Graz University of Technology - Institute of Applied Mathematics
Dr. Gerhard Unger
Address Graz University of Technology
Institut für Angewandte Mathematik
Steyrergasse 30
A 8010 Graz

Electronic Mail gunger@math.tugraz.at

Scientific interests
  • Eigenvalue and resonance problems
  • Boundary element methods
Grants
Awards
Publications
  • G. Unger: Convergence analysis of a Galerkin boundary element method for electromagnetic resonance problems. Accepted for publication in SN PDE, Preprint.
  • S. Kurz, S. Schöps, G. Unger, F. Wolf: Solving Maxwell's Eigenvalue Problem via Isogeometric Boundary Elements and a Contour Integral Method. Accepted for publication in Math. Methods Appl. Sci. (2021) arXiv.
  • M. Holzmann, G. Unger: Boundary integral formulations of eigenvalue problems for elliptic differential operators with singular interactions and their numerical approximation by boundary element methods. Oper. Matrices 14 (3) (2020), 555-599. arXiv
  • U. Hohenester, G. Unger, A. Trügler: Novel Modal Approximation Scheme for Plasmonic Transmission Problems. Phys. Rev. Lett. 121, 246802, 2018.
  • G. Unger: Convergence analysis of a Galerkin boundary element method for electromagnetic eigenvalue problems. Technical Report 2017/2, Institute of Computational Mathematics, Graz University of Technology, 2017. Technical report, Extended and revised version.
  • O. Steinbach, G. Unger: Combined boundary integral equations for acoustic scattering-resonance problems. Math. Methods Appl. Sci. 40 (2017), 1516--1530.
  • A. Kimeswenger, O. Steinbach, G. Unger: Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems. SIAM J. Numer. Anal. 52, no. 5 (2014), 2400-2414.
  • A. Kimeswenger, O. Steinbach, G. Unger: Coupled finite and boundary element methods for vibro-acoustic interface problems. In: Domain Decomposition Methods in Science and Engineering XXI (J. Erbel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund eds.). Lecture Notes in Computational Science and Engineering, vol. 98, Springer, Heidelberg, pp. 507-515, 2014.
  • G. Unger: Convergence orders of iterative methods for nonlinear eigenvalue problems. In Advanced Finite Element Methods and Applications, volume 66 of Lecture Notes of Applied and Computational Mechanics, pages 217-238. Springer, New York, 2013.
  • C. Effenberger, D. Kressner, O. Steinbach, and G. Unger. Interpolation-based solution of a nonlinear eigenvalue problem in fluid-structure interaction. In Proceedings in Applied Mathematics and Mechanics, volume 12, pp. 633–634, 2012.
  • O. Steinbach, G. Unger: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem. SIAM J. Numer. Anal. 50 (2012),710-728.
  • G. Unger: Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems. Ph.D. thesis, TU Graz, 2009.
  • O. Steinbach, G. Unger: A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numer. Math.113 (2009), 281-298.
  • O. Steinbach, G. Unger: A boundary element algorithm for the Dirichlet eigenvalue problem of the Laplace operator. In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2007 (K. Kunisch, G. Of, O. Steinbach eds.), Springer, Heidelberg, pp. 191-198, 2008.
Lehrveranstaltungen füherer Semester