properties of B∞ can be
completely described with the help of the usual Titchmarsh-Weyl function m,
which admits the representation

m(λ) = Reϕ′(0) + (λ− Reλ0)(ϕ,ϕ) + (λ− λ0)(λ− λ0)
(
(B∞ − λ)−1ϕ,ϕ

)
.

Similarly, the complete spectral information of Bτ , τ ∈ R, is contained in the
function λ 7→ −(m(λ)− τ)−1, which, as well as m, belongs to the Nevanlinna
class and admits a similar representation with the help of the resolvent of Bτ .

In this paper we assume that the weight function r changes its sign and we
consider indefinite Sturm-Liouville differential expressions of the type

1

r

(
− d

dx

(
p
d

dx

)
+ q

)
(1.2)

instead of the differential expression (1.1). The minimal operator S associated
to (1.2) is defined in the same way as T with ℓ replaced by (1.2). Then S is
a symmetric operator in the Krein space L2

r(R+) = (L2
|r|(R+), [·, ·]), where the

indefinite inner product is defined by

[f, g] :=
∫ b

a
f(x)g(x)r(x) dx, f, g ∈ L2

|r|(R+).

The Krein space adjoint S+ coincides with the maximal operator and the self-
adjoint extensions Aτ , τ ∈ R, of S in L2

r(R+) can be parametrized in the same
way as the extensions Bτ of T . We emphasize that the spectral properties of
the self-adjoint extensions Aτ differ essentially from the spectral properties of
the self-adjoint operators Bτ in the Hilbert space L2

|r|(R+). For example, the

2



real spectrum of Aτ is not semibounded, nonreal spectrum can appear, and it
is not even known if the resolvent set ρ(Aτ ) is nonempty in general.

It was shown by B. Curgus and H. Langer in [6] that under some additional
assumptions on the symmetric operator S and the weight function r in a neigh-
borhood of the singular endpoint +∞ (see also Proposition 4.1 in Section 4)
all self-adjoint realizations Aτ , τ ∈ R, in L2

r(R+) have a nonempty resolvent
set and a finite number κτ of negative squares, that is, for some κτ ∈ N0 there
exists a κτ -dimensional subspace in domAτ , such that the hermitian form
[Aτ ·, ·] is negative definite on this subspace, but there is no κτ +1-dimensional
subspace with this property. The number of negative squares of indefinite
Sturm-Liouville operators is intimately connected with the signature of [·, ·]
in algebraic eigenspaces, and hence with sign properties of solutions of ho-
mogeneous differential equations, cf. Theorems 3.1 and 3.2 in Section 3. We
mention that self-adjoint operators with finitely many negative squares appear
in many applications (see e.g. [3,4,6–11,22–24]).

The main focus of the present paper is an exact description of the number of
negative squares of self-adjoint indefinite Sturm-Liouville operators in terms
of the local behaviour of an analogue of the Titchmarsh-Weyl function from
classical Sturm-Liouville theory. The functions that come into play here belong
to the classes Dκ, κ = 0, 1, 2, . . . , which were introduced by the authors in [3]
(see Definition 2.1 in Section 2) as subclasses of the definitizable functions,
cf. [20,21]. In the case that A∞ is the self-adjoint indefinite Sturm-Liouville
operator in L2

r(R+) corresponding to the Dirichlet boundary condition f(0) =
0 and A∞ has κ∞ ∈ N0 negative squares, then for λ0 ∈ ρ(A∞) and ψ ∈
ker(S+ − λ0), ψ(0) = 1, the (abstract) Weyl function or Q-function

M(λ) = Reψ′(0) + (λ− Reλ0)[ψ, ψ] + (λ− λ0)(λ− λ0)
[
(A∞ − λ)−1ψ, ψ

]
,

corresponding to the pair {S,A∞} turns out to belong to the class Dκ∞
, see

Proposition 4.8. As the function −(M(λ) − τ)−1, τ ∈ R, is represented with
the help of the resolvent of Aτ in an analogous form it can be shown that the
number of negative squares of Aτ coincides with the index of the Dκτ

-class to
which −(M(λ) − τ)−1 belongs.

Therefore we investigate the reciprocals of functions from the class Dκ in
Section 2. It will be shown that the index κ̃ of the reciprocal function can
differ at most by one from κ and the dependence of κ̃ will be exactly described
in terms of the behaviour of the Dκ-function in 0 and ∞. With the help of this
result we easily obtain a characterization of the number of negative squares of
the self-adjoint extensions of a simple symmetric operator of defect one with
finitely many negative squares in a Krein space, cf. Theorems 3.6 and 3.7 in
Section 3. We note that V. Derkach has obtained more general results with
different methods in [11]. In the special case that the symmetric operator is
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nonnegative P. Jonas and H. Langer characterized the canonical self-adjoint
extensions in [22].

The main objective of Section 4 is to apply the general results from Sections 2
and 3 to a large class of symmetric and self-adjoint Sturm-Liouville operators
with indefinite weight functions which correspond to differential expressions
of the form (1.2) on finite and infinite intervals.

In Section 4.3 the indefinite Sturm-Liouville differential expression (1.2) is
considered on an interval (a, b), where a is assumed to be regular and b is
either limit point or regular. Then the minimal operator S associated to (1.2)
is a symmetric operator in the Krein space L2

r((a, b)) and it will be shown
that S is simple, see Proposition 4.8. With the help of Theorems 3.6 and 3.7
the number of negative squares of the self-adjoint extensions Aτ , τ ∈ R, can
be precisely described in terms of the number of negative squares of A∞ and
the behaviour of the Weyl function M in 0 and ∞. For two simple examples
the Weyl function and the negative squares of all self-adjoint extensions are
calculated explicitely.

Special attention is paid to the differential expression sgn (·)(− d2

dx2 + q) on
R, where it is assumed that ±∞ are limit point, see Section 4.2 and also
[1,9,23,24] for similar problems. Then the minimal operator A0 is self-adjoint
in the Krein space L2

sgn (R) and can be regarded as a singular perturbation
of the direct sum A = A+ × A− of the self-adjoint realizations A+ and A−

of − d2

dx2 + q ↾R+
and d2

dx2 − q ↾R−
in the Hilbert spaces L2(R+) and L2(R−)

corresponding to Dirichlet boundary conditions at 0. If σ(A+) ∩ R− consists
of κ+ eigenvalues and σ(A−) ∩ R− consists of κ− eigenvalues, then A has
κ+ + κ− negative squares. Due to the special structure of the perturbation A
and A0 are both self-adjoint extensions of a symmetric differential operator
S of defect one in the Krein space L2

sgn (R). Under the additional assumption
σp(A+)∩σp(A−) = ∅ it will be shown that S is simple and hence the negative
squares of A can be characterized with the help of the general results from
Section 3.

2 Functions from the class Dκ and their reciprocals

The class of all functions τ which are piecewise meromorphic in C\R and
symmetric with respect to the real axis, that is τ(λ) = τ(λ), is denoted by
M(C\R). By C

+ (C−) we denote the open upper (resp. lower) half plane.
For the extended real line and the extended complex plane we write R and C,
respectively. For a function τ ∈M(C\R) the union of all points of holomorphy
of τ in C\R and all points λ ∈ R such that τ can be analytically continued to
λ and the continuations from C

+ and C
− coincide is denoted by h(τ).
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Let τ ∈M(C\R). We shall say that the growth of τ near R is of finite order if
there exist constants M,m > 0 and an open neighbourhood U of R in C such
that U\R ⊂ h(τ) and

|τ(λ)| ≤ M(1 + |λ|)2m

|Im λ|m

holds for all λ ∈ U\R. An open subset ∆ ⊂ R is said to be of positive type
with respect to τ if for every sequence (λn) ⊂ h(τ) ∩ C+ which converges in C

to a point of ∆ we have

lim inf
n→∞

Im τ(λn) ≥ 0.

An open subset ∆ ⊂ R is said to be of negative type with respect to τ if ∆ is
of positive type with respect to −τ .

If for some λ0 ∈ R the limit

lim
λ→̂λ0

τ(λ)

exists and is real we set τ(λ0) := limλ→̂λ0
τ(λ). Here λ→̂λ0 denotes the non-

tangential limit from C+. In this case, by the symmetry of τ , the nontangential
limit from C− exists and has the same value.

Let in the following the growth of τ ∈M(C\R) near R be of finite order. Let
α ∈ R and assume that there exists an open interval Iα, α ∈ Iα, such that
Iα\{α} is of positive type with respect to τ . Let να ≥ 0 be the smallest integer
such that

−∞ < lim
λ→̂α

(λ− α)2να+1τ(λ) ≤ 0.

Due to the finite order growth of τ near R such an integer να always exists.
If να > 0, then α is said to be a generalized pole of nonpositive type of τ with
multiplicity να. Assume that there exists a number k∞ > 0 such that (k∞,∞)
and (−∞,−k∞) are of positive type with respect to τ and let ν∞ ≥ 0 be the
smallest integer such that

0 ≤ lim
λ→̂∞

τ(λ)

λ2ν∞+1
<∞.

Again, such an integer ν∞ always exists. If ν∞ > 0, then ∞ is said to be a
generalized pole of nonpositive type of τ with multiplicity ν∞.

Let β ∈ R and assume that there exists an open interval Iβ, β ∈ Iβ, such that

Iβ\{β} is of positive type with respect to τ . Suppose that limλ→̂β
τ(λ)

(λ−β)
2γβ−1
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exists for some integer γβ ≥ 0 and let ηβ ≥ 0 be the largest integer such that

−∞ < lim
λ→̂β

τ(λ)

(λ− β)2ηβ−1
≤ 0.

If ηβ > 0, then β ∈ R is said to be a generalized zero of nonpositive type
of τ with multiplicity ηβ. Assume that there exists a number l∞ > 0 such
that (l∞,∞) and (−∞,−l∞) are of positive type with respect to τ , that
limλ→̂∞ λ2γ∞−1τ(λ) exists for some integer γ∞ ≥ 0 and let η∞ ≥ 0 be the
largest integer such that

0 ≤ lim
λ→̂∞

λ2η∞−1τ(λ) <∞.

If η∞ > 0, then ∞ is said to be a generalized zero of nonpositive type of τ with
multiplicity η∞.

The notions of generalized poles and generalized zeros of nonpositive type
appear often in the investigation of the classes Nκ, κ ∈ N0 = {0, 1, 2, . . . }, of
generalized Nevanlinna functions. Recall that a function G ∈M(C\R) belongs
to the class Nκ if the kernel NG,

NG(λ, µ) :=
G(λ) −G(µ)

λ− µ
,

has κ negative squares (see [25]). It follows from [20, Corollary 2.6] that a
function G ∈ M(C\R) is a generalized Nevanlinna function if and only if the
growth of G near R is of finite order and there exists a finite set e ⊂ R such
that R\e is of positive type with respect to G. The class N0 coincides with
the class of Nevanlinna functions. This class consists of functions which are
holomorphic in C

+ ∪ C
− and have a nonnegative imaginary part on C

+.

Note that G ∈ Nκ has poles in C+ and generalized poles of nonpositive type
in R∪{∞} of total multiplicity κ. Moreover, if G ∈ Nκ is not identically equal
to zero, then G has zeros in C

+ and generalized zeros of nonpositive type in
R ∪ {∞} of total multiplicity κ (cf. [26]).

Next we recall the definition of the class Dκ from [3]. These function will play
an important role throughout this paper.

Definition 2.1 A function τ ∈ M(C\R) belongs to the class Dκ, κ ∈ N0, if
there exists a point λ0 ∈ h(τ)\{∞}, a function G ∈ Nκ holomorphic in λ0 and
a rational function g holomorphic in C\{λ0, λ0} such that

λ

(λ− λ0)(λ− λ0)
τ(λ) = G(λ) + g(λ)

holds for all points λ where τ , G and g are holomorphic.

6



It was shown in [3] that the number κ in Definition 2.1 does not depend on the
choice of λ0 ∈ h(τ)\{∞}. We note that the classes Dκ, κ ∈ N0, are subclasses
the class of definitizable functions, see [20,21].

Example 2.2 The function

τ(λ) =





iλ, if λ ∈ C
+,

−iλ, if λ ∈ C−,

is not a generalized Nevanlinna function. We have

λ

λ2 + 1
τ(λ) =

λ

λ2 + 1
(τ(λ) + 1) − λ

λ2 + 1

and it is easy to see

Im

(
λ

λ2 + 1
(τ(λ) + 1)

)
> 0 for λ ∈ C

+.

Therefore τ belongs to the class D0. The set (0,∞) ((−∞, 0)) is of positive
type (resp. negative type) with respect to τ . Moreover, h(τ) contains no real
points and τ(0) exists.

In the next two theorems we show that for a function τ ∈ Dκ, κ ∈ N0, not
identically equal to zero it follows that − 1

τ
belongs to some class Dκ̃, where

κ̃ ∈ {κ− 1, κ, κ+ 1}, κ̃ ∈ N0, and we describe the number κ̃ in dependence of
the behaviour of the functions λ 7→ λ−1τ(λ) and λ 7→ λτ(λ) at the points 0
and ∞, respectively.

Theorem 2.3 Let τ ∈ Dκ, κ ≥ 1, be not identically equal to zero. Then

−1

τ
∈ Dκ̃, where κ̃ = κ+ ∆0 + ∆∞,

∆0 =





0, if 0 is not a generalized zero of nonpositive type of λ 7→ λτ(λ),

−1, if 0 is a generalized zero of nonpositive type of λ 7→ λτ(λ),

and

∆∞ =





1, if ∞ is not a generalized zero of nonpositive type of λ 7→ λ−1τ(λ),

0, if ∞ is a generalized zero of nonpositive type of λ 7→ λ−1τ(λ).

Proof. 1. According to Definition 2.1 we may choose λ0 ∈ C\R, λ0 ∈ h(τ),
such that τ(λ0) 6= 0 and a function G ∈ Nκ holomorphic in λ0 and a rational
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function g holomorphic in C\{λ0, λ0} such that

λ

(λ− λ0)(λ− λ0)
τ(λ) = G(λ) + g(λ)

holds for all points λ where τ , G and g are holomorphic. It follows that

g(λ) =
aλ2 + bλ+ c

(λ− λ0)(λ− λ0)
,

a, b, c ∈ R, has simple poles in λ0 and λ0, hence aλ2
0 + bλ0 + c 6= 0 and

aλ
2

0 + bλ0 + c 6= 0. Therefore g belongs to the generalized Nevanlinna class N1

and, as G is holomorphic in λ0, it follows that G + g ∈ Nκ+1. Denote by αj

(βi), j = 1, . . . , r (i = 1, . . . , s) the poles (zeros) in C+ and the generalized
poles (generalized zeros) of nonpositive type in R with multiplicities νj (ηi)
of G + g (cf. [26,29]). We set α1 = λ0 and ν1 = 1. Then we have αj 6= λ0 for
j = 2, . . . , r. By [16] (see also [13]) there exists a Nevanlinna function G0 such
that

G(λ) + g(λ) =

∏s
i=1(λ− βi)

ηi(λ− βi)
ηi

∏r
j=1(λ− αj)νj(λ− αj)νj

G0(λ),

where

max





s∑

i=1

ηi,
r∑

j=1

νj



 = κ+ 1.

Moreover, the difference

κ+ 1 −
s∑

i=1

ηi


κ+ 1 −

r∑

j=1

νj


 , (2.1)

if positive, is the order of ∞ as a generalized zero (pole, resp.) of nonpositive
type of G+ g. We define

Z(λ) :=
λ

(λ− λ0)(λ− λ0)

(
−1

τ(λ)

)
(2.2)

and we have

Z(λ) =
λ2

(λ− λ0)(λ− λ0)

∏r
j=2(λ− αj)

νj(λ− αj)
νj

∏s
i=1(λ− βi)ηi(λ− βi)

ηi

(
−1

G0(λ)

)
. (2.3)

Furthermore,

τ(λ)

λ
=

(λ− λ0)(λ− λ0)

λ2
(G(λ) + g(λ)) (2.4)
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and

λτ(λ) = (λ− λ0)(λ− λ0)(G(λ) + g(λ)) (2.5)

holds. Observe that λ 7→ λ−1τ(λ) and λ 7→ λτ(λ) have growth of finite order
near R.

2. Let us assume that ∞ is not a generalized zero of nonpositive type of the
function λ 7→ λ−1τ(λ). Then, by (2.4), it follows that ∞ is not a generalized
zero of nonpositive type of the function G+ g, that is, see (2.1),

r∑

j=2

νj <
s∑

i=1

ηi = κ+ 1.

If 0 is not a generalized zero of nonpositive type of the function λ 7→ λτ(λ),
then, by (2.5), we have that 0 is not a generalized zero of nonpositive type of
the function G + g, that is βi 6= 0, i = 1, . . . , s, and Z ∈ Nκ+2 follows. On
the other hand, if 0 is a generalized zero of nonpositive type of the function
λ 7→ λτ(λ), then, by (2.5), 0 is a generalized zero of nonpositive type of the
function G+ g and Z ∈ Nκ+1 follows.

3. We assume now that ∞ is a generalized zero of nonpositive type of the
function λ 7→ λ−1τ(λ). Then, by (2.4), ∞ is a generalized zero of nonpositive
type of the function G+ g, that is, see (2.1),

s∑

i=1

ηi <
r∑

j=1

νj = κ+ 1.

As ν1 = 1, we conclude

s∑

i=1

ηi ≤
r∑

j=2

νj = κ.

And, similarly as in step 2, if 0 is not a generalized zero of nonpositive type
of the function λ 7→ λτ(λ), then Z ∈ Nκ+1. If 0 is a generalized zero of
nonpositive type of the function λ 7→ λτ(λ), then Z ∈ Nκ.

4. We define a function r by

r(λ) =
1

λ0 − λ0


 −λ2

0

(λ− λ0)(aλ2
0 + bλ0 + c)

+
λ

2

0

(λ− λ0)(aλ
2

0 + bλ0 + c)


 (2.6)

Then the function Z−r is holomorphic at λ0 and λ0. Obviously the multiplicity
of the poles in C+\{λ0, λ0} of Z and Z − r coincide. Moreover α ∈ R is
a generalized pole of multiplicity να with respect to Z if and only if α is a
generalized pole of multiplicity να with respect to Z−r. Therefore the function
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Z− r belongs to the class Nκ+1 (Nκ or Nκ−1) if and only if Z belongs to Nκ+2

(Nκ+1 or Nκ, respectively). As

λ

(λ− λ0)(λ− λ0)

(
−1

τ(λ)

)
= Z(λ) = Z(λ) − r(λ) + r(λ) (2.7)

holds, Theorem 2.3 is proved. 2

Theorem 2.4 Let τ ∈ D0 be not identically equal to zero. Then

−1

τ
∈ D1

if and only if ∞ is not a generalized zero of nonpositive type of λ 7→ λ−1τ(λ)
and 0 is not a generalized zero of nonpositive type of λ 7→ λτ(λ), and

−1

τ
∈ D0

otherwise.

Proof. We choose λ0, G and g as in Theorem 2.3. Then G + g ∈ N1 and we
define Z as in (2.2).

1. Let us assume that ∞ is not a generalized zero of nonpositive type of
the function λ 7→ λ−1τ(λ). Then there exists a Nevanlinna function G0 and
β ∈ C+ ∪ R such that, by (2.3),

Z(λ) =
λ2

(λ− λ0)(λ− λ0)
· 1

(λ− β)(λ− β)

(
−1

G0(λ)

)
.

As in the proof of Theorem 2.3 we conclude that Z ∈ N2 if β 6= 0, i.e., if 0
is not a generalized zero of nonpositive type of the function λ 7→ λτ(λ) and
that Z ∈ N1 if β = 0, i.e. if 0 is a generalized zero of nonpositive type of the
function λ 7→ λτ(λ).

2. Let us assume that ∞ is a generalized zero of nonpositive type of the
function λ 7→ λ−1τ(λ). Then there exists a Nevanlinna function G0 such that

Z(λ) =
λ2

(λ− λ0)(λ− λ0)

(
−1

G0(λ)

)
,

hence Z ∈ N1.

3. Choose r as in (2.6). Then Z−r belongs to N1 (N0) if and only if Z belongs
to N2 (N1, respectively). Together with (2.7) Theorem 2.4 is proved. 2

The fact that for a function τ ∈ Dκ not identically equal to zero the function
− 1

τ
belongs to Dκ−1∪Dκ∪Dκ+1 (or to D0∪D1 if κ = 0) was already shown in
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[3, Theorem 9] with the help of a perturbation argument applied to a so-called
minimal self-adjoint representing operator or relation of the function τ .

Example 2.5 We consider the function

τ(λ) = λ2 + α,

where α ∈ R. Then τ,− 1
τ
∈ N1 and

λ−1τ(λ) = λ+ αλ−1, (2.8)

so that τ ∈ D0 follows. Moreover, equation (2.8) implies that ∞ is not a
generalized zero of nonpositive type of the function λ 7→ λ−1τ(λ). As 0 is a
generalized zero of nonpositive type of the function λ 7→ λτ(λ) if and only if
α ≤ 0, we obtain

−1

τ
∈





D1, if α > 0,

D0, if α ≤ 0.

3 Symmetric and self-adjoint operators with finitely many negative

squares

Let (K, [·, ·]) be a separable Krein space, let S be a densely defined linear
operator in K and denote the adjoint of S with respect to the Krein space inner
product [·, ·] by S+. We shall say that S is symmetric (self-adjoint) if S ⊂ S+

(resp. S = S+). In the following we are in particular interested in symmetric
and self-adjoint operators with finitely many negative squares. Recall that a
densely defined closed symmetric operator S has κ negative squares, κ ∈ N0,
if the hermitian form 〈·, ·〉 on domS, defined by

〈f, g〉 := [Sf, g], f, g ∈ domS,

has κ negative squares, that is, there exists a κ-dimensional subspace M in
domS such that 〈v, v〉 < 0 if v ∈ M, v 6= 0, but no κ+1 dimensional subspace
with this property. S is called nonnegative if S has κ = 0 negative squares.

Self-adjoint operators with finitely many negative squares and a nonempty
resolvent set belong to the class of definitizable operators introduced and
comprehensively studied by H. Langer in [27,28]. Recall that a self-adjoint
operator A in K is said to be definitizable if ρ(A) is nonempty and there exists
a polynomial p, p 6= 0, such that

[p(A)x, x] ≥ 0, x ∈ dom p(A),
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holds. A definitizable operator possesses a spectral function defined on the
ring generated by all connected subsets of R whose endpoints do not belong
to some finite set of so-called critical points (see [27,28]).

In the following theorem we recall some spectral properties of self-adjoint
operators with finitely many negative squares. The statements are well known
and are consequences of the general results in [27,28]. However, for the reader
not familiar with the spectral function of a definitizable operator we give a
short sketch of the proof.

Theorem 3.1 Let A be a self-adjoint operator in the Krein space (K, [·, ·]),
assume that ρ(A) is nonempty and that A has κ negative squares. Then the
following holds.

(i) The nonreal spectrum of A consists of at most κ pairs {µi, µi}, µi ∈ C+, of
eigenvalues with finite dimensional algebraic eigenspaces. Denote for an
eigenvalue λ of A the signature of the inner product [., .] on the algebraic
eigenspace by {κ−(λ), κ0(λ), κ+(λ)}. Then

∑

λ∈σp(A)∩(−∞,0)

(κ+(λ) + κ0(λ)) +
∑

λ∈σp(A)∩(0,∞)

(κ−(λ) + κ0(λ)) +
∑

i

κ0(µi) ≤ κ,

(3.1)

and, if 0 6∈ σp(A), then equality holds in (3.1).
(ii) There are at most κ different real nonzero eigenvalues of A with corre-

sponding Jordan chains of length greater than one. The length of each of
these chains is at most 2κ+ 1.

(iii) Let B be a self-adjoint operator in (K, [·, ·]) with ρ(A) ∩ ρ(B) 6= ∅ and
assume

dim
(
ran

(
(A− λ)−1 − (B − λ)−1

))
= n0 <∞

for some (and hence for every) λ ∈ ρ(A) ∩ ρ(B). Then B has κ̃ ≥ 0
negative squares, where |κ̃− κ| ≤ n0.

Proof. By [28] there exists a definitizing polynomial p for A which is non-
negative on (0,∞), nonpositive on (−∞, 0) and each λ ∈ σp(A) ∩ (0,∞)
(λ ∈ σp(A) ∩ (−∞, 0)) with κ−(λ) + κ0(λ) > 0 (κ0(λ) + κ+(λ) > 0, respec-
tively) is a zero of p. Let EA be the spectral function of A (cf. [28]) and choose
[a, b] ⊂ (0,∞) such that [a, b] contains exactly one zero λ of the definitizing
polynomial p. Then (EA([a, b])K, [., .]) is a Pontryagin space and the rank of
negativity is κ−(λ) + κ0(λ), see [28]; an analogous statement holds for the
negative zeros of p. Moreover, the algebraic eigenspace corresponding to a
nonreal eigenvalue µi is neutral with respect to [., .] and the rank of negativity
of (EA({µi, µi})K, [., .]) is κ0(µi). Using the Riesz-Dunford calculus, we define
a square root of the operator

A ↾ (EA([a, b])K).
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Using this square root, it follows easily that the forms [., .] and [A ., .] restricted
to the spectral subspace EA([a, b])K have the same number of negative squares.
A similar argument shows that the number of negative squares of the forms
[., .] and [A ., .] restricted to the spectral subspace EA({µi, µi})K coincide. This
implies (i).

The assertions of (ii) follow from the reasoning above and the fact that the first
κ+ 1 elements of a Jordan chain of length 2κ+ 2 span a (κ+ 1)-dimensional
neutral subspace, κ ≥ 0.

In order to verify (iii) note that

T := A ↾
{
x ∈ domA ∩ domB : Ax = Bx

}

is a (in general nondensely defined) closed symmetric operator in K with the
property dim(graphA/graphT ) = n0. This implies that the hermitian form
[T ·, ·] on domT has κ′ ∈ {κ − n0, . . . , κ} negative squares and as B is an
n0-dimensional self-adjoint extension of T the assertion follows. 2

The next theorem on invariant subspaces and similarity to self-adjoint opera-
tors in Hilbert spaces follows from the general results in [5] and [28].

Theorem 3.2 Let A be a self-adjoint operator in (K, [·, ·]) with κ negative
squares and

(0, α) ⊂ ρ(A) or (−α, 0) ⊂ ρ(A)

for some α > 0. Assume dim kerA < ∞ and assume that there exists a
bounded and boundedly invertible operator W with [Wx, x] ≥ 0, x ∈ K, and
WdomA ⊂ domA.

Then K decomposes into the direct sum of two A-invariant closed subspaces
K′ and K′′ which are orthogonal with respect to [., .] and (K′, [., .]), (K′′,−[., .])
are Pontryagin spaces with finite rank of negativity. If, in addition, A has no
Jordan chains of length greater than one and σp(A) ∩ σess(A) = ∅ holds, then
A is similar to a self-adjoint operator in a Hilbert space.

We assume in the following that S is a densely defined closed symmetric
operator in the Krein space K which is of defect one, that is, there exists a
self-adjoint extension A′ in K such that dim(graphA′/graphS) = 1. If, in
addition S has κ negative squares, then it is obvious that each self-adjoint
extension A of S in K has κ or κ+ 1 negative squares. Our aim is to describe
the number of negative squares of the self-adjoint extensions of S in terms of
an abstract boundary condition and an abstract analogue of the Titchmarsh-
Weyl function from Sturm-Liouville theory, see Theorem 3.6 below. For this
we first briefly recall the notions of boundary triplets and associated Weyl
functions.

13



Definition 3.3 Let S be a densely defined closed symmetric operator of defect
one in the Krein space (K, [·, ·]). We say that {C,Γ0,Γ1} is a boundary triplet
for S+ if there exist linear mappings Γ0,Γ1 : domS+ → C such that

[S+f, g] − [f, S+g] = Γ1f Γ0g − Γ0f Γ1g

holds for all f, g ∈ domS+ and the mapping (Γ0,Γ1)
⊤ : domS+ → C2 is

surjective.

For basic facts on boundary triplets and further references, see, e.g., [11,12,14,15].
We recall only a few important facts. Let S be a densely defined closed sym-
metric operator of defect one in the Krein space K. Then a boundary triplet
{C,Γ0,Γ1} for S+ always exists, but is not unique. All self-adjoint extensions
Aτ of S in K can be characterized by

Aτ :=




S+ ↾ ker(Γ1 − τΓ0), if τ ∈ R,

S+ ↾ ker Γ0, if τ = ∞.
(3.2)

For brevity we shall sometimes write Aτ = S+ ↾ ker(Γ1 − τΓ0), τ ∈ R, instead
of relation (3.2). Moreover, we will usually write A instead of A∞, that is,
A = A∞ = S+ ↾ ker Γ0.

For a point λ of regular type of S we set Nλ := ker(S+ − λ). In the following
we will assume that the self-adjoint operator A = S+ ↾ ker Γ0 has a nonempty
resolvent set. Then the functions

λ 7→ γ(λ) :=
(
Γ0 ↾Nλ

)−1
and λ 7→M(λ) := Γ1

(
Γ0 ↾Nλ

)−1
, λ ∈ ρ(A),

are well defined and holomorphic on ρ(A), they are called the γ-field and the
Weyl function corresponding to S and the boundary triplet {C,Γ0,Γ1}, see
[11]. The γ-field and Weyl function satisfy

γ(λ) =
(
1 + (λ− µ)(A− λ)−1

)
γ(µ) λ, µ ∈ ρ(A), (3.3)

and

M(λ) −M(µ) = (λ− µ)γ(µ)+γ(λ), λ, µ ∈ ρ(A),

and it follows that

M(λ) = ReM(λ0) + γ(λ0)
+
(
(λ− Reλ0) + (λ− λ0)(λ− λ0)(A− λ)−1

)
γ(λ0)

holds for any fixed λ0 ∈ ρ(A) and all λ ∈ ρ(A). The Weyl function can be used
to describe the spectral properties of the extensions Aτ , τ ∈ R. We mention
only that a point λ ∈ ρ(A) belongs to ρ(Aτ ), τ ∈ R, if and only if M(λ) 6= τ ,
and that

(Aτ − λ)−1 = (A− λ)−1 + γ(λ)
(
τ −M(λ)

)−1
γ(λ)+
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holds for all λ ∈ ρ(A) ∩ ρ(Aτ ).

Now we focus on the special case of symmetric and self-adjoint operators
with finitely many negative squares. In the following a densely defined closed
symmetric operator S of defect one with finitely many negative squares is said
to be simple if there exists a self-adjoint extension A′ of S with a nonempty
resolvent set such that the condition

K = clsp
{
Nλ : λ ∈ ρ(A′)

}
(3.4)

holds. The following proposition (cf. [6, Proposition 1.1]) together with Runge’s
theorem shows that relation (3.4) does not depend on the choice of A′.

Proposition 3.4 Let S be a densely defined closed symmetric operator of
defect one in K with finitely many negative squares and assume that there
exists a self-adjoint extension A′ of S with a nonempty resolvent set. Then
every self-adjoint extension of S has a nonempty resolvent set and finitely
many negative squares.

The statements in the next proposition can be found in [3, Lemma 7] and [21,
Theorem 1.12 and § 3].

Proposition 3.5 Let S be a densely defined closed symmetric operator of
defect one in K and let {C,Γ0,Γ1} be a boundary triplet for S+ with Weyl
function M . Assume that A = S+ ↾ ker Γ0 has finitely many negative squares
and a nonempty resolvent set and that S is simple. Then the following holds.

(i) A has κ negative squares if and only if M belongs to the class Dκ,
(ii) ρ(A) = h(M)\{∞},
(iii) λ is a pole of multiplicity ν of M if and only if λ is an isolated eigenvalue

of A with dim(ranEA({λ})) = ν.

Now we use Theorem 2.3 in order to give a characterization of the number of
negative squares of the self-adjoint extensions of a simple symmetric operator
of defect one with finitely many negative squares. We note that V. Derkach
has obtained more general results in [11] with different methods and that
the statements in Theorem 3.6 and Theorem 3.7 can be deduced from [11,
Corollary 5.1]. Recall, that for a function τ from some class Dκ we write τ(λ0),
λ0 ∈ R, if the nontangential limit limλ→̂λ0

τ(λ) from the upper halfplane exists
and is real (see Section 2). If Im (limλ→̂λ0

τ(λ)) 6= 0 or limλ→̂λ0
τ(λ) does not

exist we shall say that τ(λ0) does not exist.

Theorem 3.6 Let S be a densely defined closed simple symmetric operator of
defect one in the Krein space K and let {C,Γ0,Γ1} be a boundary triplet for
S+. Assume that A = S+ ↾ ker Γ0 has κ ≥ 1 negative squares and a nonempty
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resolvent set, let

Aτ = S+ ↾ ker
(
Γ1 − τΓ0

)
, τ ∈ R,

and denote the Weyl function corresponding to {C,Γ0,Γ1} by M . If M(0) or
M(∞) does not exist, we set M(0) := ∞ and M(∞) := −∞, respectively.
Then

Aτ has κ̃ = κ+ ∆0 + ∆∞ negative squares,

where

∆0 =





0, if τ < M(0),

−1, otherwise,
and ∆∞ =





1, if M(∞) < τ,

0, otherwise.

Proof. The operator S has defect one, hence all self-adjoint extensions Aτ ,
τ ∈ R, of S in K have κ′ ∈ {κ−1, κ, κ+1} negative squares. By Proposition 3.4
we have ρ(Aτ ) 6= ∅ for all τ ∈ R and the nonreal spectrum of Aτ consists only
of finitely many eigenvalues, see Theorem 3.1(i).

It is easy to see that {C,Γ1 − τΓ0,−Γ0}, τ ∈ R, is a boundary triplet for S+

with corresponding γ-field γτ and Weyl function Mτ given by

γτ (λ) = γ(λ)(M(λ) − τ)−1, λ ∈ ρ(A) ∩ ρ(Aτ ),

and

Mτ (λ) = −(M(λ) − τ)−1, λ ∈ ρ(A) ∩ ρ(Aτ ),

respectively. Note that ρ(A) ∩ ρ(Aτ ) = (h(M) ∩ h((M − τ)−1))\{∞} holds.
Since

K = clsp
{
Nλ : λ ∈ ρ(A)

}
= clsp

{
Nλ : λ ∈ ρ(A) ∩ ρ(Aτ )

}

we can apply Proposition 3.5(i), so that, Mτ belongs to the class Dκ̃ if and
only if Aτ = S+ ↾ ker(Γ1 − τΓ0) has κ̃ negative squares.

In order to determine the class Dκ̃ to which Mτ belongs we use Theorem 2.3.
By our assumptions on A and Proposition 3.5(i) the functions M and M − τ
belong to the class Dκ. Assume first that the function λ 7→ M(λ) admits a
continuation into the points 0 and ∞ such that

M(0) = lim
λ→̂0

M(λ) and M(∞) = lim
λ→̂∞

M(λ)

are real. Then 0 is a generalized zero of nonpositive type of the function

λ 7→ λ(M(λ) − τ) (3.5)
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if and only if M(0) ≤ τ . Moreover, ∞ is a generalized zero of nonpositive type
of the function

λ 7→ 1

λ
(M(λ) − τ) (3.6)

if and only if τ ≤M(∞). Hence we conclude from Theorem 2.3 that

Mτ ∈ Dκ̃, where κ̃ = κ+ ∆0 + ∆∞,

∆0 =





0, if τ < M(0),

−1, otherwise,
and ∆∞ =





1, if M(∞) < τ,

0, otherwise,

and Proposition 3.5(i) implies the statements of Theorem 3.6.

In the case that limλ→̂∞M(λ) does not exist, or, if it exists, it is nonreal,
it is clear that the function in (3.6) has no generalized zero of nonpositive
type in ∞. Thus, if M(0) exists and is real, we have Mτ ∈ Dκ+1 if and only
if τ < M(0) and Mτ ∈ Dκ otherwise. If limλ→̂0M(λ) does not exist, or, if it
exists, it is nonreal, it is clear that the function in (3.5) has no generalized zero
of nonpositive type in 0. Thus, if M(∞) exists and is real, we have Mτ ∈ Dκ+1

if and only if M(∞) < τ and Mτ ∈ Dκ otherwise. Finally, if limλ→̂∞M(λ)
and limλ→̂0M(λ) do not exist or are nonreal Theorem 2.3 implies Mτ ∈ Dκ+1

for all τ ∈ R. Together with Proposition 3.5(i) this proves Theorem 3.6. 2

For the special case thatA is nonnegative P. Jonas and H. Langer characterized
the negative squares of the canonical self-adjoint extensions of A in [22]. As a
consequence of Theorem 2.4 we obtain the following result.

Theorem 3.7 Let S be a densely defined closed simple symmetric operator of
defect one in the Krein space K and let {C,Γ0,Γ1} be a boundary triplet for
S+. Assume that A = S+ ↾ ker Γ0 is nonnegative and that ρ(A) is nonempty,
let

Aτ = S+ ↾ ker
(
Γ1 − τΓ0

)
, τ ∈ R,

and denote the Weyl function corresponding to {C,Γ0,Γ1} by M . If M(0) or
M(∞) does not exist, we set M(0) := ∞ and M(∞) := −∞, respectively.
Then Aτ has one negative square if and only if

M(∞) < τ < M(0)

and Aτ is a nonnegative operator otherwise.
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4 Sturm-Liouville operators with an indefinite weight

In this section we show that the general results from the previous sections can
be applied to a large class of symmetric and self-adjoint Sturm-Liouville oper-
ators with indefinite weight functions and we discuss some explicit examples.

4.1 Indefinite Sturm-Liouville differential expressions

Let −∞ ≤ a < b ≤ ∞ and assume that r ∈ L1
loc((a, b)) is a real valued

function on (a, b) such that r 6= 0 almost everywhere and that the sets

∆+ := {x ∈ (a, b) : r(x) > 0} and ∆− := {x ∈ (a, b) : r(x) < 0}

have positive Lebesgue measure. By L2
|r|((a, b)) we denote the space of all

equivalence classes of measurable functions f defined on (a, b) for which

∫ b

a
|f(x)|2|r(x)|dx

is finite. We equip L2
|r|((a, b)) with the indefinite inner product

[f, g] :=
∫ b

a
f(x)g(x)r(x)dx, f, g ∈ L2

|r|((a, b)),

and denote the corresponding Krein space (L2
|r|((a, b)), [·, ·]) by L2

r((a, b)). A

fundamental symmetry in L2
r((a, b)) is given by (Jf)(x) := (sgn r(x))f(x),

f ∈ L2
r((a, b)), and the corresponding fundamental decomposition is

L2
r((a, b)) = K+[+̇]K−, K+ := L2

|r|(∆+), K− := L2
|r|(∆−). (4.1)

Note that [J ·, ·] coincides with the usual Hilbert scalar product

(f, g) :=
∫ b

a
f(x)g(x)|r(x)| dx, f, g ∈ L2

|r|((a, b)),

on L2
|r|((a, b)).

Let p−1, q ∈ L1
loc((a, b)) be real valued functions and assume p > 0 almost

everywhere. In the following we consider the indefinite Sturm-Liouville differ-
ential expression

1

r

(
− d

dx

(
p
d

dx

)
+ q

)
(4.2)
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and we define different operators in the Krein space L2
r((a, b)) associated with

this differential expression. We shall say that the boundary point a (b) is
regular if −∞ < a (b < ∞, respectively) and for one (and hence for all)
c ∈ (a, b) the functions p−1, q, r belong to L1((a, c)) (L1((c, b)), respectively).
If the endpoint a (b) is not regular, then we say that a (b, respectively) is
singular.

The maximal operator associated to (4.2) is denoted by Tmax,

Tmaxf =
1

r

(
−(pf ′)′ + qf

)
, domTmax = Dmax, (4.3)

where Dmax is the maximal domain in L2
r((a, b)) defined by

Dmax :=
{
f ∈ L2

|r|((a, b)) : f, pf ′ ∈ AC((a, b)), 1
|r|

(−(pf ′)′ + qf) ∈ L2
|r|((a, b))

}
.

Here AC((a, b)) is the linear space of absolutely continuous functions on (a, b).

Later we will consider several situations where the self-adjoint operators as-
sociated to (4.2) turn out to have a finite number of negative squares. We
remark that this is in general not true, see e.g. [1,2]. The next proposition
is an immediate consequence of Propositions 2.2-2.5 from [6] for the case of
second order differential operators. It states that under suitable assumptions
all self-adjoint restrictions of Tmax have finitely many negative squares.

Proposition 4.1 Assume that A ⊆ Tmax is a self-adjoint operator in the
Krein space L2

r((a, b)). Then the following holds.

(i) If a and b are regular, then A has a finite number of negative squares and
ρ(A) is nonempty.

(ii) If a (or b) is singular and there exists a′ ∈ (a, b) (or b′ ∈ (a, b)) such
that the hermitian form [A·, ·] is positive on all f ∈ domA which van-
ish outside of (a, a′) (or (b′, b)) and r is of constant sign a.e. on (a, a′)
(or (b′, b)), then A has a finite number of negative squares and ρ(A) is
nonempty.

4.2 A singular indefinite Sturm-Liouville operator on R

In this subsection we consider the special case (a, b) = (−∞,∞) and r(x) =
sgn (x). Moreover we assume for simplicity p(x) = 1 although this is not es-
sential in the following investigations. In other words, we study the differential
expression

sgn (·)
(
− d2

dx2
+ q

)
(4.4)
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in the Krein space L2
sgn (R) with q ∈ L1

loc(R) real. We choose J = sgn (·) as
a fundamental symmetry. Then, by (4.1), K± = L2(R±), where R+ = (0,∞)
and R− = (−∞, 0). In the following it will be assumed that the differential
expression

− d2

dx2
+ q (4.5)

is in the limit point case at +∞ and −∞, that is, for all λ ∈ C\R the homo-
geneous equation −f ′′ + qf = λf has (up to scalar multiples) unique solutions
ϕλ,∞, ϕλ,−∞ such that ϕλ,∞ ∈ L2((c+,∞)) and ϕλ,−∞ ∈ L2((−∞, c−)) for
some (and hence for all) c+, c− ∈ R.

In the following we write A0 for the maximal operator Tmax from (4.3) and
(4.4), this notation will become clear later in Proposition 4.4. Obviously JA0,
domA0 = Dmax, coincides with the maximal operator associated to the dif-
ferential expression (4.5) in the Hilbert space L2(R), which is self-adjoint in
L2(R), see, e.g., [17,30,31]. This implies that A0 is self-adjoint in the Krein
space L2

sgn (R) and hence we have proved the following proposition.

Proposition 4.2 Assume that the differential expression (4.5) is in the limit
point case at ±∞. Then the maximal operator

(A0f)(x) = sgn (x)
(
−f ′′(x) + (qf)(x)

)
, domA0 = Dmax,

is self-adjoint in the Krein space L2
sgn (R).

In the following we identify functions f ∈ L2(R) with elements {f+, f−}, where
f± := f ↾R±

∈ L2(R±). Similarly we write q = {q+, q−}, q± ∈ L1
loc(R±). Note

that the differential expressions

− d2

dx2
+ q+ and

d2

dx2
− q−

in L2(R+) and L2(R−) are both regular at the endpoint 0 and in the limit
point case at the singular endpoint +∞ and −∞, respectively. Therefore the
operators

A+f+ = −f ′′
+ + q+f+ and A−f− = f ′′

− − q−f− (4.6)

defined on

domA± =
{
f± ∈ Dmax,± : f±(0) = 0

}
, (4.7)

with

Dmax,+ =
{
f+ ∈ L2(R+) : f+, f

′
+ ∈ AC(R+), −f ′′

+ + q+f+ ∈ L2(R+)
}
,

Dmax,− =
{
f− ∈ L2(R−) : f−, f

′
− ∈ AC(R−), f ′′

− − q−f− ∈ L2(R−)
}
,
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are self-adjoint in the Hilbert spaces L2(R+) and L2(R−), respectively, cf.
[17,30,31]. We agree to denote the spectral function of A± by EA±

. It is clear
that

(Af)(x) := sgn (x)
(
−f ′′(x) + (qf)(x)

)

=
{
−f ′′

+(x) + (q+f+)(x), f ′′
−(x) − (q−f−)(x)

}
,

domA :=
{
f = {f+, f−} : f± ∈ domA±

}
,

(4.8)

is self-adjoint in the Krein space L2
sgn (R). Here A is the diagonal block operator

matrix with entries A+ and A− with respect to the fundamental decomposi-
tion L2(R+)[+̇]L2(R−) of L2

sgn (R) and, hence, A is a fundamentally reducible
operator in L2

sgn (R), cf. e.g. [19, Section 3].

Proposition 4.3 Assume that the differential expression (4.5) is in the limit
point case at ±∞ and let κ ∈ N0. Then the operator A in (4.8) has κ negative
squares if and only if

κ = dim
(
ranEA+

((−∞, 0))
)

+ dim
(
ranEA−

((0,∞))
)
. (4.9)

In this case, the operator A0 has κ′ ≥ 0 negative squares, where |κ′ − κ| ≤ 1.

Proof. It follows from the definition of the operator A and from

[Af, f ] = (A+f+, f+) − (A−f−, f−), f = {f+, f−} ∈ domA,

that A has κ negative squares if and only if κ satisfies (4.9). The operator

(Sf)(x) := sgn (x)
(
−f ′′(x) + (qf)(x)

)

=
{
−f ′′

+(x) + (q+f+)(x), f ′′
−(x) − (q−f−)(x)

}
,

domS :=
{
f = {f+, f−} : f± ∈ Dmax,±, f±(0) = 0, f ′

+(0) = f ′
−(0)

}
,

(4.10)

is a closed densely defined symmetric operator in L2
sgn (R) which has defect

one and A is a self-adjoint extensions of S with a nonempty resolvent set.
Furthermore, since

domA0 =
{
f = {f+, f−} : f± ∈ Dmax,±, f+(0) = f−(0), f ′

+(0) = f ′
−(0)

}

also A0 is a self-adjoint extensions of S and ρ(A0) is nonempty by Proposi-
tion 3.4. Hence, for λ ∈ ρ(A) ∩ ρ(A0),

dim
(
ran

(
(A0 − λ)−1 − (A− λ)−1

))
= 1

together with Proposition 3.1(iii) implies that A0 has κ′ ∈ {κ − 1, κ, κ + 1},
κ′ ≥ 0, negative squares. 2
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In the following we will assume that the condition

dim
(
ranEA+

((−∞, 0))
)

+ dim
(
ranEA−

((0,∞))
)
<∞ (4.11)

is satisfied, i.e., the self-adjoint operator A+ is semibounded from below and
the self-adjoint operator A− is semibounded from above, and σ(A+)∩(−∞, 0)
and σ(A−) ∩ (0,∞) consist of finitely many eigenvalues (which here neces-
sarily have multiplicity one). Note that in particular the eigenvalues do not
accumulate to 0 from the negative half-axis (positive half-axis, respectively).
Condition (4.11) is satisfied if e.g. limx→±∞ q±(x) > 0 or q± vanish in a neigh-
bourhood of ±∞, see, e.g., [30]. Moreover we remark that condition (4.11) is
independent of the choice of the self-adjoint boundary condition in domA± in
the sense that f±(0) = 0 could be replaced by f±(0) = α±f

′
±(0) for any real

constant α±.

In the next proposition we choose a boundary triplet {C,Γ0,Γ1} for the adjoint

(S+f)(x) = sgn (x)
(
−f ′′(x) + (qf)(x)

)

=
{
−f ′′

+(x) + (q+f+)(x), f ′′
−(x) − (q−f−)(x)

}
,

domS+ =
{
f = {f+, f−} : f± ∈ Dmax,±, f+(0) = f−(0)

}
,

(4.12)

of the symmetric operator S in (4.10) such that A and A0 are the self-adjoint
extensions with domain ker Γ0 and ker Γ1, respectively. The proof is straight-
forward and will be omitted.

Proposition 4.4 Let S be the symmetric operator from (4.10) and let A and
A0 be as above. Then {C,Γ0,Γ1}, where

Γ0f := f+(0) and Γ1f := f ′
+(0) − f ′

−(0), (4.13)

f = {f+, f−} ∈ domS+, is a boundary triplet for S+ such that A = S+ ↾ ker Γ0

and A0 = S+ ↾ ker Γ1 holds.

In the following we will express the Weyl function M corresponding to S and
the boundary triplet {C,Γ0,Γ1} in Proposition 4.4 in terms of Weyl functions
of the symmetric operators

T+f+ = −f ′′
+ + q+f+ and T−f− = f ′′

− − q−f− (4.14)

in L2(R±) defined on

domT± =
{
f± ∈ Dmax,± : f±(0) = f ′

±(0) = 0
}
,

corresponding to the boundary triplets

{C, f+ 7→ f+(0), f+ 7→ f ′
+(0)} and {C, f− 7→ f−(0), f− 7→ f ′

−(0)}, (4.15)
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f± ∈ Dmax,±, respectively. Here the adjoint operators T ∗
± in L2(R±) are the

usual maximal operators defined on Dmax,±. Note that the operators A± are
self-adjoint extensions of T± in L2(R±) corresponding to the first boundary
mappings Dmax,± ∋ f± 7→ f±(0). The Weyl functions m+ and m− corrspond-
ing to T+ and T− and the boundary triplets in (4.15) are scalar Nevanlinna
functions and it follows from (4.11) that m+ and m− have at most finitely
many poles in R− and R+, respectively.

Remark 4.5 If ϕλ,+, ψλ,+ and ϕλ,−, ψλ,− denote the fundamental solutions
of the differential equations −f ′′

+ + q+f+ = λf+ and f ′′
− − q−f− = λf−, λ ∈ C,

satisfying

ϕλ,±(0) = ψ′
λ,±(0) = 1 and ϕ′

λ,±(0) = ψλ,±(0) = 0,

then for each λ ∈ C\R

x 7→ ϕλ,±(x) +m±(λ)ψλ,±(x) ∈ L2(R±)

holds, i.e. the functions m± coincide with the classical Titchmarsh-Weyl func-
tions or Titchmarsh-Weyl coefficients of the differential expressions − d2

dx2 +q+
and d2

dx2 − q−.

In order to ensure that the symmetric operator S in (4.10) is simple we assume
in the following that A+ and A− have no common eigenvalues.

Proposition 4.6 Let S and {C,Γ0,Γ1} be as in (4.10) and Proposition 4.4,
and let m± be the Weyl functions of the boundary triplets in (4.15). Assume
that the operators A+ and A− in (4.6)-(4.7) satisfy σp(A+)∩σp(A−) = ∅, and
that (4.11) is true. Then the following holds.

(i) The operator S is simple.
(ii) The Weyl function corresponding to {C,Γ0,Γ1} is M = m+ −m−.
(iii) M belongs to the class Dκ, where κ is given by (4.9).

Proof. (i) The operators T+ and T− have deficiency indices (1, 1). Denote by
fλ,+ and fλ,−, λ ∈ C\R, a nonzero vector in ker(T ∗

+ − λ) and ker(T ∗
− − λ),

respectively. By [18, Theorem 3] the operators T± are simple, so that

L2(R+) = clsp
{
fλ,+ : λ ∈ C\R

}
and L2(R−) = clsp

{
fλ,− : λ ∈ C\R

}

hold and we have

L2
sgn (R) = clsp

{
{fλ,+, 0}, {0, fλ,−} : λ ∈ C\R

}
. (4.16)

Let µ ∈ C\R and set, for simplicity,

H := clsp
{
ker(S+ − λ) : λ ∈ C\R

}
.
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We will show
{fµ,+, 0} ∈ H.

Denote by gµ = {gµ,+, gµ,−} a nonzero vector in ker(S+ − µ), µ ∈ C\R. Then,
by (3.3),

(
1 + (λ− µ)(A− λ)−1

)
gµ ∈ ker(S+ − λ), λ ∈ C\R,

where A is defined as in (4.8). Hence

(
1+(λ− µ)(A− λ)−1

)
gµ =

=
{(

1 + (λ− µ)(A+ − λ)−1
)
gµ,+,

(
1 + (λ− µ)(A− − λ)−1

)
gµ,−

}
.

This gives

H = clsp
{(

1 + (λ− µ)(A− λ)−1
)
gµ : λ ∈ C\R

}

= clsp
{
{gµ,+, gµ,−}, {(A+ − λ)−1gµ,+, (A− − λ)−1gµ,−} : λ ∈ C\R

}
.

(4.17)

We consider only the special case (−∞, 0) ⊂ ρ(A+), 0 6∈ σp(A+), λ0 ∈
σp(A−)\σp(A+) for some λ0 > 0 and (0,∞)\{λ0} ⊂ ρ(A−). The slightly more
general case σp(A+) ∩ σp(A−) = ∅ can be treated very similarly, and we leave
this to the reader.

For fµ,+ there exits α ∈ C with fµ,+(0) = αfµ,−(0), that is, by (4.12),
{fµ,+, αfµ,−} ∈ ker(S+ − µ). For arbitrary M > λ0, M 6∈ σp(A+), and ǫ, δ > 0
the vector

1

2πi

∫ λ0−δ

0

{(
(A+ − λ− iǫ)−1 − (A+ − λ+ iǫ)−1

)
fµ,+,

(
(A− − λ− iǫ)−1 − (A− − λ+ iǫ)−1

)
αfµ,−

}
dλ

and the vector

1

2πi

∫ M

λ0+δ

{(
(A+ − λ− iǫ)−1 − (A+ − λ+ iǫ)−1

)
fµ,+,

(
(A− − λ− iǫ)−1 − (A− − λ+ iǫ)−1

)
αfµ,−

}
dλ

belong to H, see (4.17). Therefore, if ǫ and δ tend to zero, we find

{
EA+

((0,M))fµ,+, 0
}
∈ H,

and hence, for M → ∞, {fµ,+, 0} ∈ H. A similar argument shows that
{0, fµ,−} belongs to H for arbitrary µ ∈ C\R and by (4.16) we have

H = L2
sgn (R).
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Therefore, S is simple.

(ii) Let gλ = {gλ,+, gλ,−} ∈ ker(S+ − λ), λ ∈ ρ(A), so that, in particular,
gλ,± ∈ ker(T ∗

± − λ). If m± denote the Weyl functions corresponding to the
boundary triplets (4.15), then

m±(λ) =
g′λ,±(0)

gλ,±(0)
, λ ∈ ρ(A±),

holds and therefore (4.12) and (4.13) imply

M(λ) =
Γ1gλ

Γ0gλ

=
g′λ,+(0) − g′λ,−(0)

gλ,+(0)
= m+(λ) −m−(λ), λ ∈ ρ(A).

(iii) This is a consequence of (i) and (ii), see Proposition 3.5. 2

As a consequence of Theorem 3.6 we find (in the case where κ in (4.9) is
not zero) that the number of negative squares of the operator A0 can be
characterized with the help of the Weyl functions m+ and m− as follows. The
case κ = 0 can be treated analogously with Theorem 3.7.

Theorem 4.7 Let A0 be the self-adjoint operator in L2
sgn (R) from Propo-

sition 4.2, assume that condition (4.11) and σp(A+) ∩ σp(A−) = ∅ hold,
and let κ in (4.9) be nonzero. Let m± be the Weyl functions of (4.15) and
M = m+ − m−. If M(0) or M(∞) does not exist, we set M(0) := ∞ and
M(∞) := −∞, respectively. Then

A0 has κ̃ = κ+ ∆0 + ∆∞ negative squares,

where

∆0 :=





0, if 0 < M(0),

−1, otherwise,
and ∆∞ :=





1, if M(∞) < 0,

0, otherwise.

4.3 Indefinite Sturm-Liouville operators regular at one endpoint

In this section we consider indefinite Sturm-Liouville differential expressions of
the form (4.2) in L2

r((a, b)) which are regular at the left endpoint a and either
singular (and in the limit point case) or regular at the right endpoint b. The
first case that b is singular means that −∞ < a <∞ and p−1, q, r ∈ L1((a, c))
for some c ∈ (a, b) and b = ∞, or at least one of the functions p−1, q, r does not
belong to L1((c′, b)) for some (and hence for every) c′ ∈ (a, b). In addition, it is
assumed that in the singular case the differential expression |r|−1(− d

dx
(p d

dx
)+q)
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is limit point at b, that is, the homogeneous equation

−(pf ′)′ + qf = λ|r|f, λ ∈ C\R,

has a unique solution ϕλ (up to scalar multiples) in L2
|r|((a, b)). The second

case that (4.2) is regular at b means p−1, q, r ∈ L1((a, b)) and b < ∞. For
brevity we will treat both cases simultaneously.

Define a symmetric operator S in the Krein space L2
r((a, b)) by

Sf :=
1

r

(
−(pf ′)′ + qf

)
,

domS :=
{
f ∈ Dmax : f(a) = (pf ′)(a) = 0, [αf(b) = (pf ′)(b)]reg

}
,

(4.18)

where α ∈ R is fixed and [·]reg indicates that the boundary condition αf(b) =
(pf ′)(b) is imposed in the regular case only. In this case α = ∞ in (4.18) means
f(b) = 0. The next proposition collects some properties of the operator S and
its self-adjoint extensions Aτ in L2

r((a, b)). We will again use the notation [·]reg
in (4.18) for the additional boundary condition at b in the regular case.

Proposition 4.8 Let S be the indefinite Sturm-Liouville operator from (4.18).
In the case that b is singular it is assumed that there exists b′ ∈ (a, b) as in
Proposition 4.1(ii). Then S is a densely defined closed simple symmetric op-
erator of defect one in the Krein space L2

r((a, b)). The adjoint operator S+ is
given by

S+f =
1

r

(
−(pf ′)′ + qf

)
,

domS+ =
{
f ∈ Dmax : [αf(b) = (pf ′)(b)]reg

}
,

and {C,Γ0,Γ1}, Γ0f = f(a), Γ1f = (pf ′)(a), f ∈ domS+, is a boundary
triplet for S+. All self-adjoint extensions Aτ , τ ∈ R, are given by

Aτf =
1

r

(
−(pf ′)′ + qf

)
,

domAτ =




{f ∈ domS+ : τf(a) = (pf ′)(a)}, if τ ∈ R,

{f ∈ domS+ : f(a) = 0}, if τ = ∞,

and each Aτ , τ ∈ R, has a nonempty resolvent set and a finite number of
negative squares.

Proof. Besides the assertion that S is simple all statements of the proposition
follow from the properties of the densely defined closed symmetric operator

JSf =
1

|r|
(
−(pf ′)′ + qf

)
, domJS = domS,

26



in the Hilbert space (L2
|r|((a, b)), [J ·, ·]) and Proposition 4.1. We leave the de-

tails to the reader.

It remains to verify that S is simple. Here we follow the lines of the proof of [18,
Theorem 3] and make use of the spectral function of definitizable operators,
cf. [28]. Let A = S+ ↾ ker Γ0 and suppose that there exists an element k ∈
L2

r((a, b)) with the property

k [⊥] clsp
{
ker(S+ − λ) : λ ∈ ρ(A)

}
.

Write the resolvent of A with the help of the Green’s function G in the form

(
(A− λ)−1k

)
(x) =

∫ b

a
G(x, y, λ)k(y)r(y)dy

and decompose G as in [18, Proof of Theorem 3],

G(x, y, λ) = G0(x, y, λ) +G1(x, y, λ),

where y 7→ G1(x, y, λ) and y 7→ ∂
∂y
G1(x, y, λ) are continuous also for x = y, so

that y 7→ G1(x, y, λ) ∈ ker(S+ − λ) and

(
(A− λ)−1k

)
(x) =

∫ b

a
G0(x, y, λ)k(y)r(y)dy

can be continued to a continuous function of {x, λ} ∈ (a, b) × C, cf. [18,
Lemma 2]. Let g ∈ L2

|r|((a, b)) be a function with compact support in (a, b).
Then also

λ 7→ Rk,g(λ) :=
(
(A− λ)−1k, g

)
(4.19)

defines a continuous function on C.

As A is a self-adjoint operator with finitely many negative squares and a
nonempty resolvent set, A is definitizable and the non-real spectrum of A
consists only of finitely many nonreal eigenvalues which are symmetric with
respect to the real axis, cf. Theorem 3.1 (i). Let EA be the spectral function
of A (cf. [28]) and denote by e ⊂ R the set of critical points of A. Then for all
t1 < t2, t1, t2 6∈ e,

(
EA((t1, t2))k, g

)
= lim

δց0
lim
εց0

1

2πi

∫ t2−δ

t1+δ

(
Rk,g(λ+ iε) −Rk,g(λ− iε)

)
dλ

holds (cf. [28, Proof of Theorem I.3.1]). Now the continuity of the function
(4.19) implies

(
EA((t1, t2))k, g

)
= 0 (4.20)
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for all t1 < t2, t1, t2 6∈ e. Similarly, if λ0 ∈ C\R is a nonreal eigenvalue of the
operator A, EA({λ0}) denotes the corresponding Riesz-Dunford projection
and Cε(λ0) = {λ ∈ C : |λ− λ0| = ε} with ε > 0 sufficiently small, then

(
EA({λ0})k, g

)
= − 1

2πi

∫

Cε(λ0)
Rk,g(λ) dλ (4.21)

tends to zero for ε→ 0.

Let ∆, 0 ∈ ∆, be an open interval such that EA(∆) is defined. Then the self-
adjoint operator A ↾ (I − EA(∆))L2

r((a, b)) is a boundedly invertible operator
in the Krein space K′ := (I − EA(∆))L2

r((a, b)) and the inverse

B :=
(
A↾K′

)−1 ∈ L(K′)

is a definitizable operator (cf. [28, Lemma II.2.2] with

0 6∈ σp(B). (4.22)

Denote by EB the spectral function of B. Then [28, Propositions II.5.1, II.5.2]
and (4.22) imply

K′ = clsp
{
EB(δ)K′ : δ open interval, 0 6∈ δ, EB(δ) exists

}
,

therefore

K′ = clsp
{
EA(δ)K′ : δ bounded open interval, EA(δ) exists

}
.

Together with (4.20) and (4.21) we conclude (k, g) = 0 for every g ∈ L2
|r|((a, b))

with compact support in (a, b). This gives k = 0, that is, S is simple. 2

If fλ ∈ L2
r((a, b)), λ ∈ C\R, spans the defect subspace of S, ker(S+ − λ) =

sp {fλ}, then the Weyl function M corresponding to the boundary triplet
{C,Γ0,Γ1} from Proposition 4.8 is given by

M(λ) =
Γ1fλ

Γ0fλ

=
(pf ′

λ)(a)

fλ(a)
, λ ∈ ρ(A),

and belongs to the class Dκ, where the number κ coincides with the number
of negative squares of the self-adjoint extension A = S+ ↾ ker Γ0 of S, see
Proposition 3.5. As a consequence of Theorem 3.6 and Proposition 4.8 we
obtain the following theorem.

Theorem 4.9 Let A = S+ ↾ ker Γ0 be as above and assume that b is regular
or that b is singular and there exists b′ ∈ (a, b) as in Proposition 4.1 (ii).
Then A has a nonempty resolvent set and κ negative squares, κ ∈ N0. Let M
be the Weyl function corresponding to the boundary triplet {C,Γ0,Γ1} from
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Proposition 4.8. If M(0) or M(∞) does not exist, we set M(0) := ∞ and
M(∞) := −∞, respectively. If κ ≥ 1, then for τ ∈ R the operator

Aτ = S+ ↾ ker
(
Γ1 − τΓ0

)
has κ̃ = κ+ ∆0 + ∆∞ negative squares,

where

∆0 :=





0, if τ < M(0),

−1, otherwise,
and ∆∞ :=





1, if M(∞) < τ,

0, otherwise.

The case κ = 0 can be treated analogously with Theorem 3.7.

4.3.1 A singular example

Let −∞ < a < 0, b = ∞, p = 1 and q ∈ (0,∞) be a positive real constant.
As the indefinite weight function we choose r(x) = sgn (x), x ∈ (a,∞). Here
the symmetric operator S in L2

sgn ((a,∞)) from (4.18) has the form

(Sf)(x) = sgn (x)
(
−f ′′(x) + qf(x)

)
,

domS =
{
f ∈W 2

2 ((a,∞)) : f(a) = f ′(a) = 0
}
,

since the maximal domain Dmax coincides with the Sobolev space W 2
2 ((a,∞)).

Let {C,Γ0,Γ1}, Γ0f = f(a), Γ1f = f ′(a), f ∈ domS+, be the boundary triplet
for the adjoint operator S+, domS+ = W 2

2 ((a,∞)), from Proposition 4.8. We
will calculate the Weyl function corresponding to {C,Γ0,Γ1}. For λ ∈ C\R

the defect subspace ker(S+ − λ) is spanned by

fλ(x) :=





exp
(
i(
√
λ− q)x

)
, if x ≥ 0,

η(λ) exp
(
(
√
λ+ q)x

)
+ ν(λ) exp

(
−(

√
λ+ q)x

)
, if a < x < 0,

where

η(λ) =

(
1

2
+
i

2

√
λ− q

λ+ q

)
and ν(λ) =

(
1

2
− i

2

√
λ− q

λ+ q

)
,

and
√· denotes the branch of the square root defined in C with a cut along

[0,∞) and fixed by Im
√
λ > 0 if λ 6∈ [0,∞). Moreover,

√· is continued to
[0,∞) via λ 7→

√
λ ≥ 0 for λ ∈ [0,∞). The Weyl function M corresponding
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to {C,Γ0,Γ1} is given by

M(λ) =
√
λ+ q

η(λ) exp
(
a
√
λ+ q

)
− ν(λ) exp

(
−a√λ+ q

)

η(λ) exp
(
a
√
λ+ q

)
+ ν(λ) exp

(
−a√λ+ q

) , λ ∈ C\R.

As limλ→̂0 η(λ) = 0 and limλ→̂0 ν(λ) = 1 we obtain

M(0) = lim
λ→̂0

M(λ) = −√
q.

Moreover it is not difficult to verify that the limit limλ→̂∞M(λ) does not exist.
Since q > 0 the operator A = S+ ↾ ker Γ0 in L2

sgn ((a,∞)) is nonnegative and
we conclude from Theorem 3.7 that the self-adjoint operator

(Aτf)(x) = sgn (x)
(
−f ′′(x) + qf(x)

)
,

domAτ =
{
f ∈W 2

2 ((a,∞)) : τf(a) = f ′(a)
}
,

(4.23)

τ ∈ R, is nonnegative if and only if τ ≥ −√
q and has Aτ has one negative

square if and only if τ < −√
q.

We note that σess(Aτ ) = σess(A) = [q,∞) for all τ ∈ R and that the Weyl
function M can be used to describe the spectra of the operators Aτ in more
detail. E.g. it is straightforward to check that the poles of M on (−∞, q) do
not accumulate to q, that is, the eigenvalues of A in (−∞, q) do not accumulate
to σess(A), see Proposition 3.5.

4.3.2 A regular example

Let (a, b) = (−1, 1), p = 1, q = 0 and as indefinite weight we choose the
function r(x) = sgn (x), x ∈ (−1, 1). For α = ∞ the operator S from (4.18)
has the form

(Sf)(x) = −sgn (x)f ′′(x),

domS =
{
f ∈W 2

2 ((−1, 1)) : f(−1) = f ′(−1) = f(1) = 0
}
,

and is symmetric in the Krein space L2
sgn ((−1, 1)). By Proposition 4.8 the

adjoint operator S+ = −sgn (·) d2

dx2 is defined on {f ∈W 2
2 ((−1, 1)) : f(1) = 0}.

A simple calculation shows that ker(S+ − λ) is spanned by the function

fλ(x) :=





(
sin

√
λ
)

cosh(
√
λx) −

(
cos

√
λ
)

sinh(
√
λx) x ∈ (−1, 0)

sin(
√
λ(1 − x)) x ∈ [0, 1)

30



if λ 6= 0, and by f0(x) = 1−x if λ = 0. Again, the function λ 7→
√
λ is defined

as in Example 4.3.1.

We choose the boundary triplet {C,Γ0,Γ1}, where Γ0f = f(−1) and Γ1 =
f ′(−1), f ∈ domS+, according to Proposition 4.8. Then the self-adjoint ex-
tension A = S+ ↾ ker Γ0 corresponds to Dirichlet boundary conditions and
it is easy to see that A is nonnegative in the Krein space L2

sgn ((−1, 1)), its
spectrum σ(A) is discrete and accumulates to ∞ and −∞. The Weyl function
M corresponding to the boundary triplet {C,Γ0,Γ1} is given by

M(λ) = −
√
λ

sin
√
λ sinh

√
λ+ cos

√
λ cosh

√
λ

sin
√
λ cosh

√
λ+ cos

√
λ sinh

√
λ
, λ ∈ ρ(A)\{0}.

A point λ ∈ R\{0} is an eigenvalue of A if and only if tan
√
λ = − tanh

√
λ

holds, see Proposition 3.5. Note that 0 belongs to ρ(A).

The function M is holomorphic in a neighbourhood of 0, we have M(0) = −1
2

and the limit limy→+∞M(iy) does not exist. It follows from Theorem 3.7 that
the self-adjoint operator

Aτ := S+ ↾ ker
(
Γ1 − τΓ0), τ ∈ R,

that is,

(Aτf)(x) = −sgn (x) f ′′(x),

domAτ =
{
f ∈W 2

2 ((−1, 1)) : τf(−1) = f ′(−1), f(1) = 0
}
,

is nonnegative if and only if τ ∈ [−1
2
,∞) and Aτ has one negative square if and

only if τ ∈ (−∞,−1
2
). We remark, that this can also be shown by computing

[Aτf, f ], f ∈ domAτ , and applying the Hölder inequality.
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