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Abstract

The Dirichlet-to-Neumann map associated to an elliptic partial differential equation becomes multivalued 
when the underlying Dirichlet problem is not uniquely solvable. The main objective of this paper is to 
present a systematic study of the Dirichlet-to-Neumann map and its inverse, the Neumann-to-Dirichlet 
map, in the framework of linear relations in Hilbert spaces. Our treatment is inspired by abstract methods 
from extension theory of symmetric operators, utilizes the general theory of linear relations and makes use 
of some deep results on the regularity of the solutions of boundary value problems on bounded Lipschitz 
domains.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Dirichlet-to-Neumann operator is a central object in the analysis of elliptic partial dif-
ferential equations; it plays a fundamental role in the classical Calderón problem [13,27–29,32], 
is intimately connected with the spectral properties of the associated partial differential operators, 
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and has attracted a lot of interest in the recent past, see, e.g. [1–12,16,18–20,23,24] for a small 
selection of papers of analytic nature. In the following let � be a bounded Lipschitz domain 
in R

n, where n ≥ 2, with boundary C and consider the differential expression L = −� +V on �
with V ∈ L∞(�) real valued. Under these assumptions it is well known (see for example [25], 
Theorem 4.10) that for all λ ∈C the Dirichlet problem

Lf = λf and f |C = ϕ (1.1)

is solvable for those ϕ ∈ H 1/2(C) which satisfy (ϕ, ∂νh|C)H 1/2(C)×H−1/2(C) = 0 for all solutions 
h ∈ H 1(�) of the corresponding homogeneous problem

Lh = λh and h|C = 0. (1.2)

Here ∂νh|C ∈ H−1/2(C) stands for the normal derivative of h at the boundary C of � with normal 
vector pointing outwards and L acts as a distribution operator. In particular, if (1.2) has only the 
trivial solution then for every ϕ ∈ H 1/2(C) there exists a unique solution fλ ∈ H 1(�) of (1.1). It 
follows that the subspace

D(λ) := {{fλ|C, ∂νfλ|C} ∈ H 1/2(C) × H−1/2(C) : fλ ∈ H 1(�) and Lfλ = λfλ

}
(1.3)

in H 1/2(C) × H−1/2(C) consisting of the Cauchy data of solutions of (1.1) can be viewed as 
the graph of an operator defined on H 1/2(C) whenever λ ∈ C is such that (1.2) has only the 
trivial solution; this is the case if and only if λ is not an eigenvalue of the selfadjoint Dirichlet 
realization

ADf = Lf, domAD = {
f ∈ H 1

0 (�) : −�f + Vf ∈ L2(�)
}
,

in L2(�). In other words, for all λ /∈ σp(AD) the Dirichlet-to-Neumann map

D(λ) : H 1/2(C) → H−1/2(C), fλ|C �→ ∂νfλ|C,

is a well-defined operator on H 1/2(C). However, the set of Cauchy data is given also for 
λ ∈ σp(AD); in this case (1.1) is solvable only on a subspace of H 1/2(C) of finite codimen-
sion and the solution is not unique. It is then natural to view D(λ) in (1.3) as the graph of 
a ‘multivalued operator’ defined on a subspace of H 1/2(C) ‘mapping’ into H−1/2(C). This 
point of view was also taken in the recent publications [5] and [6], where the restriction 
of D(λ) to L2(C) was shown to be a selfadjoint linear relation in L2(C) which is semi-
bounded from below. In [6] an argument relying on a Galerkin approximation method was 
employed, and in [5] general form methods based on a Fredholm alternative and compact 
embeddings were used. Both approaches are of more extrinsic nature and do not allow a de-
tailed study of spectral and mapping properties of the selfadjoint linear relation and its operator 
part.

The main objective of the present paper is to present a systematic and more intrinsic study 
of Dirichlet-to-Neumann maps in the framework of linear relations in Hilbert spaces. The cal-
culus of linear relations is a very useful and convenient tool even when studying operators, e.g. 
the inverse of a selfadjoint operator is always a selfadjoint linear relation, and hence admits 
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a spectral function and a functional calculus similar to the ones of selfadjoint operators. We 
briefly review some elements in the theory of symmetric and selfadjoint linear relations in the 
appendix. In Sections 2 and 3 we first recall some basic facts on Sobolev spaces on Lipschitz 
domains, trace operators, and the selfadjoint Dirichlet operator AD and Neumann operator AN

associated with the differential expression L = −� + V in L2(�). Section 4 is devoted to the 
Dirichlet-to-Neumann map D(λ) and its inverse, the Neumann-to-Dirichlet map N (λ), viewed 
as linear relations in H 1/2(C) × H−1/2(C) and H−1/2(C) × H 1/2(C), respectively. After dis-
cussing some elementary properties of their domains, multivalued parts, kernels, and ranges, 
we establish a connection between D(λ) and D(μ) (and, similarly for N (λ) and N (μ)) for all 
λ, μ ∈ C in Theorem 4.6 and Corollary 4.7, and we prove a variant of a Krein type formula for 
the resolvent difference of AD and AN in Theorem 4.9. Such formulae are known under the 
additional assumption λ, μ /∈ (σp(AD) ∪ σp(AN)), and it is remarkable that they remain true 
for all λ, μ ∈ C when interpreted in the sense of linear relations. The origin of these correspon-
dences is in abstract extension theory of symmetric operators in Hilbert spaces, where, roughly 
speaking, the functions λ �→ D(λ) and λ �→ N (λ) can be viewed as so-called Q-functions or 
Weyl functions; cf. [7,8,14,15,26]. We wish to emphasize that the considerations and results in 
Section 4 are mainly based on Green’s identity and elementary computations of mostly algebraic 
nature, and that no deeper results on elliptic regularity or compactness properties of the involved 
trace mappings and embeddings are employed. This changes dramatically in Section 5, where 
the restrictions

D(λ) =D(λ) ∩ (
L2(C) × L2(C)

)
and N(λ) =N (λ) ∩ (

L2(C) × L2(C)
)

are considered as linear relations in L2(C) × L2(C). An essential ingredient in our further anal-
ysis are results due to Jerison and Kenig [21,22], and Gesztesy and Mitrea [18,19] on the 
H 3/2(�)-regularity of the functions in domAD and domAN , and the solvability of (1.1) in 
H 3/2(�) for boundary data ϕ ∈ H 1(C). We specify the domains of D(λ) and N(λ) in Theo-
rem 5.2, and observe the interesting fact that their kernels and multivalued parts coincide with 
those of D(λ) and N (λ). The main results in Section 5 are Theorems 5.7 and 5.10, where it 
is shown that if λ ∈ R then D(λ) and N(λ) are selfadjoint relations in L2(C) with finitely 
many negative eigenvalues, the operator part of N(λ) is a compact selfadjoint operator, and 
the operator part of D(λ) is an unbounded selfadjoint operator with discrete spectrum. These 
theorems can be viewed as extensions and refinements of some results in [5,6]. However, the 
strategy for the proofs in Section 5 is very much different from the methods used in [5,6]. Here 
we rely on an explicit connection of the Neumann-to-Dirichlet map N(λ) with (AN − λ)−1, 
where the latter is a selfadjoint relation with multivalued part ker(AN −λ) and compact operator 
part with finitely many negative eigenvalues. We then deduce spectral and mapping proper-
ties of N(λ) from those of (AN − λ)−1 via perturbation arguments and an abstract result on 
the selfadjointness of a product of bounded operators and a selfadjoint relation in Proposi-
tion A.1. After establishing the selfadjointness and the spectral properties of the Neumann-to-
Dirichlet map the corresponding facts for the Dirichlet-to-Neumann map follow immediately 
from D(λ) = N(λ)−1. We mention that such type of results were successfully applied in the 
special case of the Laplacian in [6] to prove strict inequalities between Dirichlet and Neumann 
eigenvalues.

Finally we remark that the considerations in this paper can be extended in a natural way to 
more general second-order elliptic differential expressions L with variable coefficients if suitable 
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assumptions on the smoothness of the coefficients of L and the boundary of the domain � are 
imposed.

2. Lipschitz domains, Sobolev spaces and trace operators

Let � ⊂ R
n, where n ≥ 2, be a bounded Lipschitz domain with boundary C. By Hs(�) and 

Hs(C) we denote the Sobolev spaces of order s ≥ 0 on � and C, respectively, and by Hs
0 (�)

the closure of the set of C∞-functions with compact support in � with respect to the Hs -norm. 
Further, H−s(C) denotes the dual space of Hs(C); the corresponding extension of the L2(C)

inner product onto Hs(C) × H−s(C) is denoted by (·, ·)Hs(C)×H−s (C). We write u|C ∈ H 1/2(C)

for the trace of u ∈ H 1(�) at the boundary C and if �u ∈ L2(�) then we set ∂νu|C ∈ H−1/2(C)

for the Neumann trace of u at C, see, e.g. [25], Theorem 3.37 and Lemma 4.3. Recall that ∂νu|C
is the unique function in H−1/2(C) which satisfies

(∂νu|C, v|C)H−1/2(C)×H 1/2(C) = (�u,v)L2(�) + (∇u,∇v)L2(�)n (2.1)

for all v ∈ H 1(�), see [25], Lemma 4.3. Note also that H 1
0 (�) coincides with the kernel of the 

trace operator u �→ u|C on H 1(�).

3. Schrödinger operators with Dirichlet and Neumann boundary conditions

Let V ∈ L∞(�) be a real valued function and consider the differential expression

L := −� + V.

The first Green’s identity states that

(Lu,v)L2(�) = (∇u,∇v)L2(�)n + (V u, v)L2(�) − (∂νu|C, v|C)H−1/2(C)×H 1/2(C)

for all u, v ∈ H 1(�) such that Lu, Lv ∈ L2(�). The selfadjoint operators AD and AN in L2(�)

with Dirichlet and Neumann boundary conditions are defined as the representing operators of the 
closed symmetric lower bounded sesquilinear forms

aD[u,v] = (∇u,∇v)L2(�)n + (V u, v)L2(�), u, v ∈ H 1
0 (�),

aN [u,v] = (∇u,∇v)L2(�)n + (V u, v)L2(�), u, v ∈ H 1(�).

It follows that the selfadjoint operators AD and AN are given by

AD = −� + V, domAD = {
u ∈ H 1

0 (�) : Lu ∈ L2(�)
}
,

AN = −� + V, domAN = {
u ∈ H 1(�) : ∂νu|C = 0 and Lu ∈ L2(�)

}
.

Moreover, it follows from the lower boundedness of the forms aD and aN that the operators AD

and AN are lower bounded and essinfV is a lower bound.
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4. Dirichlet-to-Neumann and Neumann-to-Dirichlet maps

The Dirichlet-to-Neumann map D(λ) and the Neumann-to-Dirichlet map N (λ) associated to 
the differential expression L − λ are defined for all λ ∈ C as subspaces of H 1/2(C) × H−1/2(C)

and H−1/2(C) × H 1/2(C), respectively, by

D(λ) := {{fλ|C, ∂νfλ|C} ∈ H 1/2(C) × H−1/2(C) : fλ ∈ H 1(�) and Lfλ = λfλ

}
,

N (λ) := {{∂νfλ|C, fλ|C} ∈ H−1/2(C) × H 1/2(C) : fλ ∈ H 1(�) and Lfλ = λfλ

}
.

See Appendix A for a short introduction into the theory of linear relations. Clearly,

D(λ)−1 =N (λ) and D(λ) = N (λ)−1

in the sense of linear relations, and

kerD(λ) = mulN (λ) = {
fλ|C : fλ ∈ ker(AN − λ)

} ⊂ H 1/2(C), (4.1)

kerN (λ) = mulD(λ) = {
∂νfλ|C : fλ ∈ ker(AD − λ)

} ⊂ H−1/2(C). (4.2)

It will be shown later in Theorem 5.2 that in fact kerD(λ) ⊂ H 1(C) and kerN (λ) ⊂ L2(C). 
We next characterize the domains of the Dirichlet-to-Neumann map D(λ) and the Neumann-to-
Dirichlet map N (λ).

Proposition 4.1. For all λ ∈C the domains of D(λ) and N (λ) are

domD(λ) = {
ϕ ∈ H 1/2(C) : (ϕ, ∂νfλ|C)H 1/2(C)×H−1/2(C) = 0

for all fλ ∈ ker(AD − λ)
}
, (4.3)

domN (λ) = {
ψ ∈ H−1/2(C) : (ψ,fλ|C)H−1/2(C)×H 1/2(C) = 0

for all fλ ∈ ker(AN − λ)
}
, (4.4)

and, in particular,

domD(λ) = H 1/2(C) if and only if λ ∈ ρ(AD) (4.5)

and

domN (λ) = H−1/2(C) if and only if λ ∈ ρ(AN). (4.6)

Proof. The equalities (4.3)–(4.4) follow from [25], Theorem 4.10. For (4.5) assume first that 
domD(λ) = H 1/2(C). Then ∂νfλ|C = 0 for all fλ ∈ ker(AD −λ) and since fλ|C = 0 we conclude 
fλ = 0 from the unique continuation property. This implies ker(AD − λ) = {0} and hence λ ∈
ρ(AD). The converse implication in (4.5) is immediate. The equivalence (4.6) follows from a 
very similar reasoning. �

The next lemma shows for which λ ∈ C the linear relations D(λ) and N (λ) are (the graphs 
of) operators mapping from H 1/2(C) to H−1/2(C) and H−1/2(C) to H 1/2(C), respectively.
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Lemma 4.2. Let λ ∈C. Then

(i) mulD(λ) = {0} if and only if λ /∈ σp(AD),
(ii) mulN (λ) = {0} if and only if λ /∈ σp(AN),

and,

(iii) kerN (λ) �= {0} if and only if λ ∈ σp(AD),
(iv) kerD(λ) �= {0} if and only if λ ∈ σp(AN).

Proof. We verify item (i) only; the proof of item (ii) is analogous, items (iii) and (iv) follow 
from (4.1)–(4.2) and (i)–(ii). Assume that mulD(λ) = {0} and let fλ ∈ ker(AD − λ), that is, 
fλ ∈ H 1(�) satisfies Lfλ = λfλ and fλ|C = 0. As {fλ|C, ∂νfλ|C} = {0, ∂νfλ|C} ∈ D(λ) we con-
clude ∂νfλ|C = 0 and hence fλ = 0 by the unique continuation property, so that, λ /∈ σp(AD). 
Conversely, if λ /∈ σp(AD) then (4.2) implies mulD(λ) = {0}. �

If u, v ∈ H 1(�) satisfy Lu, Lv ∈ L2(�) then the second Green identity states

(Lu,v)L2(�) − (u,Lv)L2(�)

= (
u|C, ∂νv|C

)
H 1/2(C)×H−1/2(C)

− (
∂νu|C, v|C

)
H−1/2(C)×H 1/2(C)

,

see, e.g., [25], Theorem 4.4 (iii). As a consequence one deduces the next lemma.

Lemma 4.3. Let λ, μ ∈ C and suppose that both {fλ|C, ∂νfλ|C} ∈ D(λ) and {gμ|C, ∂νgμ|C} ∈
D(μ), or, equivalently, that both {∂νfλ|C, fλ|C} ∈ N (λ) and {∂νgμ|C, gμ|C} ∈N (μ). Then

(
∂νfλ|C, gμ|C

)
H−1/2(C)×H 1/2(C)

− (
fλ|C, ∂νgμ|C

)
H 1/2(C)×H−1/2(C)

= (μ − λ)(fλ, gμ)L2(�).

We note that (4.5) and Lemma 4.3 imply

(D(λ)ϕ,ψ)H−1/2(C)×H 1/2(C) = (ϕ,D(λ)ψ)H 1/2(C)×H−1/2(C)

for all λ ∈ ρ(AD) and all ϕ, ψ ∈ H 1/2(C). Therefore for all λ ∈ ρ(AD) the operator

D(λ):H 1/2(C) → H−1/2(C)

is closed and hence bounded by the closed graph theorem. Similarly it follows from (4.6) and 
Lemma 4.3 that N (λ): H−1/2(C) → H 1/2(C) is a bounded operator for all λ ∈ ρ(AN).

For all λ ∈ C define the subspaces γD(λ) of H 1/2(C) × L2(�) and γN (λ) of H−1/2(C) ×
L2(�) by

γD(λ) := {{fλ|C, fλ} ∈ H 1/2(C) × L2(�) : fλ ∈ H 1(�) and Lfλ = λfλ

}
,

γN (λ) := {{∂νfλ|C, fλ} ∈ H−1/2(C) × L2(�) : fλ ∈ H 1(�) and Lfλ = λfλ

}
.
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Note that ranγD(λ) and ranγN (λ) are contained in H 1(�). Obviously, we have

domγD(λ) = domD(λ), mulγD(λ) = ker(AD − λ),

and

domγN (λ) = domN (λ), mulγN (λ) = ker(AN − λ). (4.7)

Furthermore, it is clear that kerγD(λ) = {0} and kerγN (λ) = {0} for all λ ∈C.
In the next lemma it is shown how γD(λ) and γD(μ) are related to each other for different 

λ, μ ∈ C. If both points λ and μ are not in the spectrum of AD these facts are known, see, 
e.g., [10], Lemma 2.4. Similar results are valid for γN (λ), γN (μ) and AN .

Lemma 4.4. Let λ, μ ∈C. Then

γD(λ) ∩ (
domγD(μ) × L2(�)

) = (
I + (λ − μ)(AD − λ)−1)γD(μ)

and

γN (λ) ∩ (
domγN (μ) × L2(�)

) = (
I + (λ − μ)(AN − λ)−1)γN (μ). (4.8)

Proof. We verify the statement for γN ; the proof for γD is completely analogous. We may 
assume that λ �= μ; otherwise the statement is obviously true. Note first that in the sense of linear 
relations we have

(
I + (λ − μ)(AN − λ)−1)γN (μ)

=
{{

∂νfμ|C, fμ + (λ − μ)h
} : there exist fμ ∈ H 1(�) and h ∈ domAN

such that Lfμ = μfμ and fμ = (AN − λ)h

}
.

For the inclusion ⊃ in (4.8) let fλ := fμ + (λ − μ)h with Lfμ = μfμ, fμ ∈ H 1(�), and fμ =
(AN − λ)h for some h ∈ domAN . Then we have fλ ∈ H 1(�),

(L− λ)fλ = (L− λ)
(
fμ + (λ − μ)h

) = (μ − λ)fμ + (λ − μ)(AN − λ)h = 0

and ∂νfλ|C = ∂ν(fμ + (λ − μ)h)|C = ∂νfμ|C . Therefore

{
∂νfμ|C, fμ + (λ − μ)h

} = {
∂νfλ|C, fλ

} ∈ γN (λ).

For the inclusion ⊂ in (4.8) consider {∂νfλ|C, fλ} ∈ γN (λ) and suppose ∂νfλ|C ∈ domγN (μ). 
Then fλ ∈ H 1(�), Lfλ = λfλ, and there exists an fμ ∈ H 1(�) such that Lfμ = μfμ and 
∂νfμ|C = ∂νfλ|C . It follows that

h := fλ − fμ

λ − μ
∈ domAN, (AN − λ)h = fμ,

and fμ + (λ − μ)h = fλ. Therefore
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{
∂νfλ|C, fλ

} = {
∂νfμ|C, fμ + (λ − μ)h

} ∈ (
I + (λ − μ)(AN − λ)−1)γN (μ)

as required. �
In the next lemma the adjoints of γD(λ) and γN (λ) are computed. Recall that γD(λ) is a linear 

relation in H 1/2(C) × L2(�). So the adjoint γD(λ)′ is a linear relation in L2(�) × H−1/2(C). 
Similarly γN (λ) is a linear relation in H−1/2(C) × L2(�) and its adjoint γN (λ)′ is a linear 
relation in L2(�) × H 1/2(C).

Lemma 4.5. Let λ ∈C. Then

γD(λ)′ = {{(AD − λ)g,−∂νg|C} : g ∈ domAD

}

and

γN (λ)′ = {{(AN − λ)g,g|C} : g ∈ domAN

}
. (4.9)

Proof. We only prove (4.9). First the inclusion ⊃ will be shown. Let g ∈ domAN . We shall show 
that {(AN − λ)g, g|C} ∈ γN (λ)′. Indeed, one has ∂νg|C = 0 and for any {∂νfλ|C, fλ} ∈ γN (λ)

we compute with the help of Green’s identity that

(fλ, (AN − λ)g)L2(�)

= (fλ,ANg)L2(�) − (Lfλ, g)L2(�)

= (∂νfλ|C, g|C)H−1/2(C)×H 1/2(C) − (fλ|C, ∂νg|C)H 1/2(C)×H−1/2(C)

= (∂νfλ|C, g|C)H−1/2(C)×H 1/2(C). (4.10)

This implies that {(AN − λ)g, g|C} ∈ γN (λ)′.
For the inclusion ⊂ we have to check that for any element {h, ϕ} ∈ γN (λ)′ there exists a 

g ∈ domAN such that

{h,ϕ} = {
(AN − λ)g,g|C

}
. (4.11)

Since

domγN (λ)′ ⊂ (
mulγN (λ)

)⊥ = (
ker(AN − λ)

)⊥ = ran(AN − λ)

there exists a k ∈ domAN with

h = (AN − λ)k. (4.12)

Hence {(AN − λ)k, ϕ} = {h, ϕ} ∈ γN (λ)′ and for all {∂νfλ|C, fλ} ∈ γN (λ) we have by the defi-
nition of the adjoint

(fλ, (AN − λ)k)L2(�) = (∂νfλ|C, ϕ)H−1/2(C)×H 1/2(C). (4.13)
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On the other hand the same calculation as in (4.10) with Green’s identity yields

(fλ, (AN − λ)k)L2(�) = (∂νfλ|C, k|C)H−1/2(C)×H 1/2(C). (4.14)

From (4.13) and (4.14) we obtain (ψ, ϕ − k|C)H−1/2(C)×H 1/2(C) = 0 for all ψ ∈ domγN (λ) and 
hence (4.7) and Proposition 4.1 imply that there exists a kλ ∈ ker(AN − λ) such that

kλ|C = ϕ − k|C . (4.15)

Note that kλ = 0 if λ /∈ σp(AN), in particular, kλ = 0 if λ ∈ C \ R. It follows from (4.12) and 
(4.15) that g := k + kλ ∈ domAN satisfies h = (AN − λ)g and g|C = ϕ. We have shown (4.11)
and hence (4.9) is proved. �

As an immediate consequence of Lemma 4.5 we have

mulγD(λ)′ = {
∂νg|C : g ∈ ker(AD − λ)

}

and

mulγN (λ)′ = {
g|C : g ∈ ker(AN − λ)

}
.

Note also that if λ ∈ ρ(AD) then

γD(λ)′:L2(�) → H−1/2(C), h �→ −∂ν

(
(AD − λ)−1h

)|C,

is a closed operator defined on the whole space L2(�), and hence γD(λ)′ is a bounded operator; 
cf. [10], Lemma 2.4. Similarly,

γN (λ)′:L2(�) → H 1/2(C), h �→ (
(AN − λ)−1h

)|C,

is a bounded operator for all λ ∈ ρ(AN).

Theorem 4.6. Let λ, μ ∈C. Then

D(λ) −D(μ) = (μ − λ)γD(μ)′γD(λ) (4.16)

and

N (λ) −N (μ) = (λ − μ)γN (μ)′γN (λ). (4.17)

Proof. Only the assertion (4.17) will be verified. The proof of (4.16) is similar. We may assume 
that λ �= μ. We show the inclusion ⊂ in (4.17) first. Let {ϕ, ψ} ∈N (λ) −N (μ), that is, there are 
fλ, gμ ∈ H 1(�) such that Lfλ = λfλ, Lgμ = μgμ,

ϕ = ∂νfλ|C = ∂νgμ|C and ψ = fλ|C − gμ|C .

In particular, {ϕ, fλ} ∈ γN (λ). Observe that
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h := fλ − gμ

λ − μ
∈ domAN and (AN − μ)h = fλ.

One concludes from Lemma 4.5 that {fλ, h|C} = {(AN − μ)h, h|C} ∈ γN (μ)′ and therefore we 
have {ϕ, h|C} ∈ γN (μ)′γN (λ). As (λ − μ)h|C = fλ|C − gμ|C = ψ we obtain

{ϕ,ψ} = {
ϕ, (λ − μ)h|C

} ∈ (λ − μ)γN (μ)′γN (λ).

This proves the inclusion ⊂ in (4.17).
Next consider the inclusion ⊃ in (4.17). Let {ϕ, ψ} ∈ (λ −μ)γN (μ)′γN (λ). Then there exists 

an fλ ∈ H 1(�) such that Lfλ = λfλ, ϕ = ∂νfλ|C , {ϕ, fλ} ∈ γN (λ) and

{
fλ, (λ − μ)−1ψ

} ∈ γN (μ)′.

In particular, as fλ ∈ domγN (μ)′ there exists an h ∈ domAN such that

fλ = (AN − μ)h and h|C = (λ − μ)−1ψ;

cf. Lemma 4.5. Define gμ := fλ − (λ − μ)h. Then ∂νgμ|C = ∂νfλ|C = ϕ and

(L− μ)gμ = (L− μ)
(
fλ − (λ − μ)h

) = (λ − μ)fλ − (λ − μ)(AN − μ)h = 0.

Moreover, we have fλ|C − gμ|C = (λ − μ)h|C = ψ and therefore

{ϕ,ψ} = {
ϕ,fλ|C − gμ|C

} = {
∂νfλ|C, fλ|C

} − {
∂νgμ|C, gμ|C

} ∈ N (λ) −N (μ)

as required. �
The following corollary is a consequence of Theorem 4.6, Lemma 4.4 and the fact that

dom
(
D(λ) −D(μ)

) = domγD(λ) ∩ domγD(μ)

for all μ ∈ σp(AD). Similarly,

dom
(
N (λ) −N (μ)

) = domγN (λ) ∩ domγN (μ)

for all μ ∈ σp(AN).

Corollary 4.7. Let λ, μ ∈C. Then

D(λ) −D(μ) = (μ − λ)γD(μ)′
(
I + (λ − μ)(AD − λ)−1)γD(μ)

and

N (λ) −N (μ) = (λ − μ)γN (μ)′
(
I + (λ − μ)(AN − λ)−1)γN (μ).
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Recall that D(λ): H 1/2(C) → H−1/2(C) and N (λ): H−1/2(C) → H 1/2(C) are bounded op-
erators for all λ ∈ ρ(AD) and λ ∈ ρ(AN), respectively. It follows from Corollary 4.7 that the 
functions λ �→D(λ) and λ �→N (λ) are analytic on ρ(AD) and ρ(AN), respectively. In the next 
proposition we show that under appropriate assumptions this extends also to points in σp(AD)

and σp(AN).

Proposition 4.8. Let λ0 ∈ C. Then one has the following.

(i) For all ϕ ∈ domD(λ0) the map λ �→ (D(λ)ϕ, ϕ)H−1/2(C)×H 1/2(C) is differentiable at λ0 and

d

dλ
(D(λ)ϕ,ϕ)H−1/2(C)×H 1/2(C)

∣∣∣
λ=λ0

= −‖fλ0‖2
L2(�)

,

where fλ0 ∈ (ker(AD − λ0))
⊥ is the unique element such that {ϕ, fλ0} ∈ γD(λ0).

(ii) For all ϕ ∈ domN (λ0) the map λ �→ (N (λ)ϕ, ϕ)H 1/2(C)×H−1/2(C) is differentiable at λ0 and

d

dλ
(N (λ)ϕ,ϕ)H 1/2(C)×H−1/2(C)

∣∣∣
λ=λ0

= ‖fλ0‖2
L2(�)

,

where fλ0 ∈ (ker(AN − λ0))
⊥ is the unique element such that {ϕ, fλ0} ∈ γN (λ0).

Proof. We show assertion (ii). Let λ0 ∈ C, ϕ ∈ domN (λ0), and P be the orthogonal projection 
in L2(�) onto (ker(AN − λ0))

⊥. There exists a unique fλ0 ∈ H 1(�) such that Pfλ0 = fλ0 , 
Lfλ0 = λ0fλ0 and {ϕ, fλ0 |C} ∈ N (λ0). Let λ ∈ C \ {λ0} and suppose that |λ − λ0| is small. Then 
λ ∈ ρ(AN) and

{
ϕ,

1

λ − λ0
(N (λ)ϕ − fλ0 |C)

}
∈ 1

λ − λ0

(
N (λ) −N (λ0)

) = γN (λ)′γN (λ0)

by Theorem 4.6. Moreover, {ϕ, fλ0} ∈ γN (λ0). The proof of Theorem 4.6 gives that

{
fλ0 ,

1

λ − λ0
(N (λ)ϕ − fλ0 |C)

}
∈ γN (λ)′.

By definition of the adjoint one has

(
1

λ − λ0
(N (λ)ϕ − fλ0 |C), ϕ

)
H 1/2(C)×H−1/2(C)

= (fλ0 , γN (λ)ϕ)L2(�)

= (fλ0 ,P γN (λ)ϕ)L2(�) (4.18)

for all {ϕ, γN (λ)ϕ} ∈ γN (λ). Since ϕ ∈ domγN (λ0) it follows from Lemma 4.4 that

PγN (λ)ϕ = fλ0 + (λ − λ0)(AN − λ)−1fλ0 .

Let (ek)k∈N be an orthonormal basis in L2(�) of eigenfunctions for AN . Suppose that ANek =
μkek for all k ∈ N. Then
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(λ − λ0)(AN − λ)−1fλ0 =
∑
k∈N

μk �=λ0

λ − λ0

μk − λ
(fλ0 , ek)L2(�)ek.

So limλ→λ0(λ − λ0)(AN − λ)−1fλ0 = 0 in L2(�) and it follows from (4.18) that

lim
λ→λ0

(
1

λ − λ0
(N (λ)ϕ − fλ0 |C), ϕ

)
H 1/2(C)×H−1/2(C)

= ‖fλ0‖2
L2(�)

.

Hence λ �→ (N (λ)ϕ, ϕ)H 1/2(C)×H−1/2(C) is differentiable at λ0 with derivative ‖fλ0‖2
L2(�)

. �
In the next theorem we show how AD and AN are related to each other in a Krein type 

resolvent formula. For the case that λ ∈C belongs to the resolvent set of both operators AD and 
AN such formulae are well known and can be found in e.g. [1,7–9,12,18,19,23,30,31]. However, 
our aim is to show that the correspondence between (AD − λ)−1 and (AN − λ)−1 in terms of 
γD(λ), γN (λ), and the Dirichlet-to-Neumann map D(λ) and Neumann-to-Dirichlet map N (λ)

is also valid if λ is an eigenvalue of one or both of the operators AD and AN .

Theorem 4.9. If λ ∈C then

(AN − λ)−1 − (AD − λ)−1 = γD(λ)N (λ)γD(λ)′ = γN (λ)D(λ)γN (λ)′.

Proof. We verify the formula

(AN − λ)−1 − (AD − λ)−1 = γN (λ)D(λ)γN (λ)′; (4.19)

the proof of the corresponding formula with γD(λ)N (λ)γD(λ)′ on the right hand side is very 
similar.

For the inclusion ⊂ in (4.19) let h, hN, hD ∈ L2(�), suppose that {h, hN } ∈ (AN − λ)−1 and 
{h, hD} ∈ (AD − λ)−1, so that

{h,hN − hD} ∈ (AN − λ)−1 − (AD − λ)−1.

Then

(AN − λ)hN = h, (AD − λ)hD = h, (4.20)

and it follows from Lemma 4.5 that

{h,hN |C} ∈ γN (λ)′. (4.21)

Let us show that hN |C ∈ domD(λ). This is clear if λ /∈ σp(AD). Assume that λ ∈ σp(AD). Then 
for all fλ ∈ ker(AD − λ) one deduces from Green’s identity, fλ|C = 0 and (4.20) that
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(hN |C, ∂νfλ|C)H 1/2(C)×H−1/2(C)

= (hN |C, ∂νfλ|C)H 1/2(C)×H−1/2(C) − (∂νhN |C, fλ|C)H−1/2(C)×H 1/2(C)

= (LhN,fλ)L2(�) − (hN ,Lfλ)L2(�) = ((AN − λ)hN,fλ)L2(�)

= (h,fλ)L2(�) = ((AD − λ)hD,fλ)L2(�) = (h, (AD − λ)fλ)L2(�) = 0, (4.22)

and hence hN |C ∈ domD(λ) by Proposition 4.1. Thus there exists a kλ ∈ H 1(�) such that Lkλ =
λkλ, {kλ|C, ∂νkλ|C} ∈ D(λ) and kλ|C = hN |C . Observe that kλ := hN − hD is a possible choice. 
In fact, hN −hD ∈ H 1(�) as hN ∈ domAN and hD ∈ domAD , and L(hN −hD) = λ(hN −hD)

follows from (4.20). Moreover, we have (hN − hD)|C = hN |C and ∂ν(hN − hD)|C = −∂νhD|C . 
It follows that

{
hN |C,−∂νhD|C

} = {
(hN − hD)|C, ∂ν(hN − hD)|C

} ∈ D(λ). (4.23)

Next we show that −∂νhD|C ∈ domγN (λ). This is clear if λ /∈ σp(AD). Assume now that λ ∈
σp(AD) and let gλ ∈ ker(AN − λ). Then we compute in a similar way as in (4.22) that

(−∂νhD|C, gλ|C)H−1/2(C)×H 1/2(C)

= (hD|C, ∂νgλ|C)H 1/2(C)×H−1/2(C) − (∂νhD|C, gλ|C)H−1/2(C)×H 1/2(C)

= (LhD,gλ)L2(�) − (hD,Lgλ)L2(�) = ((AD − λ)hD,gλ)L2(�)

= (h, gλ)L2(�) = ((AN − λ)hN,gλ)L2(�) = (h, (AN − λ)gλ)L2(�) = 0.

Therefore −∂νhD|C ∈ domγN (λ) follows from (4.7) and Proposition 4.1. This implies that

{−∂νhD|C, hN − hD} ∈ γN (λ). (4.24)

From (4.21), (4.23), and (4.24) we now conclude that

{h,hN − hD} ∈ γN (λ)D(λ)γN (λ)′

which shows the inclusion ⊂ in (4.19).
We now prove the inclusion ⊃ in (4.19). Let {h, kλ} ∈ γN (λ)D(λ)γN (λ)′. Then there exists 

an hN ∈ domAN such that h = (AN − λ)hN and {h, hN |C} ∈ γN (λ)′. Moreover, Lkλ = λkλ, 
kλ ∈ H 1(�), kλ|C = hN |C and {kλ|C, ∂νkλ|C} ∈ D(λ) and {∂νkλ|C, kλ} ∈ γN (λ). It is clear that 
{h, hN } ∈ (AN − λ)−1. Let

hD := hN − kλ. (4.25)

Then we have hD ∈ H 1(�) and hD|C = hN |C − kλ|C = 0. Moreover, as

(L− λ)hD = (L− λ)(hN − kλ) = (L− λ)hN = (AN − λ)hN = h

it follows that hD ∈ domAD and (AD −λ)hD = h. This implies {h, hD} ∈ (AD −λ)−1 and from 
(4.25) we conclude that
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{h, kλ} = {h,hN − hD} = {h,hN } − {h,hD} ∈ (AN − λ)−1 − (AD − λ)−1.

This shows the inclusion ⊃ in (4.19). Theorem 4.9 is proved. �
5. Dirichlet-to-Neumann and Neumann-to-Dirichlet maps in L2(C)

In this section we consider the restrictions

D(λ) = {{fλ|C, ∂νfλ|C} ∈D(λ) : fλ ∈ H 1(�), Lfλ = λfλ and ∂νfλ|C ∈ L2(C)
}
,

N(λ) = {{∂νfλ|C, fλ|C} ∈N (λ) : fλ ∈ H 1(�), Lfλ = λfλ and ∂νfλ|C ∈ L2(C)
}
,

of the Dirichlet-to-Neumann and Neumann-to-Dirichlet map in L2(C). Since the trace fλ|C of a 
function fλ ∈ H 1(�) belongs to H 1/2(C) ⊂ L2(C) the relations D(λ) and N(λ) are contained in 
L2(C) × L2(C). Clearly,

D(λ) =D(λ) ∩ (
L2(C) × L2(C)

)
and N(λ) =N (λ) ∩ (

L2(C) × L2(C)
)
,

and, in particular, D(λ) ⊂D(λ) and N(λ) ⊂N (λ).
In the next theorem the domains, kernels and multivalued parts of D(λ) and N(λ) are speci-

fied. It is remarkable that mulD(λ) and kerN(λ) coincide with mulD(λ) and kerN (λ), respec-
tively. These facts and the assertions on the domains below are essentially consequences of the 
regularity results

domAD ⊂ H 3/2(�) and domAN ⊂ H 3/2(�)

due to Jerison and Kenig [21,22], and Gesztesy and Mitrea [18,19]. The following lemma is 
particularly useful; cf. [18], Lemma 2.3 and Lemma 2.4.

Lemma 5.1. The following assertions are valid.

(i) Let f ∈ H 3/2(�) and suppose that Lf ∈ L2(�). Then f |C ∈ H 1(C) and ∂νf |C ∈ L2(C).
(ii) For all ϕ ∈ H 1(C) there exists a g ∈ H 3/2(�) such that Lg ∈ L2(�) and g|C = ϕ.

(iii) For all ψ ∈ L2(C) there exists an h ∈ H 3/2(�) such that Lh ∈ L2(�) and ∂νh|C = ψ .

Theorem 5.2. Let λ ∈C. The domains of the Dirichlet-to-Neumann map D(λ) and Neumann-to-
Dirichlet map N(λ) in L2(C) are

domD(λ) = {
ϕ ∈ H 1(C) : (ϕ, ∂νfλ|C)L2(C) = 0 for all fλ ∈ ker(AD − λ)

}
(5.1)

and

domN(λ) = {
ψ ∈ L2(C) : (ψ,fλ|C)L2(C) = 0 for all fλ ∈ ker(AN − λ)

}
.

Moreover,

(i) kerD(λ) = kerD(λ) ⊂ H 1(C),
(ii) mulD(λ) = mulD(λ) ⊂ L2(C),
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and,

(iii) kerN(λ) = kerN (λ) ⊂ L2(C),
(iv) mulN(λ) = mulN (λ) ⊂ H 1(C).

Proof. We verify the assertions for D(λ). Recall first that domD(λ) is given by (4.3). Hence 
the inclusion ⊂ in (5.1) for domD(λ) follows if we show that for all fλ ∈ H 1(�) such that 
Lfλ = λfλ and ∂νfλ|C ∈ L2(C) it follows that fλ|C ∈ H 1(C). By Lemma 5.1 (iii) there exists a 
g ∈ H 3/2(�) such that

Lg ∈ L2(�) and ∂νg|C = ∂νfλ|C .

Then g − fλ ∈ H 1(�), L(g − fλ) ∈ L2(�) and ∂ν(g − fλ)|C = 0, that is, g − fλ ∈ domAN . 
Hence g − fλ ∈ H 3/2(�) by [18], Theorem 2.6 and Lemma 4.8. As g ∈ H 3/2(�) this yields 
fλ ∈ H 3/2(�) and therefore Lemma 5.1 (i) implies fλ|C ∈ H 1(C). For the inclusion ⊃ in (5.1)
let ϕ ∈ H 1(C) and assume that (ϕ, ∂νfλ|C) = 0 for all fλ ∈ ker(AD − λ). It follows from (4.3)
that ϕ ∈ domD(λ). Hence there exists an fλ ∈ H 1(�) such that Lfλ = λfλ and fλ|C = ϕ. By 
Lemma 5.1 (ii) there exists a g ∈ H 3/2(�) such that

Lg ∈ L2(�) and g|C = fλ|C .

It follows that g−fλ ∈ H 1(�), L(g−fλ) ∈ L2(�) and (g−fλ)|C = 0, that is, g−fλ ∈ domAD . 
Hence g − fλ ∈ H 3/2(�) by [18], Lemma 3.4 As g ∈ H 3/2(�) this yields fλ ∈ H 3/2(�) and 
therefore Lemma 5.1 (i) implies ∂νfλ|C ∈ L2(C). We have shown {ϕ, ∂νfλ|C} = {fλ|C, ∂νfλ|C} ∈
D(λ) and, in particular, ϕ ∈ domD(λ). The assertion on domD(λ) in (5.1) is shown.

Next we prove (i) and (ii). As D(λ) is contained in D(λ) it is clear that kerD(λ) ⊂ kerD(λ)

and mulD(λ) ⊂ mulD(λ). In order to prove the inclusion kerD(λ) ⊃ kerD(λ) in (i), let fλ|C ∈
kerD(λ). Then {fλ|C, 0} ∈ D(λ) and it follows from the definition that {fλ|C, 0} ∈ D(λ). This 
shows fλ|C ∈ kerD(λ) and (i) is proven. For (ii) it remains to show the inclusion mulD(λ) ⊃
mulD(λ). For this let ψ ∈ mulD(λ). Then {0, ψ} ∈D(λ) and hence there exists an fλ ∈ H 1(�)

such that Lfλ = λfλ, fλ|C = 0 and ∂νfλ|C = ψ . This implies fλ ∈ domAD and from [18], 
Lemma 3.4, we conclude that fλ ∈ H 3/2(�). But then ψ = ∂νfλ|C ∈ L2(∂�) by Lemma 5.1 (i) 
and therefore {0, ∂νfλ|C} = {0, ψ} ∈ D(λ), that is, ψ ∈ mulD(λ). �

As an immediate consequence of (4.1)–(4.2) and Theorem 5.2 we obtain

kerD(λ) = mulN(λ) = {
fλ|C : fλ ∈ ker(AN − λ)

}
(5.2)

and

kerN(λ) = mulD(λ) = {
∂νfλ|C : fλ ∈ ker(AD − λ)

}
. (5.3)

Furthermore, as a consequence of Lemma 4.2 we obtain the following corollary. Item (i) 
coincides with [5], Proposition 4.11.

Corollary 5.3. Let λ ∈C. Then

(i) mulD(λ) = {0} if and only if λ /∈ σp(AD),
(ii) mulN(λ) = {0} if and only if λ /∈ σp(AN),
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and,

(iii) kerN(λ) �= {0} if and only if λ ∈ σp(AD),
(iv) kerD(λ) �= {0} if and only if λ ∈ σp(AN).

In the following we investigate the Neumann-to-Dirichlet map in L2(C). We will also make 
use of the restriction γN(λ) of γN (λ) to L2(C) given by

γN(λ) := {{∂νfλ|C, fλ} ∈ L2(C) × L2(�) :
fλ ∈ H 1(�), Lfλ = λfλ and ∂νfλ|C ∈ L2(C)

}
,

which is now regarded as an operator or relation in L2(C) × L2(�). It is important to note that

domγN(λ) = domN(λ) and mulγN(λ) = ker(AN − λ),

and, in particular, domγN(λ) = L2(C) if and only if λ /∈ σp(AN). Analogously, let

γD(λ) := {{fλ|C, fλ} ∈ L2(C) × L2(�) :
fλ ∈ H 1(�), Lfλ = λfλ and fλ|C ∈ H 1(C)

}

be the restriction of γD(λ) to H 1(C). Then

domγD(λ) = domD(λ) and mulγD(λ) = ker(AD − λ),

and, in particular, domγD(λ) = H 1(C) if and only if λ /∈ σp(AD). The other statements and 
formulas for γD(λ) and γN (λ) in the previous section remain true for γD(λ) and γN(λ) in an ap-
propriate form. In particular, γD(λ)′ and γN (λ)′ in Lemma 4.5 can now be regarded as operators 
or relations γD(λ)∗ and γN(λ)∗, respectively, in L2(�) × L2(C). Specifically, if λ ∈C then

γD(λ)∗ = {{(AD − λ)g,−∂νg|C} : g ∈ domAD

}
(5.4)

and

γN(λ)∗ = {{(AN − λ)g,g|C} : g ∈ domAN

}
. (5.5)

We list some useful consequences in the next corollary.

Corollary 5.4. The following assertions are valid.

(i) If λ ∈ ρ(AD) then

γD(λ)∗:L2(�) → L2(C), h �→ −∂ν

(
(AD − λ)−1h

)|C,

is bounded. Moreover, γD(λ): L2(C) ⊃ domγD(λ) → L2(�) is a bounded operator with 
dense domain domγD(λ) = H 1(C) and γD(λ) admits a unique continuous extension from 
L2(C) into L2(�).
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(ii) If λ ∈ ρ(AN) then

γN(λ)∗:L2(�) → L2(C), h �→ (
(AN − λ)−1h

)|C
and γN(λ): L2(C) → L2(�) are compact operators.

Proof. It is clear that for all λ ∈ ρ(AD) (or λ ∈ ρ(AN)) the operator γD(λ)∗ (or γN(λ)∗, respec-
tively) is closed and defined on the whole space L2(�), and hence bounded by the closed graph 
theorem. Thus γD(λ)∗∗ is bounded as well and this implies that γD(λ) admits a unique continu-
ous extension on L2(C) which is the closure γD(λ) = γD(λ)∗∗. The operator γN(λ) is defined on 
L2(C) and coincides with γN(λ)∗∗, and hence it is bounded. In particular, γN(λ) is closed as an 
operator from L2(C) into L2(�), and therefore it is also closed as an operator from L2(C) into 
H 1(�). As H 1(�) is compactly embedded in L2(�) this implies that γN(λ) and consequently 
also γN(λ)∗ are compact. �

Theorem 4.6 and Corollary 4.7 have the following analogue statements for D(λ) and N(λ).

Corollary 5.5. Let λ, μ ∈C. Then

D(λ) − D(μ) = (μ − λ)γD(μ)∗γD(λ),

N(λ) − N(μ) = (λ − μ)γN(μ)∗γN(λ),

and, in particular,

D(λ) − D(μ) = (μ − λ)γD(μ)∗
(
I + (λ − μ)(AD − λ)−1)γD(μ),

N(λ) − N(μ) = (λ − μ)γN(μ)∗
(
I + (λ − μ)(AN − λ)−1)γN(μ). (5.6)

We also mention that the Krein type resolvent formula in Theorem 4.9 remains true when 
D(λ), N (λ), γD(λ), and γN (λ) are replaced by the restrictions D(λ), N(λ), γD(λ), and γN(λ), 
respectively. Making use of Lemma 5.1, Theorem 5.2, and (5.4)–(5.5) the same reasoning as in 
the proof of Theorem 4.9 can be used to show Theorem 5.6.

Theorem 5.6. If λ ∈C then

(AN − λ)−1 − (AD − λ)−1 = γD(λ)N(λ)γD(λ)∗ = γN(λ)D(λ)γN(λ)∗.

In the next theorem we show that for all λ ∈ R the Neumann-to-Dirichlet map is selfadjoint 
in L2(C). Its operator part is compact and has at most finitely many negative eigenvalues. In 
particular, the Neumann-to-Dirichlet map is bounded from below for all λ ∈R. For a selfadjoint 
operator or relation S we shall denote by κ−(S) the number of strictly negative eigenvalues, 
counted with multiplicity. Similarly we denote by κ+(S) the number of strictly positive eigen-
values of S, counted with multiplicity.

Theorem 5.7. Let λ ∈ R. Then the Neumann-to-Dirichlet map N(λ) is a selfadjoint relation in 
L2(C) defined on the closed subspace
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domN(λ) = {
ψ ∈ L2(C) : (ψ,fλ|C)L2(C) = 0 for all fλ ∈ ker(AN − λ)

} ⊂ L2(C)

with multivalued part mulN(λ) = {fλ|C : fλ ∈ ker(AN − λ)}. The operator part Nop(λ) of N(λ)

is a compact selfadjoint operator in the Hilbert space domN(λ). Moreover,

(i) κ−(N(λ)) ≤ κ−(AN − λ) < ∞ and κ+(N(λ)) = ∞,
(ii) dim ker(N(λ)) = dim ker(AD − λ) < ∞,

and

(iii) dim mul(N(λ)) = dim ker(AN − λ) < ∞.

Proof. The assertions on the domain and multivalued part of N(λ) were shown in Theorem 5.2. 
The remaining statements will be shown in separate steps.

Step 1. Note first that for all μ ∈ R ∩ ρ(AN) the Neumann-to-Dirichlet map is an operator with 
domN(μ) = L2(C) and that

(N(μ)ϕ,ψ)L2(�) − (ϕ,N(μ)ψ)L2(�) = (fμ|C, ∂νgμ|C)L2(C) − (∂νfμ|C, gμ|C)L2(C)

= 0

by Lemma 4.3, where fμ, gμ are the unique H 1-solutions of Lu = μu such that ∂νfμ|C = ϕ and 
∂νgμ|C = ψ . Therefore N(μ) is a bounded selfadjoint operator in L2(C) for all μ ∈R ∩ ρ(AN). 
In particular, N(μ) is closed as an operator in L2(C) and as ranN(μ) ⊂ H 1(C) it follows that 
N(μ) is also closed as an operator from L2(C) into H 1(C). Hence N(μ) is bounded from L2(C)

into H 1(C). Since H 1(C) is compactly embedded in L2(C) we conclude that N(μ) is a compact 
selfadjoint operator in L2(C) for all μ ∈R ∩ ρ(AN). Moreover, if μ < essinfV then μ ∈ ρ(AN)

and (2.1) yields

(N(μ)ϕ,ϕ)L2(C) = (fμ|C, ∂νfμ|C)L2(C) = (fμ,�fμ)L2(�) + (∇fμ,∇fμ)L2(�)n

≥ (fμ, (V − μ)fμ)L2(�) ≥ 0,

that is, N(μ) is a positive compact operator in L2(C).

Step 2. In order to show the remaining statements for N(λ) and its operator part Nop(λ) we make 
use of (5.6). Fix μ < essinfV ≤ minσ(AN). Then μ ∈R ∩ ρ(AN) and (5.6) implies that

N(λ) = K + (λ − μ)2γN(μ)∗(AN − λ)−1γN(μ), (5.7)

where we have set

K := N(μ) + (λ − μ)γN(μ)∗γN(μ). (5.8)

We have shown in Step 1 that N(μ) is a positive compact operator in L2(C) and the same is true 
for the second summand in (5.8). In fact, according to Corollary 5.4 both operators γN(μ) and 
γN(μ)∗ are compact and as a consequence (λ − μ)γN(μ)∗γN(μ) is a compact positive operator 
in L2(C). Thus K in (5.8) is a compact positive operator in L2(C).
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Step 3. Let λ ∈ σp(AN). In this step we show that N(λ) is a selfadjoint relation in L2(C). By 
(5.7) it is sufficient to check that the relation

T := γN(μ)∗
(
AN − λ

)−1
γN(μ) (5.9)

is selfadjoint in L2(C). We aim to apply Proposition A.1. The assumptions in Proposition A.1 are 
satisfied since AN −λ is selfadjoint and ran(AN −λ) is closed because λ is an eigenvalue of finite 
multiplicity, γN(μ) is a bounded operator from L2(C) into L2(�) and for all hλ ∈ ker(AN − λ)

we have

γ (μ)∗hλ = (λ − μ)−1hλ|C,

so that γ (μ)∗hλ = 0 implies hλ|C = ∂νhλ|C = 0 and hence hλ = 0 by unique continuation. There-
fore γ (μ)∗ � ker(AN − λ) is boundedly invertible and Proposition A.1 yields that the relation T
is selfadjoint in L2(C). It follows that N(λ) = N(λ)∗.

Step 4. Denote by {λk}k∈N the eigenvalues of AN with multiplicities taken into account and 
ordered in an increasing way. For all λ ∈ (μ, ∞) the eigenvalues of the selfadjoint relation 
(AN − λ)−1 are given by {(λk − λ)−1 : k ∈ N and λk �= λ} and mul(AN − λ)−1 = ker(AN − λ). 
In particular, there are at most finitely many negative eigenvalues (λi − λ)−1 with λi < λ of 
(AN − λ)−1 and the positive eigenvalues (λj − λ)−1 with λj > λ of (AN − λ)−1 accumulate 
to 0. Hence the selfadjoint operator part ((AN − λ)−1)op of (AN − λ)−1 acting in the Hilbert 
space ran(AN −λ) is compact. It is not difficult to see that the operator part Top of the selfadjoint 
relation T in (5.9) is given by

Top = γN(μ)∗
(
(AN − λ)−1)

opγN(μ).

It then follows that Top is compact, that T has finitely many negative eigenvalues and κ−(T ) ≤
κ−(AN − λ) < ∞. As K in (5.7) is a positive compact operator these facts remain true for 
Nop(λ) and N(λ). The assertions (ii) and (iii) follow easily from (5.2), (5.3), and a unique con-
tinuation argument. Moreover, as Nop(λ) is compact and does not have finite rank, we conclude 
that κ+(N(λ)) = ∞. �
Remark 5.8. We note that the domain of the relation T in (5.9) consists of all those ϕ ∈ L2(C)

such that γN(μ)ϕ ∈ ran(AN − λ). Next, let hλ ∈ ker(AN − λ) and ϕ ∈ L2(C). Then

(μ − λ)(γN(μ)ϕ,hλ)L2(�) = (LγN(μ)ϕ,hλ)L2(�) − (γN(μ)ϕ,ANhλ)L2(�)

= −(ϕ,hλ|C)L2(C)

by Green’s second identity and we used that ∂νhλ|C = 0. Hence for all ϕ ∈ L2(C) we conclude 
that γN(μ)ϕ ∈ ran(AN − λ) if and only if ϕ ⊥ hλ|C for all hλ ∈ ker(AN − λ). This is in accor-
dance with the form of domN(λ) in Theorem 5.2, i.e.

domT = domN(λ) = {
ψ ∈ L2(C) : (ψ,fλ|C)L2(C) = 0 for all fλ ∈ ker(AN − λ)

}
.
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In the next example we show that the estimate on the number of negative eigenvalues of N(λ)

in Theorem 5.7 (i) is not optimal. Roughly speaking the reason is that eigenvalues of AD which 
are smaller than λ lead to a cancellation of negative eigenvalues of N(λ).

Example 5.9. Suppose that � = [0, 1] ×[0, 1] and that L = −� (that is V = 0). It is well-known 
and not difficult to see that the eigenvalues of the Dirichlet Laplacian AD and the Neumann 
Laplacian AN are given by

σp(AD) = {
(m2 + n2)π2 : m,n ∈ {1,2, . . .}}

= {
2π2,5π2,5π2,8π2,10π2,10π2,13π2,13π2 . . .

}

and

σp(AN) = {
(m2 + n2)π2 : m,n ∈ {0,1, . . .}}

= {
0,π2,π2,2π2,4π2,4π2,5π2,5π2,8π2, . . .

}

respectively. Hence for all λ ∈ (4π2, 5π2) the estimate in Theorem 5.7 (i) becomes

κ−(N(λ)) ≤ κ−(AN − λ) = 6. (5.10)

However, it follows from Friedlander’s inequality (see [6], Proposition 4, and [17]) that the 
Dirichlet-to-Neumann map D(λ) has exactly

�
{
λk ∈ σp(AN) : λk ≤ λ

} − �
{
μj ∈ σp(AD) : μj ≤ λ

} = 6 − 1 = 5

eigenvalues in (−∞, 0]. As 0 is an eigenvalue of D(λ) if and only if λ is an eigenvalue of AN

it follows that in the present situation the Dirichlet-to-Neumann map D(λ) has 5 eigenvalues in 
(−∞, 0). Thus N(λ) = D(λ)−1 also has 5 eigenvalues in (−∞, 0), i.e., the estimate (5.10) is 
not sharp.

The next theorem is a corollary of Theorem 5.7. The Dirichlet-to-Neumann map D(λ) as 
the inverse of the Neumann-to-Dirichlet map is selfadjoint in L2(C). The nonzero eigenvalues 
of D(λ) are the reciprokes of the nonzero eigenvalues of N(λ), and kerD(λ) = mulN(λ) and 
mulD(λ) = kerN(λ) by (5.2) and (5.3). In particular, the operator part Dop(λ) is an unbounded 
operator with finitely many negative eigenvalues.

Theorem 5.10. For all λ ∈ R the Dirichlet-to-Neumann map D(λ) is a selfadjoint relation in 
L2(C) defined on the subspace

domD(λ) = {
ϕ ∈ H 1(C) : (ϕ, ∂νfλ|C) = 0 for all fλ ∈ ker(AD − λ)

} ⊂ L2(C)

with multivalued part mulD(λ) = {∂νfλ|C : fλ ∈ ker(AD − λ)}. The operator part Dop(λ) of 
D(λ) is an unbounded selfadjoint operator in the Hilbert space domD(λ). Moreover,

(i) κ−(D(λ)) = κ−(N(λ)) ≤ κ−(AN − λ) < ∞ and κ+(D(λ)) = ∞,
(ii) dim ker(D(λ)) = dim ker(AN − λ) < ∞,
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and

(iii) dim mul(D(λ)) = dim ker(AD − λ) < ∞.
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Appendix A. Linear relations

In this section we briefly recall some definitions and properties of linear relations in Hilbert 
spaces. A (closed) linear relation S from a Hilbert space G into a Hilbert space H is a (closed) 
subspace of G × H. The elements in a linear relation S consist of two components and will 
usually be written in the form {g, h} ∈ S. The domain, range, kernel and multivalued part of a 
linear relation S from G into H are defined as

domS = {
g ∈ G : {g,h} ∈ S for some h ∈H

}
,

ranS = {
h ∈H : {g,h} ∈ S for some g ∈ G

}
,

kerS = {
g ∈ G : {g,0} ∈ S

}
,

and

mulS = {
h ∈H : {0, h} ∈ S

}
,

respectively. Observe that a linear relation S is the graph of an operator if and only if mulS = {0}. 
The inverse S−1 of a linear relation S from G to H is defined by

S−1 = {{h,g} ∈ H× G : {g,h} ∈ S
}
,

and S−1 is a linear relation from H into G. Note that S−1 is closed if and only if S is closed. 
Moreover, it is easy to see that domS = ranS−1 and mulS = kerS−1. The sum S + T of two 
linear relations S and T from G into H is defined by

S + T = {{g,h + h′} : {g,h} ∈ S and {g,h′} ∈ T
}
.

It is clear that S + T is also a linear relation from G to H. Assume that K is a further Hilbert 
space and let R be a linear relation from K to G. Then the product

SR = {{k,h} ∈K ×H : there exists a g ∈ G
such that {k, g} ∈ R and {g,h} ∈ S

}

is a linear relation from K to H. The adjoint S∗ of a linear relation S from G into H is defined by
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S∗ = {{h′, g′} ∈H× G : (h,h′)H = (g, g′)G for all {g,h} ∈ S
}
.

This definition extends the usual definition of the adjoint of a bounded or unbounded operator. 
Observe that S∗ is a closed linear relation from H into G and that (S∗)−1 = (S−1)∗ and S∗∗ = S, 
where S is the closure of S in G ×H. Moreover, it is not difficult to check that

(ranS)⊥ = kerS∗ and (domS)⊥ = mulS∗. (A.1)

From the second equality in (A.1) it also follows that the adjoint of S is an operator if and only 
if domS is dense in G. In the case that G ⊂ H ⊂ G′ form a rigging of Hilbert spaces and S is a 
linear relation from G into H the adjoint with respect to the extension of the inner product in H
onto G × G′ is denoted by S′, which is a linear relation from H into G′.

Assume now that S is a closed linear relation in the Hilbert space H. The point spectrum 
σp(S) is defined as the set of all λ ∈C such that ker(S − λ) �= {0}. An element λ ∈C belongs to 
the resolvent set ρ(S) of S if (S − λ)−1 ∈ L(H). The spectrum of S is σ(S) = C \ ρ(S).

A linear relation A in H is said to be symmetric, or essentially selfadjoint, or selfadjoint if 
A ⊂ A∗, or A = A∗, or A = A∗, respectively. For a selfadjoint relation A one has (domA)⊥ =
mulA and it follows that A can be regarded as an orthogonal sum of a selfadjoint operator in the 
Hilbert space Hop = domA and a purely multivalued relation A∞ = {{0, h} : h ∈ mulA} in the 
Hilbert space H∞ = mulA. In particular, C \R ⊂ ρ(A) and σ(A) ⊂R. We will also make use of 
the fact that the sum A + C of a selfadjoint relation A in H and a symmetric operator C ∈ L(H)

is a selfadjoint relation in H.
The following proposition provides a sufficient criterion for the selfadjointness of a certain 

product of a selfadjoint relation with two bounded operators. This statement plays an important 
role in the proof of Theorem 5.7.

Proposition A.1. Let H and G be Hilbert spaces, let A be a selfadjoint relation in H, let 
B ∈ L(G,H), and assume that ranA is closed. Then the relation

T = B∗A−1B

is essentially selfadjoint in G. If, in addition, B∗ � kerA is boundedly invertible then T is selfad-
joint in G.

Proof. Note first that the relation T has the form

T = {{ϕ,B∗f } : ϕ ∈ G, f ∈H and {Bϕ,f } ∈ A−1}

and that

domT = {
ϕ ∈ G : Bϕ ∈ domA−1 = ranA

}
,

mulT = {
B∗f : f ∈ mulA−1 = kerA

}
.

Observe also that mulT is closed if B∗ � kerA is boundedly invertible. Furthermore, as A is 
assumed to be selfadjoint the same is true for A−1 and, in particular, A−1 is symmetric. This 
implies that T and T are symmetric and hence

domT ⊂ domT ⊂ domT ∗ and mulT ⊂ mulT ⊂ mulT ∗. (A.2)
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We claim that

(
mulT

)⊥ ⊂ domT and
(
domT

)⊥ ⊂ mulT . (A.3)

In fact, for the first inclusion assume that ψ ∈ G is orthogonal to mulT . Then we have

0 = (ψ,B∗f )G = (Bψ,f )H

for all f ∈ kerA and hence Bψ is orthogonal to kerA = (ranA)⊥. As ranA is assumed to be 
closed we conclude that Bψ ∈ ranA and hence ψ ∈ domT . This shows the first inclusion (A.3). 
The second inclusion in (A.3) follows by taking orthogonal complements.

We conclude from (A.1), (A.2), and the second inclusion in (A.3) that

mulT ⊂ mulT ∗ = (
domT

)⊥ ⊂ mulT ⊂ mulT ,

and hence

mulT = mulT = mulT ∗. (A.4)

Similarly, from (A.1), (A.2), the first inclusion in (A.3), and mulT ⊂ mulT we find

domT ⊂ domT ⊂ domT ∗ ⊂ (
domT ∗)⊥⊥ = (

mulT
)⊥ ⊂ (mulT )⊥ ⊂ domT ,

and hence

domT = domT = domT ∗. (A.5)

The assertions now follow from (A.4) and (A.5). In fact, in order to show that T is essentially 
selfadjoint it remains to check that the inclusion T ∗ ⊂ T holds. For this let {ϕ, ψ} ∈ T ∗. Then by 
(A.5) there exists a ϑ such that {ϕ, ϑ} ∈ T . As T is symmetric we have T ⊂ T ∗ and {ϕ, ϑ} ∈ T ∗. 
Then ψ − ϑ ∈ mulT ∗ = mulT by (A.4) and we obtain {0, ψ − ϑ} ∈ T . Therefore

{ϕ,ψ} = {ϕ,ϑ} + {0,ψ − ϑ} ∈ T ,

and hence T is essentially selfadjoint. If, in addition, B∗ � kerA is boundedly invertible then 
mulT is closed and hence mulT = mulT ∗ by (A.4). Now the argument above remains valid 
with T replaced by T and it follows that T is selfadjoint. �
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