

Georg Stenzel, BSc.

The non-relativistic limit of Dirac operators with electrostatic and Lorentz scalar δ -shell interactions in \mathbb{R}^3

MASTER'S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master's degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dr. Jussi Behrndt

Institute of Applied Mathematics

Dr. Markus Holzmann

Abstract

In this master thesis the non-relativistic limit of Dirac operators with electrostatic and Lorentz scalar δ -shell interactions in \mathbb{R}^3 is investigated. These interactions appear, for instance, as idealizations in the description of a relativistic quantum particle with spin 1/2 in the presence of strongly localized external fields. In order to describe δ -shell interactions, we consider the formal differential expression

$$\mathcal{A}_{n,\tau} = A_0 + (\eta I_4 + \tau \beta) \langle \delta_{\Sigma}, \cdot \rangle \delta_{\Sigma}$$

as a singular pertubation of the free Dirac operator A_0 . Here, Σ is a compact, closed and C^2 -smooth surface in \mathbb{R}^3 , $\eta, \tau \in \mathbb{R}$ represent the strengths of interaction and $I_4, \beta \in \mathbb{C}^{4\times 4}$ are two matrices. Applying the theory of quasi boundary triples, self-adjoint operators $A_{\eta,\tau}$ can be constructed by encoding the effect of the δ -interactions in form of suitable jump conditions on the interface Σ . These operators are interpreted as realizations of the formal differential expression above.

Subsequently, for $\lambda \in \mathbb{C} \setminus \mathbb{R}$ the non-relativistic limit

$$(A_{\eta,\tau} - (\lambda + mc^2))^{-1} \to \begin{pmatrix} (T_{\eta,\tau} - \lambda)^{-1} & 0\\ 0 & 0 \end{pmatrix}$$
 for $c \to \infty$

is determined for the resolvent, where $T_{\eta,\tau}$ is a self-adjoint operator. The corresponding convergence analysis and the characterization of the limit operator $T_{\eta,\tau}$ is done separately for the two cases $\eta + \tau \neq 0$ and $\eta + \tau = 0$, as in these the limit operators behave quite differently.

For the parameter combination $\eta + \tau \neq 0$, the limit operator $T_{\eta,\tau}$ turns out to be a Schrödinger operator with a δ -interaction of strength $\eta + \tau$. This indicates that the Dirac operators $A_{\eta,\tau}$ can indeed be regarded as relativistic counterparts of the well studied Schrödinger operators with δ -interactions.

Finally, it is shown that in the case of $\eta + \tau = 0$, the limit operator $T_{\eta,\tau}$ is a Schrödinger operator as well. However, the characterization of the domain of definition yields that, in contrast to the case $\eta + \tau \neq 0$, there are no jump conditions describing δ -interactions but oblique jump conditions.

Contents

1	Introduction	11
2	Definitions and preliminary results	19
	2.1 Linear operators	. 19
	2.2 Quasi boundary triples	. 26
	2.3 A Krein-like formula	
	2.4 Sobolev spaces on a domain	
	2.5 Sobolev spaces on the boundary	. 35
	2.6 Integral operators and operators in $L^2 \times L^2$	
3	Dirac operators with electrostatic and Lorentz scalar δ -shell interactions 3.1 The maximal and free Dirac operator	51 . 51
4	The non-relativistic limit	83
	4.1 The non-relativistic limit for $\eta + \tau \neq 0$. 83
	4.2 The non-relativistic limit for $\eta + \tau = 0$	
Bibliography		125