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Abstract

In this master’s thesis the spectrum of the two-dimensional Landau Hamiltonian with
a singular d-potential supported on a Cb! curve I' in R? is analyzed. It is well-known
that the essential spectrum of the Landau Hamiltonian is stable under perturbations by
a singular potential adr with real-valued interaction strength av € L>°(T"), hence the dis-
crete eigenvalues of the perturbed Landau Hamiltonian must accumulate at the so-called
Landau levels Ay, g € N, which are the isolated eigenvalues of infinite multiplicity of the
Landau Hamiltonian. It turns out, that the rate of accumulation towards the Landau
levels is closely related to the rate at which the singular values of the compact and self-
adjoint Toeplitz-type operators P,orP, tend to zero, where P, : L*(IR?) — ker(Ag — A,),
q € Ny, denotes the projections into the eigenspaces of the Landau Hamiltonian. The
main focus of this thesis is to extend the spectral theory for these Toeplitz-type opera-
tors, which exists for the case where I' is a smooth curve, to the slightly more general
situation where I' is a C! curve in R2.



Kurzfassung

In dieser Arbeit wird untersucht, wie sich das Spektrum des Landau-Operators bei einer
Stérung durch ein auf einer C''-Kurve I' getragenes J-Potential verhilt. Es ist wei-
thin bekannt, dass das wesentliche Spektrum des Landau-Operators bei einer Stérung
durch ein singuléres Potential adr mit reeller Interaktionsstirke a € L°°(T") erhal-
ten bleibt, womit sich die diskreten Eigenwerte des gestorten Landau-Operators um
die sogenannten Landau-Level Ay, ¢ € Np, hédufen miissen. Die Landau-Level sind
dabei die isolierten Eigenwerte unendlicher Vielfachheit des Landau-Operators, die das
gesamte Spektrum bilden. Ks stellt sich heraus, dass die Konvergenzgeschwindigkeit
mit der eine solche Hiaufung auftritt im direkten Zusammenhang zu den Singulérwerten
der kompakten und selbstadjungierten Toeplitz-Operatoren P,orF, steht. Hierbei steht
P, : L*(R?) — ker(Ag—A), q € Ny, fiir die orthogonalen Projektionen in die Eigenriiume
des Landau-Operators. Zur Zeit existieren spektrale Abschédtzungen der Singuldrwerte
fiir Toeplitz-Operatoren fiir den Fall, dass I eine glatte Kurve in R? ist. Das Ziel dieser
Arbeit ist es, dieses Resultat fiir die leicht verallgemeinerte Situation auszudehnen, in
der T eine CY'-Kurve in R? ist.
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1 Introduction

Quantum motions of charged particles in wires are often modelled by networks of leaky
quantum wires, which from a mathematical standpoint can be modelled by Schrédinger
operators with singular potentials supported on families of curves (see e.g. |6, |8, [10L
26, 39| for references). Nowadays, even though the spectral properties of Schréodinger
operators with singular potentials are a well-studied field, there still exist only a handful
of mathematical contributions that consider the influence of magnetic fields (see [3, |5,
11H14) 118}, 129]), despite their importance in modern physics.

In this master’s thesis Schrodinger operators with a constant magnetic field and a sin-
gular é-potential should be considered. In order to explain the focus and results of this
master’s thesis, let us start by introducing the Landau Hamiltonian, which is a special
case of the magnetic Schrédinger operator under a constant magnetic field. Assuming
that the strength of the magnetic field is given by some real-valued constant B > 0 with
corresponding vector potential A(x1,x2) = g(—xg,xl)—r, (z1,72) € R?, in symmetric
gauge, the two-dimensional Landau Hamiltonian is defined as the operator

Ao = Vi, dom(Ag) = {f € HA(R?): V4 f € L*(R?)}, (1.1)

where H4 (R?) = {f € L3(R?) : [Vaf| € L?(R?)} is the magnetic Sobolev space of first
order, and

Va:i=iV+A (1.2)

is the magnetic gradient. It is a well-known fact the unperturbed Landau Hamiltonian
is self-adjoint in L?(IR?) and that its spectrum is given by

o(Ao) = 0ess(Aog) = U{Aq}a (1.3)
q=0

where the so-called Landau levels Ay = (2¢ 4 1)B are eigenvalues of infinite multiplicity.
Historically, magnetic Schrédinger operators were first studied from a physical point of
view in 1928 by Fock in [16] and two years later by Landau in [23], who was the first
to investigate the spectrum of the Landau Hamiltonian Ag. In 1962, first mathematical
descriptions followed by Ikebe and Kato in [19]. Around 1970 the field around magnetic
Schrodinger operators began to expand, in particular, under the efforts of Kato [20] and
Simon [37]. A lot of references about the Landau Hamiltonian and magnetic Sobolev
spaces in general can also be found in Nicolas Raymonds Little Magnetic Book |34].

One topic that has been of historical interest, is the behaviour of the spectrum of the Lan-
dau Hamiltonian under perturbation by a regular electric potential V : R? — R. From a
physical point of view, such a potential V' can be interpreted as an electric potential that
is interfering with the magnetic field induced by the vector potential A. It is well-known
that perturbations of the Landau Hamiltonian by a decreasing electric field can generate



an accumulation of discrete eigenvalues of the perturbed Landau Hamiltonian Ag+ V' at
the Landau levels, which was first described by Raikov in [32] (see also |15} [22} 28] [30L
33,35, 36]). Under the additional assumption that V € L>°(IR?; R) is non-negative with
V #0 and ||V pec(r2r) < 2B it was shown in [31] that

ker(Ag +V - Aq) = {0}, q € Ny,

i.e. the Landau levels are not eigenvalues of Ag£=V anymore, and the discrete eigenvalues
of Ag =V must accumulate towards the Landau levels from above or below, respectively.
The assumption that V is sign-definite is essential here, as it was shown in the same
paper that for each ¢ € Ny there exists a compactly supported potential V € L>(R?;R)
with [[V| oo (r2,r) < B such that

dimker(Ag £V — Ay) = oc.

Furthermore, it turns out that the rate of accumulation of the discrete eigenvalues of
Ag + V towards the Landau levels is closely related to the rate at which the singular
values of the compact and self-adjoint Toeplitz-type operator P,V P, tend to zero (see
|15, 18} 28, 33} 136]), where P, : L?(R?) — ker(Ag — A4), g € Np, denotes the projections
onto the infinite-dimensional eigenspaces of each Landau level. Hence, it makes sense to
study the spectral behaviour of regular Toeplitz operators of the form F,V P, to analyze
the spectrum of the Landau Hamiltonian with an electric potential.

In this master’s thesis we are considering an analogous problem, where the perturba-
tion of the Landau Hamiltonian is given by a singular potential ady;, that is supported
on a compact Cl! curve ¥ C R? with interaction strength o € L°°(3;R). Similar to
the above problem with a regular potential V', one can verify that the addition of such a
singular potential can generate an accumulation of discrete eigenvalues of the perturbed
Landau Hamiltonian Ay + ady; towards the Landau levels. Moreover, it was shown in [3]
that the rate of accumulation at the Landau levels A, can be estimated in terms of the
singular values of the compact and self-adjoint Toeplitz-type operators P,orF,, where
I" = supp a denotes the essential support of the interaction strength «. Resorting to the
spectral analysis of the Toeplitz operators P,érP, in [31], which was done for a simple
C> curve in R?, sharp estimates for the rate of accumulation at the Landau levels were
derived in [3]. The main goal of this master’s thesis is to extend the asymptotic estimates
for the singular values of the Toeplitz-type operators P,dr P, provided in [31] to the case,
where T is a slightly less regular C1! curve in R?. After that we are going to employ the
derived results in the spectral analysis of the Landau Hamiltonian with a J-potential,
following the lines of [3].

In order to explain the results of this master’s thesis more precisely, let ¥ be the bound-
ary of a compact C1!' domain €; € R? and let o € L*(X;R). Formally, the Landau
Hamiltonian with a é-potential is given by the expression

Ay = VA + ads, = Ag + ads, (1.4)



where 0y, denotes the d-interaction supported on ¥ and « functions as the interaction
strength of our singular perturbation. In order to model the Landau Hamiltonian A,
with a d-potential in a mathematically rigorous way, we make use of the sesquilinear form

aulf, 9] = (Vaf, Vag)rzme) + (afls,glv)2(s),  dom(as) = Ha(R?), (1.5)

which is densely defined, closed and symmetric and hence induces a self-adjoint operator
A, in L?(R?). If we denote the unit normal vector field pointing outward of ; by v
and set Q. = R?\Q; for the unbounded exterior domain, we will be able to use interface
conditions on the boundary ¥ in Theorem [£.6]to show that the Landau Hamiltonian with
a singular potential is explicitly given by

Aof = Vaflo, ® Valla,

1.6
dom(Aa) = {f € HA(R) : V& fla, € L), Oufe—Oufi = afls}. (O

In particular, the first representation theorem for sesquilinear forms now implies the
self-adjointness of A,.

Theorem 1. The Landau Hamiltonian A, with a 0-potential defined in ((1.6) is self-
adjoint in L*(R?).

Once we have established the self-adjointness of the Landau Hamiltonian with a singular
potential we will proceed with a spectral analysis of the operator A,. Following the
lines of |5] we are going to use the quadratic forms associated to A, and Ag to derive a
compact resolvent factorization of the unperturbed Landau Hamiltonian and the Landau
Hamiltonian with a J-interaction. Applying an appropriate version of Weyl’s theorem
ensures the stability of the essential spectrum, which will be shown in Theorem In
the following theorem we make use of the compact operators y()\) : L2(X) — L2(R?)
and M()) : L?(X) — L?(X), which are introduced in Definition and can be seen as
integral operators with the Green function of Ag as integral kernel.

Theorem 2. For A\ < B sufficiently small the resolvent difference of Ay and A, admits
the compact factorization

Wa=(Aa = N7 = (Ao = N7 = =9 (M) (L +aM () Far(\), (1.7)

In particular, there holds
Uess(Aa) = Uess AO U {Aq} (18)

where Ay = (2¢ + 1)B, q € Ny, are the Landau levels.

After showing that the essential spectrum of the Landau Hamiltonian is stable under
perturbations with a singular potential, we are going to continue with the main contri-
bution of this master’s thesis, which consists of the slight improvement of the spectral
asymptotics for the Toeplitz-type operators P,dr P, that are provided in [31]|. In order



to study these Toeplitz-type operators, we are going to make use of the corresponding
quadratic form

%mzzﬂanmw%dmx<mm®=L%Wx

which gives rise to the compact and self-adjoint Toeplitz-type operator Tg . The sharp
spectral estimates for the Toeplitz-type operator Tg in [31] were shown under the as-
sumption that I' is a simple smooth curve in R?. Following the lines of the proof of
Proposition 4.1(ii) in [31], we are going to show the following asymptotic estimate in
Proposition [5.8

Theorem 3. Let ¥ be the boundary of a CY' domain Q. Suppose that ' C ¥ is a closed
subarc with positive measure. Then for any q € Ng the eigenvalues of the Toeplitz-type
operator T; satisfy

1k _ B

lim (k‘!sk(T;)) 5 (Cap (F))27

k—o0
where Cap (I') denotes the logarithmic capacity of T' (see Def. |2.15)).

In the final section of this master’s thesis we are going to use the spectral asymptotics
that we derived for the Toeplitz-type operators T; and follow the lines of [3|, in order
to provide sharp spectral estimates on the eigenvalue clustering of A, at the Landau
levels. Assuming that the interaction strength « in — is positive (negative)
on X, we are going to use classic perturbation results in the proof of Theorem [6.7] to
show that an accumulation of the discrete eigenvalues of A, towards the Landau levels
A, from above (below, respectively) can be observed. Relying on our analysis of the
Toeplitz-type operators of the form P,drF,, we are then going to establish sharp spectral
asymptotics on the rate of accumulation of the discrete eigenvalues of A, towards the
Landau levels A,. In Theorem we are going to provide an upper bound for the rate
of accumulation towards the Landau levels, which even remains true for sign-changing
«. In order to obtain lower bounds we require o« Z 0 to be sign-definite, as it is still
an open problem to show that an eigenvalue accumulation remains present for sign-
changing «. In Theorem we provide exact spectral asymptotics for the case that «
is uniformly positive (uniformly negative) on a closed subarc I' C ¥ of positive measure.
More precisely, we arrive at the following result:

Theorem 4. Let a € L>®(X;R) be uniformly positive on I' = suppa. Then for each
q € Ny the eigenvalues { A, (q) }ren of Aq lying in the interval (Ay, A + B] satisy

({e(g) — Agl)/* = 2 (Cap (1)) (19)

lim
k—o0

where Cap (I') denotes the logarithmic capacity of T' (see Def. |2.15).



Organization of the master’s thesis. Section 2 contains some preliminary materials
that are needed in the proofs of the main results of this master’s thesis. In Section [2.1
and we are going to collect some basic definitions from operator theory and provide
some of the well-known results from the theory of sesquilinear forms. Section [2.3|contains
CF# domains and tubular coordinates around curves. In Section we cover complex
curve integrals and provide elementary estimates for analytic functions using Cauchy’s
integral formula. In Section [2.5| we are going to investigate the n-th root asymptotics
of the leading coefficients of orthonormal polynomials with respect to a given Hausdorff
measure. Section [2.6] and contain elementary results from spectral and perturbation
theory of self-adjoint operators under compact perturbations. In Section 2.8 we will give
an overview of classical Sobolev spaces and recall some of their well-known properties.
Section [2.9] contains properties of Schatten-von Neumann ideals.

Section [3| will be devoted to magnetic Sobolev spaces, which form the magnetic counter-
part to classical Sobolev spaces. Basic definitions and elementary results for magnetic
Sobolev spaces are collected in Section [3.1] We will see in Section that classical and
magnetic Sobolev spaces are locally equivalent and use this knowledge in Section [3.3] to
construct bounded Dirichlet and Neumann trace operators on Lipschitz domains. Section
[3-4] will then be devoted to deriving a version of Green’s first identity for the magnetic

gradient given in ((1.2)).

In Section [4] we are going to cover different classes of Landau Hamiltonians. Section
[4-1] contains basic material regarding the properties of the unperturbed Landau Hamil-
tonian. In Section we will study the Landau Hamiltonian with Dirichlet boundary
conditions on a bounded C*! domain. In Section (.3 we define the Landau Hamiltonian
A, with a d-potential from and prove its self-adjointness. In Sectionwe are going
to use the quadratic forms of the unperturbed Landau Hamiltonian Ay and the Landau
Hamiltonian A, with a singular potential to derive the compact factorization of
their resolvent difference Wy. Section [£.5] will then be about the thorough analysis of the
resolvent difference.

In Section [5] of this master’s thesis we introduce Toeplitz operators on compact Lipschitz
domains and C™! curves I' and provide sharp spectral asymptotics for the compressed
operators F,or P, onto the eigenspaces to the ¢g-th Landau Level. In particular, Section
5.2| contains the aforementioned spectral analysis of the Toeplitz-type operators on curves
for the slightly more general case, where I is a closed subarc of a compact C'! curve X.

Finally, in Section [6] we are going to derive exact spectral asymptotics for the discrete
eigenvalues of the Landau Hamiltonian with a d-potential. For this we are first going
to show in Section that the singular values of the compressed resolvent difference
P,W\P, from can be estimated in terms of the singular values of P, 0rF,. After
that we will use the spectral asymptotics for the Toeplitz-type operators from Section
-2 to obtain sharp spectral estimates for the eigenvalue clustering at the Landau levels.
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2 Preliminaries

This section contains some preliminary material that will be needed for the analysis of
the perturbed Landau Hamiltonian. In Section [2.1] we collect some basic definitions that
will be needed during the master’s thesis and then recall some of the well-known facts
about sesquilinear forms in Section . In Section and we will introduce C*+
domains and discuss curve integrals in R? and C, utilizing Cauchy’s integral formula
to provide useful estimates for analytic functions on curves. Section [2.5] is devoted to
the analysis of the n-th root asymptotics of orthogonal polynomials with respect to the
Hausdorff measure of a given Lipschitz curve I'. In Section and basic results from
spectral and perturbation theory for self-adjoint operators under compact perturbations
are provided. Section [2.§ and will then be used to recall some of the well-known
properties of Sobolev spaces and Schatten-von Neumann ideals.

2.1 Elementary Results and Definitions

This subsection contains some very basic definitions and results from elementary calculus
and linear algebra. In the following, let X and Y be two normed spaces and T an
operator from X to Y. As usual, we are going to denote the domain of definition of T" by
dom(7T") C X and say that T is densely defined if dom(T") is dense in X. Furthermore,
we introduce the following spaces:

ker(T') = {x € dom(T") : Tx = 0} C X, (Kernel of T)
ran(7) = {Tz :x € dom(T)} C Y, (Range of T')
G(T)=A{(z,Tz) : x € dom(T) C X x Y. (Graph of T')

In the case where T': dom(7) — Y is a bounded operator, we are going to denote its
operator norm by ||T|| y_,y-. If there is no danger of confusion we will omit the declaration
of the spaces in the operator norm and just write ||T'|| instead of ||T'|| y_,y. We will denote
the space of all bounded and everywhere defined operators from X to Y by B(X,Y’) and
write B(X) instead of B(X, X). Now suppose, that T : dom(7") — # is an operator
acting in a complex Hilbert space H with inner product (-,-). If T is densely defined, we
can define the adjoint operator T of T' via the relation

dom(T*)={yeH:3 € H: (Tz,y) = (x,y) Vx e dom(T)},
Ty =1v.

We call T' symmetric, if T' C T and say that T is self-adjoint if T'=T*. Recall that an
operator T is symmetric if and only if the corresponding form dom(7T") 3 z +— (T'z, x) is
real-valued. Assume now that 7' is a symmetric operator. We use the notation T" > 0
and say that T is positive, if (Tx,xz) > 0 for all z € dom(T"). We say that T is uniformly
positive and write T > ¢, if there exists a constant ¢ > 0 such that (Tz,z) > ¢|z||* for
all z € dom(7'). In the case where ¢ is allowed to be zero we use the notation 7" > 0 and
call T' a non-negative operator.
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Recall that for a given vector space V and a subspace U C V the quotient space of
V by U is defined as the set of equivalence classes

V/IU={v+U:veV}

The codimension of U in V is then defined as codimU = dim V/U. For the convenience
of the reader we are going to state the fundamental theorem on homomorphisms here,
which shows that any linear map can be made injective by factoring out the kernel from
its domain of definition.

Theorem 2.1 (|9, Homomorphiesatz fiir Ringe]). Let V' and W be two vector spaces
and f:V — W a linear mapping. Then V/ker(f) ~ ran(f).

The next proposition can be seen as an immediate consequence of the fundamental the-
orem on homomorphisms.

Proposition 2.2. Let V' be a vector space and let Uy,Us C V' be subspaces of finite
codimension in V. Then there holds codim (U; N Usz) < codim (U;) + codim (Us).

Proof. Suppose that the subspaces U; and Us have a finite codimension in V' and
consider the linear mapping

f' V—)V/U1XV/U2
| f0) = (A Ur, v+ U)
By construction we have ker(f) = Uy N Uz, so by the fundamental theorem on homo-

morphisms there exists an isomorphism between the spaces V/(U; N Usz) and ran(f). In
particular, it follows that

dim (V/(Ul N UQ)) § dim (V/Ul X V/Ug) = dim (V/Ul) + dim (V/Uz),

which is the stated inequality. O

2.2 Sesquilinear forms

When studying the self-adjointness and spectral properties of an unbounded operator,
it is often useful to consider the corresponding form and resort to the well-established
theory of sesquilinear forms. Hence, this subsection is devoted to collecting some of the
well-known results for sesquilinear forms, like the first and second representation theorem.

In the following let H be a Hilbert space with inner product (-,-) and let dom(t) C H
be a linear subspace. Recall that a linear mapping t : dom(t) x dom(t) — C is called
sesquilinear form, if for all u,v,w € dom(t) and A € C there holds

(1) tu + v, w] = tu, w] + Mu, w],
(ii) t{u, v + Iw] = t{u, v] + My, w].

12



We say that t is densely defined, if dom(t) is dense in H. If t additionally satisfies

(i) t{u,v] = t{v,u],
we call t a symmetric form. Instead of t{u, u] we will write t{u] and call t[-] the quadratic
form associated to t. Recall that a form t is called semibounded from below, if there exists
a constant ¢ € R such that for all u € dom(t) there holds

2
tlu] > cflull3,.
For such forms we can introduce the inner product

(u,v)¢ == tu,v] + (1 — ¢)(u,v)

for u,v € dom(t) and induced norm |||, = (',')3/2, which makes (dom(t), ||-||,) a pre-

Hilbert space. The form t is called closed, if (dom(t), ||-||,) is a complete space. The next
statement, which is also sometimes known as the KLMN theorem, is a criterion that
allows us to tell when the perturbation of a closed and semibounded from below form
retains that property.

Theorem 2.3 (|21, Chapter VI, Theorem 1.33]). Let t: dom(t) x dom(t) — C be
a closed and semibounded from below form. Suppose that t' : dom(¥) x dom(t') — C is a
form with dom(t) C dom(t') that satisfies

[¢'[ull < allul® + bt[u]

for all u € dom(t), where a,b are non-negative constants with b < 1. Then t+1t is closed
and semibounded from below as well.

The next result, which is also commonly known as the first representation theorem for
sesquilinear forms, consists of the fact that each densely defined, closed and semibounded
from below form in H induces a self-adjoint operator in H.

Theorem 2.4 (|21, Chapter VI, Theorem 2.1|). Let t be a densely defined, closed
and semibounded from below sesquillinear form in H. Then there exists a unique self-
adjoint operator T in H with dom(T") C dom(t) such that

tlu,v] = (Tu,v)

for all w € dom(T) and v € dom(t). Moreover, if for u € dom(t) there exists a w € H
such that tju,v] = (w,v) for all v € dom(t), then u € dom(T") and Tu = w.

We will conclude this subsection with the second representation theorem, which allows
us to characterize a densely defined, non-negative and closed form via the square root of
its associated non-negative and self-adjoint operator.

Theorem 2.5 (|21, Chapter VI, Theorem 2.23]). Let t : dom(t) x dom(t) — C
be a densely defined, closed and symmetric form with t > 0, and let T be the associated
non-negative self-adjoint operator. Then dom(T'/?) = dom(t) and there holds

t{u,v] = (TY2u, TV %)

for all u,v € dom(t).

13



2.3 Lipschitz domains and curves in R?

In the following subsection we will introduce the notion of a C¥* domain € following
the lines of the chapter about Lipschitz domains in [27]. For the sake of completeness,
we provide a comprehensive definition of C*# domains where k can be an arbitrary
non-negative integer and p € (0,1], even though we will generally only work with C!!
domains. In this case the boundary of €2 can be locally described as the graph of a
function with a Lipschitz continuous derivative. After that we will define curve integrals
and tubular coordinates in R?, which we are also going to need. With this we will be
able to construct Sobolev spaces on boundaries in Section

Definition 2.6. Let k € Ny and assume ¢ € C*(R;R). We then call the set
Q= {z=(21,22) € R? : 29 < ((1)}

a C* hypograph. By adding the condition that the k-th order derivative of ¢ is bounded
and Hoélder continuous with exponent p € (0,1], i.e.

C5() — ()l < Mt — s

for all t,s € R and some M > 0, we define a C*#* hypograph. Note that the boundary
of the Lipschitz hypograph €2 is then given by

Y ={xy = (21,22) € R?: 2y = C(z1)}-

In the case where k = 0 and p = 1 we simply call ) a Lipschitz hypograph. Assuming
that ¢ is Lipschitz continuous it follows by Rademacher’s theorem, that ( is differentiable
almost everywhere with ||(’|| ., < M. In particular, the Hausdorff measure ¢ and the
outward unit normal vector v are given by

—MNx T
do(zg) = \/1+ |¢(x) P dt, v(zg) = @), ) (2.1)

L+ |¢ ()]
for zy = (21,22) € 2.

We can now extend the above definition to general domains, using a covering of €2 with
appropriate C*#* hypographs.

Definition 2.7. An open set Q C R? with boundary ¥ is called a C** domain if its
boundary ¥ is compact and if there exist finite families {W;} and {Q;} of sets in R?
that satisfy the following properties:

i) The family {W,} forms an open covering of X, i.e. 3 C |, W;.
J VIR

(ii) For each j there exists a map x; : R? — R? consisting of a rotation plus a trans-
lation, such that #;(£2;) is a C¥# hypograph.

(iii) The set § satisfies W; N Q2 = W; N Q; for each j.

14



Visually speaking, the boundary of a C** domain can be locally described as the graph of
a CP# function, after possibly applying a rigid motion to it. In this thesis we are mainly
going to focus on C'!' domains, for which many important smoothness and regularity
results regarding Sobolev spaces hold. It is also important to note that in the two-
dimensional case each connected part of the boundary of a C¥* can be parametrized by
a curve v € CH#(I;R?). With this in mind we will now introduce curve integrals in R2.

Definition 2.8. Let I' C R? be a curve that is given by a continuous parametrization
v :I — R2 We call T a simple curve, if v is an injective function. We say that I is
a Ck# curve if v € CH#(I;R?). In the case where k = 0 and pu = 1 we simply call T a
Lipschitz curve. Assuming that ~y is at least Lipschitz continuous we can define the curve
integral of a function f € L(T") over I as

/ f(ar) do(ar) = / /() (0] . (2.2)
T I

If |4(t)| = 1 for all t € I we say that v is a natural parametrization of T', which we are
going to assume in most cases.

Also note that the measure o in coincides with the canonical Hausdorff measure of
I", which moreover is independent of the specific choice of the parametrization of I'. In
this thesis we will also make use of tubular coordinates in a small neighborhood around
a given curve, which are defined in the following lemma.

Lemma 2.9 (|3, Equation (B.4)]). Let ¥ be a simple and closed C''* curve of finite
length given in natural parametrization v = (y1,72) : I — R2, i.e. |[¥(t)] = 1 for all
t € I. Denote by v = (Y2, —%1) the normal vector of ¥ and let kK = Y251 — Y1792 be the

signed curvature of 3. For § > 0 sufficiently small consider the open tubular neighborhood
Vs = {x € R? : dist(z,X) < §}. Then there holds

é
o f(z)dz = /2 /5 flzs +tv(ar))(1 — tk(zy)) dt do(zx)
for all f € L1(%s).

2.4 The Fock space and related estimates

In this subsection we are going to introduce curve integrals in C and use Cauchy’s integral
formula to provide useful estimates for analytic functions along curves. We identify R?
and C in the standard way by letting z = x1 +izs for (1, 22) € R2. The derivatives in
and x2 will be denoted by 0y, = 0,,, and we set 0 = (01 —i02)/2 as well as 0= (01+i09)/2
for the Wirtinger derivatives. We denote by dm(z) the Lebesgue measure in C.

Definition 2.10. Let I' € € be a curve in the complex plane with Lipschitz continuous
parametrization ¢ : I — C. For f € L?(C) we define the curve integral of f over I' by

/f(C)d< :=/f(c(t))g‘(t) dt.
r I
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We also introduce the real-valued measure d|¢| := |{(¢)| d¢, which corresponds to the
Hausdorff measure of the curve I' from (2.2)) in real-valued coordinates.

In this thesis we will often view I' € R? ~ C as a complex curve, in order to apply
Cauchy’s integral formula. In the next remark we will establish a connection between the
real- and complex-valued representation of a curve and the corresponding curve integral.

Remark 2.11. Let I' € R? be a Lipschitz curve that is given be the parametrization
v = (71,72) : I — R% By identifying R? and € in the standard way we see that
C(t) = 71(t) 4 ima(t) is a complex parametrization of T' in €. Since |§(t)| = |(t)] for all
t € I it follows that

[ farydotan) = [ sowliola = [ reaniola= [ 1o

for all f € LY(T'), where d|(| is given as in Definition [2.10) u In particular, d|¢| coin-
cides with the Hausdorff measure do of I' seen in complex coordinates. Hence, we will
sometimes write do(z) instead of d|(|, when we view I as a curve in the complex plane.

In the following lemma we apply the tubular coordinates introduced in Lemma in
combination with Cauchy’s integral formula, in order to establish an upper bound for
the supremum of an analytic function on a given CY' curve I'. A similar result can be
found in the proof of Proposition 4.1(ii) in [31].

Lemma 2.12. Let ¥ C R? be a simple and closed C' smooth curve of finite length
and let I' C X be a closed subarc with |I'| > 0. For 6 > 0 consider the open tubular
neighbourhood Ts := {x € R? : dist(z,T') < §}. Then for § > 0 sufficiently small and
any k € Ny there exists a constant ¢ = ¢(k,d,I') > 0 such that

sup|d"f(2)|? < 67273 | |f(2)] dz
zell I's

for all analytic f: C — C.

Proof. Let v = v +iv2 : [0,s] — C be a natural parametrization of ¥ in C, that is
|%(t)] = 1 on [0, s]. Denote by v = 42 — i%; the normal vector of ¥. In the proof we will
distinguish between the two cases where I' is a proper subarc of ¥, i.e. |[X\I'| > 0 and
the case where I' and ¥ coincide.

Case 1: I' is a proper subarc of ¥

We are going to construct a closed curve around I' by cutting off a tubular neighborhood

of an appropriate extension I'(r) of I'. The result will then follow after an application of

Cauchy’s integral formula. Suppose that I' = «y([a,b]) for some 0 < a < b < s and let
€ (0,0]. Consider the extended curve I'(r) = y(Ja — r,b + r]) and define the family of

curves

VL) = ~(t) + rv(v(1)), teli=[a—rb+r]

V) =~v0b+r) Ftr(yb+7)), tely=][r —r| (2.3)
V3(t) = y(t) — rv(y(t)), tels=[Db+ra—r]

Wty =v(a—r) +tw(yla—r), tel=[-rrl,

16



which together give a complex parametrization of the boundary of the tubular neighbor-
hood T, = {zx + tv(zx) : ox € I'(r), t € (—r,r)} of I'(r). Since by assumption the
derivatives of « are Lipschitz continuous it follows that we can choose & sufﬁClently small
such that [4.(t)| < 3 for t € [; and | € {1,2,3,4} if 0 <7 < 6. Let now v, = Y./_, 7. be
the formal sum of the above curves. Let z € I', by Cauchy’s integral formula it follows
that

27

P16 = o | e

so we get the estimate

supld* f(2)|2 < ey 22 / FOPAK
Yr

zel

for some ¢; = ¢1(I', k) > 0 and any r € (0, 0], provided that § > 0 is sufficiently small.
Multiplying both sides by 722 and integrating over 7 from 0 to § gives us

)
Sup|dF £ (2)|? < e~ /0 FOR )¢ dr
Yr

zell
= 62k 32/ Q)2 d[¢| dr.

Let us first consider the integral over the curve ~!. Using the parametrization in (2.3))
with |4} (t)| < 3 for t € I; we obtain

/ / FOPdi¢ldr < 5 / /ab” ) 4 oy ()2 di dr
= 2/ /ab+6 t) +ru(y(1))[* dtdr.

= — X rvix 20'1? T
—2/_6/F(5)|f(z+ (rs))? do(rs) d

On the other hand, using the tubular coordinates from Lemma[2.9 on the neighbourhood
Ts = {zs +tv(zy) :xx € T(9), t € (—0,0)} we get

(2.4)

é
2dx = 2(1 —re(z o(x r
A= [ [ ifs )P (=) dotes)d

1[0 2
25 [, s e P dotas)

for 6 > 0 sufficiently small, since the curvature x of I' is bounded. This shows that

(2.5)

)
/ FOPAIC]dr < es / @) da (2.6)
0 Jyl Ts

17



for some constant cs > 0. In the same way one can show the above inequality for the
curve 72, so let us continue with the inequality for 72. Using the parametrization from

(2.3) we obtain
fOFd|¢]dr < = y(b+r)+t b+ 2dtdr.
/ %| (¢ ‘ ¢[dr / /T r) v(v( )| r

Note that we can rewrite
{(rt)eR*:0<r<6, —r<t<r}={(rnt)eR?*:—0<t<d, |t|<r<d},

so Fubini’s theorem and the substitution u = b + r give us

/ / b+ 1) + tr(y(b+ ) dtdr—/ 100+ + (b+ )2 drdt

b+5
/b w) + tw(y(u)))* dudt

/ -+t
/ /am u) + t(y () du dt
:/_5/r \f(acg—i—rz/(xg))\QdU(xg)dr

(9)

Together with (2.5)) this now implies that

)
2 2
/0 /ﬁlf(() d|<rdrgC4/T§|f<:c>| d

for some constant ¢4 > 0. In an analogous way the same result can be shown for the

)
//\f(C)IQd!C!drgcs/ |f() | da
0 Jok Ts

for some constant ¢5 > 0 and arbitrary [ € {1,2,3,4}. This in conjunction with (2.4)
shows that

curve ’yf,‘, so we get

supld¥ £ (2)2 < 652 /T (@) da

zel

for all § > 0 sufficiently small and ¢g > 0, which shows the inequality for the tubular
neighborhood. The claimed inequality now follows if we can show 7,4, C I's for all 6 > 0
sufficiently small, since then

—2k—3
swlot i < (§) [ WPt [t
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for an appropriate ¢ > 0. To see this let € T4, then @ = zpr + rv(zr) for some
ar € F(g) and r € (—g, %). Moreover, since |¥(t)| = 1 for all t € [0, s] there holds

[y(t1) = (t2)] < 2Jt1 — to|
for all #1,t5 € [0, s] and hence dist(zp,T") < % In particular, we have
dist(z,I") < ||z — xp|| + dist(zp,T') = |r| + dist(zp,T') < 4,

which shows that x € I's, concluding the proof for the case where I' is a proper subarb
of 3.

Case 2: '=X%

To prove the case where I' and X coincide we set v,.(t) = v(t) + rv(y(t)) for t € [0, s],
which is a closed curve surrounding every point zy, € Y. By Cauchy’s integral formula
we obtain

sup|@* F(O)2 < err 22 | |£(O)2d¢]

zel Y

for some constant ¢; > 0. Integrating both sides of the inequality from 0 to § with the
weight 7212 we can conclude that

)
SupldF F(O)[? < cab= 23 / / £ dIc]dr
Yr

zel

for an appropriate ca > 0. Since |¥,(t)| < % for r € (0,6) and 6 > 0 sufficiently small
there also holds

0 ) 3 § ps )
L[ weradar < [7 [0 oo adar

3 3
= / / |f(xs + rv(zs)))? do(zs) dr,
2Jo Js
so the statement follows from (2.5)) by taking I'(§) = ¥ and the same arguments we used

in the first case. O

Next we are going to introduce the Fock or Segal-Bargmann space F2, which plays
an important role in the analysis of the spectrum of the Landau Hamiltonian.

Definition 2.13. Let B > 0. The Fock space F? is defined as the space of all entire
functions f : € — C such that

1f1%e = /@ F() e B dm(z) < oo,

19



If we introduce the inner product

(f.9)72 = /@ F@)a@e B dm(z),  f.g€ P2,

1/2

then the Fock-space 72 becomes a Hilbert space with induced norm ||| z2 = (-, -) 2 -

The analysis of the eigenfunctions of the Landau Hamiltonian shows that the eigenspaces
of the Landau Hamiltonian are closely related to the Fock space. More precisely, for each
Landau Level Ay, ¢ € Ny, there exists an isometric isomorphism from the corresponding
eigenspace ker(Ag —A,) onto the Fock space, a fact which will be discussed in more detail
in Propositon .2

Lemma 2.14. Let f € F2. Then for any k € Ny and R > 0 there exists a constant
C =C(R,k) >0 such that

sup [0"f(2)|” < C(R, k) / F()? e3P dim(z). (27)
|z|<R |2|>R

In particular,
_1p[2
£ = / _IEF e ane) (2.8)

defines a morm on F?* that is equivalent to ||-|| z2.

Proof. For ease of notation we will show the proof for B = 2, the general result follows
by a linear change of coordinates. Let f € F2 and r > 2R, then by the Cauchy integral
formula there holds

k _ f(©)

for any k € Ny if |z| < r. Moreover, for |(| = r and |z| < R we have

k+1
[ A (SR E = ) R
which then implies
f(©)

T \2
2
sup |9% £(2)]2 QO
sup 044" < </|<|:r — d|q>
2 2k+2 2
=\ d
<(7) ( G |<|)

) 2k+2 )
<2 - d
<o (2) [ 1n0Palc

22k+37T

= [ ORI
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Integrating the last inequality from 2R to oo with the weight e~ P2kl

> 2 2k+1 2k * 2 L ok 4R?
/ et dr > R / e "rdr=-R"e”
2R 2R 2

and using

we get

k+2 o]
alc 2 4 T _AR2 2 —7‘2d d
sup [0 < St [P e dgiar

2I<R R

< C(R.K) / PR e dm(z),

|z|>R

- "R
observe first that

1% = /| IR dm(z) + [ 1R )

|2|>R

where C(R, k) = 4k+2”e4R2, which shows (i To see the equivalence of the norms

1.2 1.2

<cf P ane) [ R dmle) = @+ ol
|2[>R 2[>R

for some ¢ > 0, where we have used (2.7)) for £ = 0. On the other hand it is clear that

Il 22 > |-l 72, which finishes the proof. O

2.5 Orthonormal Polynomials and Capacity

In this subsection we will follow the lines of [38] to collect results regarding the logarith-
mic capacity of a compact set and also discuss the n-th root asymptotics of polynomials,
which are orthogonal with respect to some finite Borel measure p. For this we are going
to assume that g > 0 is a compactly supported and finite Borel measure on C. We are
going to see, that there exists a close relation between the n-th root asymptotics of the
leading coefficients of orthonormal polynomials with respect to the measure p and the
logarithmic capacity of the support of the measure. By identifying C and R? in the
standard way by letting z = 1 + ixo for (x1,72) € R? we see that each Borel measure
p on € corresponds to a Borel measure pur on R? and vice-verca; in particular, all of
the following definitions and results remain true, if the measure p on C is replaced by
the corresponding measure pr on R? and vice-verca. With this in mind we are going to
drop the difference in notation and write u for both measures, as there is no danger of
confusion.

To begin, we introduce the logarithmic capacity of a compact set K. For more references
on the logarithmic capacity see [38, Appendix A. VIII|, |17} §IIL.1] or |24, Chapter 2].

Definition 2.15. For a measure p > 0 in R? we define its logarithmic energy as

1
I(p) = /RQ /}RZ In P dp(z) du(y).
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The logarithmic capacity of a compact set K C R? is defined as
Cap (K) = sup{eil(“) : > 0 measure on R?, suppp C K, u(K) =1}.

It is a well-known fact that the above supremum is in fact a maximum, which is attained
by the so-called equilibrium measure, see e.g. |17, §II1.4 Theorem 4.1]. In the following
lemma we will state two useful properties of the logarithmic capacity, which are often
referred to as monotonicity and continuity of the capacity, respectively.

Proposition 2.16 (|17, §III]). Let K,L C R? be compact sets and consider for n > 0
the compact neighbourhood Uy,(K) = {x € R? : dist(z, K) < n}. Then the logarithmic
capacity satisfies

(i) Cap (K) <Cap(L)if K C L

(ii) Cap (Uy(K)) — Cap (K) asn — 0T,

Assuming that the support of p consists of infinitely many points, we can apply the
Gram-Schmidt orthogonalisation process in L?(C;du) to the sequence {z" o to form
the uniquely existing orthonormal polynomials

an(p;2) = ()2 + ...,

with v, () > 0 and n € Ng that satisfy the orthogonality relation

1 ifn=m

/@qn(ﬂ;z)qm(u;z)du(Z)=<5n,m={0 fntm (2.9)

We call v, (u) the leading coefficient of the polynomial ¢, (u;z) and say that g,(u; z) is
a monic polynomial if v, (u) = 1. In the next lemma we make a statement about the
distribution of the roots of the above defined polynomials.

Lemma 2.17 (|38, Corollary 1.1.7]). For n € Ny let {gn(u;2)} be the sequence of
orthonormal polynomials satisfying (2.9). Then for each n € Ny all zeros of ¢, (u;z) are
contained in the convex hull of supp p.

There are many results known regarding the n-th root asymptotic behavior of the leading
coeffiecients 7, (u) of the orthonormal polynomials g, (u;2). We are going to make use
of the following known fact.

Theorem 2.18 (|38, Theorem 4.2.1]). Let i > 0 be a finite Borel measure on C with
compact support. For z € C and r > 0 denote by D,(z) = {2/ € C : |2/ —z| < r} the
compact disk centered around z with radius r. Then the condition

1 D,
Cap <{z eC: limsupM < oo}) = Cap (supp i) (2.10)
r—0-+ IOg r
implies lim,, o *yn(,u)l/” = m.
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In the next step we want to apply the above theorem to study the n-th root asymptotics
of monic polynomials that are orthogonal with respect to the Hausdorff measure o of a
simple Lipschitz smooth curve I'. But before we can do so, we need further preparations.
In order to apply the above results to polynomials on curves, we will use the identification

G 1o(G) = /mc; do(z), GCO, (2.11)

which takes the Hausdorfl measure o of the curve I' to induce a finite Borel measure on
C with supppus, =T

Definition 2.19. For any n € Ny let P, be the set of all monic polynomials in z of
degree n:

P, = {zn—kan_lzn*l +...+a12+ap:ag,...,0p—1 € (D}

Assume that I" is a simple Lipschitz curve of finite length with Hausdorff measure o and
corresponding Borel measure p,. Consider the minimization problem

p€73'n

= inf /|p )| do(z) = inf / Ip(2) % dpte (2). (2.12)

It is possible to construct unique solutions to the above minimization problem by apply-
ing the Gram-Schmidt orthogonalisation process in L?(C;du) to the sequence {2" n 0,
which in turn yields polynomials g, (ps; z) that satisfy the orthogonality relation .
Setting pn(2) = (o) "1 qn(le; 2), Where 7, (11o) is the leading coefficient of qn(,ua; z),
yields the minimal polynomial in .

In the next proposition we cover the n-th root asymptotics of the leading coefficients
Yn(pte), by showing that the Borel measure associated to o satisfies . The aim of
the next result is to establish a connection between the asymptotic behaviour of M, (T")
and the capacity of the curve I'. A similar result can be found in |15, Remark 1|, where
a non-negative Borel measure that is induced by a function v € L*(C) is considered.

Proposition 2.20. Let I' be a simple and finite Lipschitz curve with Hausdorff measure
o. Let u, be the corresponding Borel measure given by . For z € ©Candr > 0
denote by Dy (z) = {7z € C: |2/ — z| < r} the compact disk around z with radius r. Then
there holds

{z eC: limsupM

< oo} = SUpp fo- (2.13)
r—0+ IOgT

Moreover there holds the n-th root asymptotics

lim M, (I')"/" = (Cap (I"))?,

n—oo

where My, (T") is defined as in (2.12)).
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Proof. We will first show that (2.13)) holds true. Let u, be as in (2.11]) and recall that
supp it = I'. Let 7 > 0 and assume first that z € C\I'. Then d = dist(z,I") > 0 since I'
is a compact curve. In particular, for any 0 < r < d there holds I' N D,.(2) = () so we get

o (Dr(2)) = / do(z) =0,

rnD,
which directly imples that
1 D
lim sup 128He(Pr(2) _
r—0+ IOg r

Assume conversely that z € T'. Let v : [, 8] — C be a natural parametrization of I" and
assume that z = y(to) for some ¢y € («, ). Since |§(t)| =1 for all ¢ € (a, §) there holds

[v(#) —~(to)| < 2|t — tol

for all t € [, 8], implying {t € I : [t —to| < r/2} C {t € I : |y(t) —~(to)] < r}. For
r > 0 sufficiently small we then find

po(Dy(2)) = / do(z) = / dt > / dt =r.
¢el:|z—¢|<r tel:|y(to)—y(t)|<r tel:|t—to|<r/2

From this it follows that

log 1o (Dr(2))

<1,
logr -

provided that 0 < r < 1 is small enough. This means that

I (D
lim sup 128He(Pr2)

r—0+ IOg r
showing (2.13]). In particular, we can apply Theorem to obtain
lim 'Yn(,ua)l/n = (Cap (F))717
n—oo

where 7, (1) are the leading coefficients of the polynomials g, (us; z) that satisfy the or-
thogonality relation (2.9). Denote by pn(2) = Yn(tto) 'qn(ite; 2) the monic polynomials,
which minimize (2.12)), we then have

o= ([ \pn<z>12da<z>)w

1/n
- W</F|Qn(ﬂa§z)|2d0(2)> — Cap (I')?,

1
as n — 0o, which is the claimed result. ]

To conclude this subsection we prove the following lemma, which we are going to need
in the proof of Proposition
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Lemma 2.21. Let p > 0 and suppose that w € C with |w| > p. Then the rational

function

1w 222 o
T(Z)_| ‘p(z_w)> E(D\{ }7

satisfies |r(2)| < 1 as |z| <r and |r(z)| > 1 as |z| > 7.

Proof. Let z € C\{w} and rewrite

2 /e 2 2
_ 1 _
r(z):|w|z p/w: |w|® z prw
pe—w)  plul z-w
A direct calculation now shows
1 2, 2 25 22—
‘7“(2)‘2 _ T’(Z)T(Z) _ 5 ’U)| Z— prw ) ‘wfiz j w
P> |w] zZ—w Z—wW
L el = 202 o Re(em) + o ool
p? |wl® 2% — 2Re(2) + |w|?
_ w2 /p? — 2%e(zw) + p* _ p(2)
2|2 = 2%Re(zw) + |w| q(z)’

where p and ¢ are the non-negative numerator and denominator of r, respectively. Sup-

pose now that |z| < p, then

N
p(2) = q(2) = |wl* ot Pz

]w|2 2 2
= <p21 21" + p* — |w|

< Jwf? = p + g — ul® = 0.

[~ fwl?

On the other hand, if |z| > p it follows that

2
2 \Z|
p(2) — q(2) = |w| vl +p° |z

2
z
- (’p’ - ) uf? + |2

> 2P = p? 4+ p* = |2)* =0,

[ = Juwf?

which shows r(z) <1 for |z| < p and r(z) > 1 for |z| > p. O
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2.6 Spectral theory

In this subsection we will cover basic results from the spectral theory of closed and, in
particular, self-adjoint operators. We will start by introducing the resolvent set and spec-
trum of a closed operator and then state an appropriate version of the spectral theorem
for unbounded self-adjoint operators, as it will be used in this master’s thesis. After that
we will collect some well-known results regarding the spectrum of a compactly perturbed
self-adjoint operator.

Let H be a Hilbert space with inner product (-,-) and let C' : dom(C) — H be a
closed operator. Recall that a A € C belongs to the resolvent set p(C) of C' if and only
if (C —X)~!is a bounded and everywhere defined operator. The spectrum o (C) of C is
then defined as o(C') = C\p(C). Furthermore, we define

op(C) ={A € C:ker(C — \) # {0}},

0.(C) ={X € C: ker(C — \) = {0}, ran(C — \) = H, ran(C — \) # H},

0.(C) ={X € C: ker(C — \) = {0}, ran(C — \) # H}.

Recall that for a self-adjoint operator C' we have ¢(C) C R and o,(C) = 0. If C is
self-adjoint, we further define the discrete spectrum o4(C) of C' by

04(C) = {X € 0,(C) : dimker(C' — \) < oo, A is isolated in o(C)}

and the essential spectrum of C' by o¢ss(C) = o(C)\og(C). The first lemma of this
subsection is a basic result from elementary calculus, which turns out to be quite useful,
when studying the spectral asymptotics of a compact and self-adjoint operator.

Lemma 2.22 (|31, Equation (10)]). Let {b,}. be a sequence of positive and non-
increasing numbers such that limsup,,_, . [n!b,]"/™ < co. Then there holds

lim sup|[n!b,]"/™ = lim sup[n!b,]"/™

n—oo n—oo
as well as
.. | Un _ qis 1 1l/n
lﬂgf[n.bnﬂ] hnnl)gf[n.bn}
foralll € 7.

In the following, let B(IR) be the Borel o-algebra on R and let B(?) be the space of
all bounded and everywhere defined operators in H. Recall that we call a mapping
E:Y = B(H), B— Ep a spectral measure, if Ep is an orthogonal projection for each
BeX and

(i) Ey =0 (zero operator), FEgr =1 (identity operator)
(i) For any family of pairwise disjoints sets {B;}jen C B(R) and all € H there holds
Z(J?il EBJ"T - EU]O.;1 Bjx
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We now come to the spectral theorem for unbounded self-adjoint operators, which is a
deep result from abstract functional analysis, that ensures that any self-adjoint operator
in H has a unique associated spectral measure, that induces the operator via a spectral
integral.

Theorem 2.23 (|7, Chapter 6, Theorem 1 and (13)]). Let C : dom(C) — H be a
self-adjoint operator. Then there exists a unique spectral measure E on H defined on the
o-algebra of Borel subsets of R such that

C’:/thE(t), dom(C):{fE’H:/]Rth(E(t)f,f)<oo}.

Moreover, if h : R — R is a measurable function, then

h(C) ::/]Rh(t)dE(t), dom(h(C)):{feH:/Rh(t)2d(E(t)f,f)<oo},

defines a self-adjoint operator in H.

For two given self-adjoint operators C' and D it is in general not possible to give a clear
description of o(C + D), even if their respective spectra are known. However, if we
additionally require the two operators to act in closed orthogonal subspaces, one can
give an exact characterization of the spectrum of their sum.

Proposition 2.24. Let H be a Hilbert space and let H1, Ha be closed orthogonal subspaces
such that H = H1 + Ha as a orthogonal sum. Let C and D be two closed operators that
act in Hy and Ha respectively. Then o(C + D) = o(C) U o (D).

Proof. Let us denote by P and () the orthogonal projections from H into H; and Hs
respectively, then any v € H admits the unique representation v = Pu + Qu. So for
an arbitrary u € dom(C + D) the effect of the operator C' + D, which is defined on the
orthogonal sum dom(C') + dom(D), is given by

(C+ D)u= CPu+ DQu.
In particular, for any A € C we get
(C+D—-XNu=CPu+ DQu— Au=(C—XPu+ (D —)NQu.

Since C'— X and D — A act in orthogonal subspaces the operator C'+ D — A is boundedly
invertible in H if and only if C'— A and D — X\ are invertible in H; and Hsa, respectively.
This shows p(C'+D) = p(C)Np(D), which after taking the complement yields the desired
result. O

In the following lemma we will make use of the spectral theorem for self-adjoint compact
operators, to decompose a non-negative compact operator K : H — H as the sum of
two operators, where one operator has finite rank and the other one an arbitrarily small
norm.
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Lemma 2.25. Let K be a self-adjoint, compact and non-negative operator in H. Then
for each § > 0 there exists a decomposition K = Ki + Ko with operators K1, Ko such
that 0 < K7 < I and rank(Ks2) < co.

Proof. Without loss of generality let rank (/) = co. By the spectral theorem for compact
self-adjoint operators there exists a monotonously decreasing sequence of non-negative
eigenvalues {A,}, with lim, oo A\, = 0 and corresponding orthonormal eigenvectors
{un}n such that

Ku = Z An (U, U ) U,
n=1

for u € H. Since A\, — 0 as n — oo there exists an N € N such that A\, < ¢ for all
n > N. Defining

o0 N
Kiju = Z An(uaun)unv Kou = Z An(uaun)unv
n=N+1 n=1
for u € H gives us the desired decomposition of K. O

Next we are going to use the properties of the spectral measure of a self-adjoint operator,
to define a function which, roughly speaking, counts the eigenvalues of an operator with
their respective multiplicities in an interval.

Definition 2.26. Let C be a self-adjoint operator in the Hilbert space H and let E be
the associated spectral measure of C. For an arbitrary set I we define the eigenvalue
counting function by

7T[(C) = dimE[H.

With Lemma in mind it makes sense to study the behaviour of 7;(C' + D), where C'
and D are two self-adjoint operators, for the two cases, where D has either finite rank or a
bounded spectrum. The following two abstract results further justify this consideration.

Lemma 2.27 (|7], §9.3, Theorem 3). Let C' and D be self-adjoint operators in H.
For some A € p(C) N p(D) let the difference of resolvents

R=C-N1t—D-)N" (2.14)

be of finite rank r € N. Suppose that the spectrum of C is finite in the bounded interval
1. Then the spectrum of D is finite in I and there holds the inequality

m1(C) —r <7 (D) <7 (C)+r. (2.15)

If the rank of the difference C' — D is finite, it follows by the second resolvent identity
that rank(R) = rank(C' — D). In particular, we can apply Lemma and get ((2.15))
with 7 = rank(C' — D). On the other hand, if rank(C — D) = oo, but D still has a

bounded spectrum, we can make the following statement.
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Lemma 2.28 (|7], §9.4, Theorem 3). Let C' and D be two self-adjoint operators in
‘H. Furthermore, assume that o(D) C [dy,ds] for some dyi,d2 € R. Then for any finite
interval I = (o, B) there holds

7T(a+d175+d2)(c + D) > 7T(a”3)(C).

Visually speaking, since o(D) C [—||D||, || D||] for a bounded and self-adjoint operator D,
the above lemma consists of the fact that the spectrum of C' inside the intervall I cannot
disappear under a perturbation by D, but may only be displaced to the left or to the
right by at most || D]|.

2.7 Compact perturbations of self-adjoint operators

In this subsection we cover some important results on the behaviour of the spectrum of
a self-adjoint operator under compact perturbations. We are interested in the situation,
where T is a self-adjoint operator in a Hilbert space H and A € R is an isolated eigenvalue
of T of infinite multiplicity with corresponding orthogonal projection Py. Since A is
isolated in o(7T") we can choose constants 7+ > 0 such that

(A =21, A+ 2 )\{A}) Nno(T) = 0. (2.16)

Next, consider a self-adjoint and compact opertator W : ‘H — H with corresponding
spectral measure F and set

[e'S) 0
W+:/ AAE(N), W_ :—/ AAE(N), (2.17)
0 [e%S)
for the non-negative and non-positive part of W, respectively. By definition both W
and W_ are compact, self-adjoint and non-negative operators in H and there holds
W =W, — W_ as well as [W| = Wy 4+ W_. In particular, the self-adjoint so-called
Toeplitz operators PA\WL Py > 0 are compact with eigenvalues

0> py > pE > >0,

which we will order non-increasingly and counted with respective multiplicites. By Weyl’s
theorem we have gess(T+ W) = 0ess(T'), s0 A is either an eigenvalue of infinite multiplic-
ity or an accumulation point in the spectrum of T4+ W. We will denote the eigenvalues
of T+ Win (A—7_,A+74) by

AL <A - SA< <A <A

If there exist only finitely many )\: > A we set A = A for all larger £ € N and use the
same convention for A;". In the case where either W =W, > 0or W = —-W_ <0, one
would expect that the eigenvalues of T+ W in (A —7_, A + 74) can only accumulate to
A from above or below, respectively. The next proposition will be a modified version of
[7, §9.4 Theorem 7|, in which we show this exact observation.
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Proposition 2.29. Let T and W = W — W_ be as above. Then the following holds:
(1) The eigenvalues of T + W, accumulate to A only from above.

(ii) The eigenvalues of T — W_ accumulate to A only from below.

Proof. We will only prove (i), as (ii) works in the exact same way. We will show that
there exists an o < A such that m(, o) (T+W, ) = 0, which directly implies the statement.
Recall that we chose 7— > 0 such that (A—7_,A)No(T) = @, which is possible since A is
isolated in the spectrum of 7. By Lemma there exists a decomposition Wy = S+ R

where ¢(S) C [0, 5] and rank(R) < co. Set D =T+ S+ Rand C =T + S and let

A € C\R. An application of the second resolvent formula shows that
rank((C' — \) 7! — (D = \)7!) = rank(R) < oo,
so we can apply Lemma which yields

TA—r_j2,0) (T + S+ R) = ma_7_s2,0)(D)
< W(A—T_/2,A)<C) + rank(R) (2.18)
= m(A—r_/2,0)(T + S) + rank(R).
Next, we set C' =T and D = S. Since (—S) C [-5,0] it follows by Lemmathat
Ta—r_j2,0)(T +8) < ma—r n)(T) =0,
so in combination with (2.18)) we obtain
T(A—r_s2,0) (T + W) < rank(R) < oo.

In particular, there holds m(q,2)(T + W4) = 0 for some o € (A — "5, A) sufficiently close
to A, which finishes the proof. O

In the next proposition, which was first elaborated in [31, Proposition 2.2|, we give an
asymptotic estimate on the rate of accumulation of the eigenvalues of T+ W to A.

Proposition 2.30. Let T and W = W, — W_ be as above. Then there holds

(i) If W_ = 0 and rank(P\WPy) = oo, then for any € > 0 there exists | € N such
that for all sufficiently large k there holds

(1-— e),u;rl < )\z —A<(1+ E)M;,l-

Moreover, the eigenvalues of T + W, accumulate to A from above.

(ii) If W4 = 0 and rank(P\W_Py) = oo, then for any € > 0 there exists | € N such
that for all sufficiently large k there holds

(1= S A=A < (14

Moreover, the eigenvalues of T'— W_ accumulate to A from below.
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Remark 2.31. In the case where rank(PyW;Py) < oo or rank(PA\W_Py) < oo in
Proposition [2.30] we can still achieve the respective upper estimate

M A< A+eou ;. A=X <Q+e)u,
for appropriate [ € N and all sufficiently large k.

Proof of Proposition We will prove (i), the proof for (ii) works analogously. We
will first show that the upper bound holds without restricting ourselves to the case where
rank(PyW, Py ) = oo, and then show the lower bound under this additional assumption.

Let S=T+ W, and Qp = I — Py. We first define the operators
Ry = —eP\W Py — € 'QaW1Qr F (PAWL QA + QAW Py)
and
S = PA(T + (1% W3)Py + Qu(T + (1 £ )W, )Qy.

A direct calculation shows S = S, + R_ = S_ — R;. Since W, is compact and the
projections Py and @Qp are bounded and self-adjoint, it follows that R+ is compact and
self-adjoint as well. Another computation shows that R4 admits the factorization

Ry = —(VePy + e Y2Q0) W, (VePy + e 12Qy).
Since the projections Py and @5 are bounded and self-adjoint we get for any u € H

(Riu,u) = —((v/ePy £ ¢ 2QN )W (VePy + ¢ 2Qp)u, u)
= — (Wi (VePy £ 7 2Qp)u, (VePy £ e /2Qa)u),

which implies Ry < 0 since W, > 0 by assumption.

In the next step we will determine the spectrum of Sy in (A, A + 7). We first con-
sider the representation

PA\(T+ (1 £ e)W4 )Py = APy + (1 £ €) PA\W, Py.
Since the operator PyW Py is compact it follows by Weyl’s theorem that
Oess(APA + (1 £ €)PAWPA) N (A, A+ 74) = 0ess(APA) N (A, A+ 74) = 0.

Hence the full spectrum of Sy in (A, A+ 7) is given by the eigenvalues A + (1 & €)u;}.
It remains to discuss the spectrum of Qu (7T + (1 + e_l)W+)QA|ran(QA). By assumption

U(T|ran(QA)) N (A — 27, A+ 27—+) = (Da
so Weyl’s theorem implies

Uess(QA(T + (1 + Eil)W—&—)QA’ran(QA)) = Uess(QATQA)-
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In particular, the essential spectrum of the operator Qa (7T + (1 + 6*1)W+)QA\ran(QA) in
(A—27_, A+ 274 ) must be empty. Hence Qa (T + (1+ 6_1)W+)QA|ran(QA) can only have
finitely many eigenvalues in (A—7_, A+74). Since ran(Py) and ran(Q,) form orthogonal
subspaces it follows by Proposition that o(S4) is the union of the spectra of the
discussed operators.

Let now denote by v > v3 > ... the eigenvalues of Sy in (A, A + 7). By the above
considerations we can conclude that we can write

vi=A+ 1 +eu . v, :A—I—(l—e)u;;j, (2.19)
for appropriate i, j € N and all sufficiently large n. In particular, if rank(PyWy Py) < oo

we see that the spectrum of Sy consists of only finitely many eigenvalues.

In the next step we will show that )\g < I/]j_l for all sufficiently large & and an ap-
propriate integer [ € N. Let § = (A — A\ +74)/2. By Lemma there exist operators
RY and R® such that R- = RY + R® with —67 < R™Y < 0 and rank(R?) = 1y < oc.
For A € (A, \]) we have

Touatr) (S1) = T st 0g) (S — RY — r),

Since —61 < RY < 0 it follows that 0(—R(_1)) C [0,6], so we can apply Lemma [2.28
which yields

Tadsre)(4) = Tyt 429 (S = BY = RP) > my 1o (S — R, (2.20)

Furthermore, if we set C = S and D = S — R(_z), we see that both operators are self-

adjoint as S and R(_2) are self-adjoint operators and R(_Z) is additionally bounded. So for
any pu € C\R we have

(D—p)™ = (C—p) = (D) N(C - D)C - )
= (D - ' RPC -t

Clearly the operator on the right hand side is of rank lesser or equal to rank(R(f)). On the
other hand, since the resolvents are bijective, the rank of the operator cannot diminish
which implies

rank((D — p) ™t — (C — pu)™1) = ro. (2.21)
Hence we can apply Lemma and get
@)y _
7T(,\,A1++5)(S - RY) = T +6) D)

(2.22)
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where we have defined
LS TS g At (S) < 00
Together the inequalities (2.20) and (2.22]) imply that

Ta+r) (S4) = Taatry)(S) — (2.23)

where r = r; 4+ ro. We will now show that the last inequality can be rewritten into the
form )\; < I/’j_r all k sufficiently large. First assume that N > r + 1 and that A < Ay to
ensure that the right hand side in is non-negative. Now implies that there
must be at least k — r eigenvalues Vf > 1/5r > .. > V,j_r in each interval [Ag,oc0) for

k > N. In particular, this implies /\;: < yl;tr for all £k > N, which combined with the
representation of vy in (2.19) shows that

MNOSA+ 1+ ep, (2.24)

for some [ € N and all sufficiently large k, proving the upper bound.

In the next step we want to show that )\z > vy, for an appropriate integer [ and all suf-
ficiently large k under the additional assumption that rank(PyW,; Py) = co. By Lemma

there exist operators RSE) and Rf) such that Ry = RS:) +Rf) with —61 < RS:) <0
and rank(Rf)) =rg < oo. For A € (A1, A) we get

1 2
T(aA+74)(S) = 7T(,\,,\1++25)(S) = 7T(,\,,\1f+26)(5— - RS-) - RSL))‘

We want to apply Lemma For thislet C' = S_ — Rsrl) and D=5_ — R‘ﬁ — Rf).
Both operators C' and D are self-adjoint as a finite sum of self-adjoint operators where
R(+1) and Rf) are bounded. For p € C\R the second resolvent identity yields

(D= =(C=p) ' =D-p) (C-D)C—p)"
=(D=p) RY(C -
and as in we see that
rank((D — p) ™t — (C = p)™Y) = ro. (2.25)
Hence we can apply Lemma and get
T t26)(S- = Ry - RY) = Tt +20) (D)
=z 7T(A,,\1++25)(C) —To

1
= W(A,AT—FQJ)(S* - RS-)) —To-
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Furthermore, since —61 < RS:) < 0, we have U(—RS:)) C [0, 6] and hence by Lemma [2.28
we achieve the inequality

(1)
7T()\,)\IL+2§) (S_ - R+ ) > 71—()\ )\++5) (S_)
All together the above inequalities imply

7T()\,A+T+)(S) > 77(,\7)\IL+5)(S—) —To (2 26)

= T(AA+ry) (S=) =710 — 71
where we have defined
1= T s agn) (9-):

As in one can inductively show that can be equivalently rewritten into the
form /\2' > vy, for r = rg+ry and all sufficiently large n. In contrast to we require
rank(Py\W, Py) = oo here, as otherwise the right hand side in were bounded, and
the inductive argument would not work. Together with this implies

M >A+ (1 —eopu,
for some fixed | € N and all sufficiently large k, which together with (2.24) shows that
Q=i <A —A<(1+eu

for [ € N and all sufficiently large k. Moreover it follows by Proposition [2.29] that the
eigenvalues of T+ W inside (A —7_, A+74) can only accumulate towards A from above,
which finishes the proof. O

We will conclude this subsection with a result that can be seen as a complement of
Proposition [2.30, where we can drop the definiteness assumption on W and still obtain
one-sided estimates on A — A, and )\z — A

Proposition 2.32 (|3, Proposition 2.10]). Let T and W = W, —W_ as above. Then
the following holds.

(i) For e > 0 there exists | € N such that
A =A< T+ o

for all sufficiently large k.
(ii) For € > 0 there exists | € N such that

A=) <(I+e)p,,

for all sufficiently large k.

34



Proof. We will prove (i), since the proof for (ii) works in a similar fashion. For this
proof we will introduce the notation Sy := T 4 U for a generic compact and self-adjoint
perturbation U and denote the eigenvalues of Sy in the interval [A, A + 74) by

M (Su) > A3 (Sv) > A (Sy) > -+ > A,

where the eigenvalues )\;(SU) for k € N are repeated according to their multiplicity. The
idea of the proof is to use the decomposition

T+W=T+W, —W_

and apply Proposition [2.30] to the operator 7'+ W,. So let € > 0. By the compactness
of W_ we can apply Lemma and find a decomposition W_ = F_ + R_ where
rank(F_) = rg < oo and 0 < R_ < 7I. By Proposition and Remark there
exists lp € IN such that

N (Sw) = N(T+ W) < (14 Oty (2:27)

for all sufficiently large k. Let now A € (A, A+ 7). Since o(R_) C [0,74] we can use
LemmalT_Bl for C = Sy, _r. — R_ and D = R_ to obtain

7T(/\,A+T+)(SW) = W(A,A+7—+)(SW+7F, —R.)
< maasr) (Swy—F ) (2.28)

= TAtrry) (Swy—F.) + 71
where we have defined
1= T(Adry At2r) (S —p) < 00
On the other hand setting C' = Sw, and D = Sy, _p_ we see that for any u € C\R
rank((D — p) ™" = (C = p) ™) = rank((D — p) ' F-(C = p)~") = 0,

so we can apply Lemma [2.27] and get

77()\,A+7—+)(SW+7F_) SW(/\,A+T+)(SW+)+T0. (2.29)
Combining (2.28) and (2.29)) we can conclude
7T()\,A+7—+)(SW) < 7T(>\,A+T+)(SW+)+7“0—|—T1 (2.30)
for A € (A, A+ 74). As in the proof of Proposition one can show that (2.30) can be
rewritten into the form Af (Sy) < )\Z_TO_Tl(SWJr), which together with 1j implies
AAF(SW) S AZ_—To—Tl(SW+) S (1 + 6)/'[/11_—[0—7‘0—7"17
for all k sufficiently large, which proves the statement. O
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2.8 Sobolev spaces

In this chapter we are going to collect elementary results about Sobolev spaces, which
are a necessary tool in the analysis of the Landau Hamiltonian. To do so we are first
going to introduce Sobolev spaces H*(€2) for general open sets Q C R? and non-negative
integers k. We will then proceed by extending this definition to general s > 0 using
the Sobolev-Slobodeckij semi-norm. After that we are going to consider Sobolev spaces
H?*(X) on the boundary ¥ of a Lipschitz domain € and collect results regarding the
Dirichlet and Neumann trace of functions in Sobolev spaces. In this subsection we are
following the lines of [27, Chapter 3|.

To begin, let  C R? be open and k € Ny. We then introduce the spaces
Ck(Q):={f:Q — C: f is k-times continuously differentiable},
C[])‘“(Q) ={f¢c Ck(Q) : supp f is compact in 0},
and set as usual C>(Q) = 72, C*() and C5°(2) = N, C5(R) for the space of smooth
and the space of test functions, respectively. Additionally we define the space

CH(Q) = {flq: f € CER)},

that contains those functions in C*(€), which have uniformly continuos partial derivatives
up to k-th order on Q and set C§°(Q) = N7, CF(Q).

Definition 2.33. For Q C R? open we introduce the classical Sobolev-spaces
H*Q) :={f € L*(Q) : 0%f € L*(Q) for |a| <k, ac N3}

with the inner product

(fs D mr@) = Z (0%f,0%9) L2(0)

a<h

and induced norm ||| k() = (-, -)}ﬁ(m, which makes (H*(Q), || g7 (c2)) & Hilbert space.
As usual, we define H¥(Q) as the closure of C§°(2) with respect to [/ g7 2y and recall

that there holds H*(R?) = HE(IR?) for all k € Np. In addition to that we define
HA(Q) == {f € HY(Q) : Af € 12(Q)}.
with the inner product
(f, 9 ) = (F,9) @) + (Af, Ag)r2a)

and induced norm ||'HH3(Q) = (-, ')Zz(ﬂ) for all f,g € Hi(Q)

In the case where 2 = R? it turns out that the existence of Af in L?(R?) already implies
the existence of all the weak derivatives of second order, which we will formulate in the
following lemma.
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Lemma 2.34 (|4, Lemma 8.2.3]). The mapping f — [|Af||2(gz) is a norm in HE(R?),
which is equivalent to ||| 2(g2)- In particular, there holds HA(R?) = H*(R?).

Next we are going to define Sobolev spaces of fractional order s > 0, using the approach
via the Sobolev-Slobodeckij semi-norm.

Definition 2.35. Let 2 C R? be open and 0 < p < 1. For f € L?(Q2) the Sobolev-
Slobodeckij semi-norm of f is defined as

- (@) — F)? 2
\f|#’Q— ; Q—QH“ dx dy )

[z =y
For s = k + u, where k € Ny, we define
H5(Q) = {ue€ H* Q) : [0%f|,.0 < oo for all |a| =k},
and equip this space with the norm
1/2

1l gzs0y = | Nl + D 10%F1% 0
loe|=k

Even though we are using the Sobolev-Slobodeckij norm as a means to introduce Sobolev
spaces of fractional order, we are generally not interested in calculating the norm |f| L R2

for f € H*(R?). Instead we are using the following result to give an esimate of this
norm, which is also sometimes known as Sobolev’s Lemma.

Lemma 2.36 (][40, Satz 11.18e]). Let k > 1. Then for any 0 < s < k and arbitrary
€ > 0 there exists a constant ¢ = c(e) > 0 such that

”f”%{s(]m) < E”f’ﬁ{k(R?) + C(ﬁ)HfH%mR?)
for all f € HF(R?).

Even though we have introduced Sobolev spaces on arbitary open sets Q C R?, we are
generally more interested in the case where the boundary of Q is at least C%!, or even
better C1! smooth, in the sense of Definition Assuming that € has a Lipschitz
smooth boundary X, we are able to construct Sobolev spaces H*(X).

Recall that we defined a C*! hypograph as the set
Q= {2 = (z1,12) € R?: 23 < ((x) for all 2; € R},

where ¢ : R — R is a k-times differentiable function such that the k-th derivative
¢®) is Lipschitz continuous and thus differentiable almost everywhere by Rademacher’s
theorem. Assuming that Q is a C*~ ! hypograph for k > 1, we can construct Sobolev
spaces on its boundary ¥ as follows. For f € L?(X) we define the function

fe(t) = f(t,C@1)) for t € R,
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and introduce the space
H(Z) = {f € LA(T) : f; € H'(R)} (2.31)
for 0 < s < k, which we are going to endow with the inner product

(fs9)ms =) = (fer 9¢) 1o ()-

In the case where () is a Lipschitz hypograph for a rigid motion x : R? — R2, we
define H*(X) in the same way except that f¢(t) = f(k1(¢,((t)). We can now generalize
this definition for general C¥~1! domains, via the means of a partition of unity.

Lemma 2.37 (|1, Theorem 3.15]). Let K be a compact subset of R* and let {O;} be
a family of open sets in R? that form an open cover of K, i.e. K C Uj O;. Then there
exists a family of functions {1b;} in C§°(R?) that have the following properties:
(i) For each j and for all x € R? there holds 0 < v;(x) < 1.

(ii) For each j we have suppv; C O;.

(iii) For every x € K there holds 3 _;1;(x) = 1.

We call {1;} a partition of unity subordinate to {O;}.
Since the boundary of a C¥~1! domain can be locally described by a C¥~! hypograph,
we can now use a partition of unity to globalize the coordinates of the hypograph, which

are only given in a neighbourhood of each point. In this way we can extend the definition
of H*(X) to the case where ¥ is the boundary of a general C¥~! domain.

Definition 2.38. Let Q be a C¥~! domain with k > 1 and let {W;} and {Q;} be given
as in Definition . Suppose that {;} is a partition of unity subordinate to the open
cover {W;} of the boundary ¥ of , i.e. ¥; € C§°(R?) with supp ¥; C W; for each j and
>_j¥j(x) =1 for all z € X. We then define the inner product

(f, g)HS(E) = Z(%‘fa ij)Hs(zjy

J

for f,g € L*(X), where ¥; = 9Q; and define the space

H*(S) = {f € L*(%) : ||l oy < 0}
for 0 < s <k.

It is important to note that this definition, does not depend on the particular choice
of the covering {W;} or the partition of unity. We can now define H~%(¥) via duality
H—3(X) = [H*(2)] and introduce the duality product

(f, 9>Hfs(2)><Hs(2) = f(9)

for f € H*(Y) and g € H*(X) if |s| < k. Further references regarding this construction
can be found in |27, Chapter 3|.
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There exists a wide field of results that are known for Sobolev spaces, which only hold
true, if the domain €2 is assumed to be sufficiently smooth. For example one can show
the existence of bounded Dirichlet and Neumann trace operators, if the boundary ¥ is
at least Lipschitz smooth.

Lemma 2.39 (|27, Theorem 3.37]). Let Q C R? be a C*~ 1! domain with boundary
Y. Then for & < s <k there exists a bounded operator yp : H*(§2) — Hs_%(Z) that

satisfies ypf = flx for all f € C*°(Q) N H*(Q). This operator has a continuous right
inverse & : Hsfé(E) — H*(Q), i.e. w&f = f forall f € Hsfé(E).

We can also generalize the conormal derivative 9, f of a function f € HX(f2) via the
bounded Neumann trace operator, assuming that the boundary X of €2 is at least Lipschitz
regular. However, it is important to note that the Neumann trace of a function in HJ (£2)
will generally only be an element of H~1/2(%).

Lemma 2.40 (|27, Lemma 4.3]). Let Q C R? be a domain with Lipschitz boundary

Y and f € HY(Q) such that Af € L*(Q). Then there exists a unique g € Hfé(E) such
that

(Vf, Vo)) = (=AF,v)120) + (9, 7DV) g-1/2(5)x H1/2(5))

for all v € HY(Q). This g is uniquely determined by f and Af and there holds the
estimate

l9llg-172sy < Cllf i) + ClAF I L2 0)-

It is a well-known fact that the space of smooth functions lies dense L?(Q2) with respect
to the norm ||| ;2. This is generally not true for the space (H* (), [l 7 (2))» due to
the ill-behaviour of the derivatives close to the boundary. The next result consists of the
fact that for a Lipschitz domain Q we can at least expect C§°(2) to be dense in H¥ ()
with respect to ||| y(q)-

Lemma 2.41 (|27, Theorem 3.29]). Let Q C R? be a domain with Lipschitz boundary.

Then C§°(R2) lies dense in H*(Q) with respect to ||| s (q) for s = 0.

We will conclude this subsection about Sobolev spaces with a suitable version of the
well-known Rellich-Kondrachov embedding theorem, which we are going to use to show
the compactness of the Toeplitz-type operators in Section [5.1

Theorem 2.42 (|1, Theorem 6.3]). Let 2 C R? be a bounded domain with Lipschitz
boundary. Then the embedding H*(Q) — L%*(Q) is compact.
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2.9 Schatten-von Neumann ideals

In this subsection we are following the lines of |3, Chapter 2.2] to introduce Schatten-von
Neumann ideals, which are used to characterize the rate at which the singular values of
a compact operator tend to zero. After that we are going to state a useful result on the
Schatten-von Neumann property of operators that map into Sobolev spaces H*(X) with
s > 0, which is provided in Proposition [2.47}

In this subsection H, G and K are always assumed to be separable Hilbert spaces. Recall
that we write B(H, G) for the space of bounded linear operators from H to G and use the
shortened notation B(H) := B(H,H). We will denote the space of all compact operators
from H to G as S (H,G) and write Soo(H) := Soo(H, H). Recall that for any compact
operator K € S (H,G) its singular values are defined as the eigenvalues of the self-
adjoint non-negative operator (K*K)'/? € G4 (H). We will denote the singular values
of K by sx(K) for k € N and order them non-increasingly, with multiplicities taken
into account. It is a well-known fact that si(K) = si(K™*) for any compact operator
K € 6(H,0G).

Definition 2.43. For p > 0 we define the Schatten-von Neumann ideal of order p as the
space

Gp(H,G) = {K € Guo(H,0) : isk(K)p < oo} .

k=1

In a similar way we introduce the weak Schatten-von Neumann ideal of order p, which
is defined by

Gpoo(H,G) = {K € Goo(H,G) : sx(K) = O(kfl/p)} .

We will now collect a few useful properties of the Schatten-von Neumann ideals, which
we are going to need. As the name suggests the Schatten-von Neumann ideals form
two-sided ideals, which we will formulate in the following lemma.

Lemma 2.44 (|3, Section 2.2]). Let C € B(H) and D € B(G). Then the following
holds.

(i) If K € 6,(H,G), then DKC € &,(H,G).

(ii) If K € 6poo(H,G), then DKC € &, 00(H,G).

Since the singular values of a compact operator K always tend to zero, it is easy to see
that the spaces &,(H,G) and &, oo (H,G) grow in size, as p increases.

Lemma 2.45 (|3, Section 2.2]). Let 0 < p < q. Then the (weak) Schatten-von
Neumann ideals are ordered in the following way.

(1) 6p(H,G) C S4(H,G) and Sp0(H,G) C Sy00(H,G).
(ii) 6p(H,G) C Gpoo(H,G) and Gpoo(H,G) C &y(H,G).
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The next lemma will be useful in Section where we are going to study the resolvent
difference between the unperturbed Landau Hamiltonian and its counterpart with a d-
potential.

Lemma 2.46 (|3, Section 2.2]). Let p,q > 0 and let r > 0 such that % + % = % Then
for Ki € 6, (H,G) and Ky € 845(G,K) the product of these operators satisfies

KoK € 6r7oo(7'[, ]C)

The next proposition consists of an abstract result on the Schatten-von Neumann prop-
erty of operators that map into Sobolev spaces H*(X) with s > 0.

Proposition 2.47 (|3, Proposition 2.5]). Let k € N and suppose for k € N that X
is the boundary of a bounded C*' domain Q. Let C' € B(H, L*(X)) be a linear operator
such that ran(C) C H'?(X) for some | € {1,...,2k 4+ 1}. Then

Ce 62/Z,OO(H7 L2(E))

We conclude this subsection with a technical result, which allows us to characterize the
total variation of the discrete spectrum of an operator under a trace class perturbation.

Proposition 2.48 (|3, Proposition 2.11]). Let C and D be two bounded and self-
adjoint operators in H such that D — C € S1(H). Then there holds

Z dist(\, o(D)) < oo.

Aeo’disc(c)
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3 Magnetic Sobolev Spaces

In this section we are going to introduce the magnetic Sobolev spaces H4 (Q) and Ha (Q),
which in a way form the magnetic counterpart to classical Sobolev spaces and thus provide
us with the perfect framework to study the Landau Hamiltonian. To start, we provide
basic definitions and properties of magnetic Sobolev spaces in Section [3.I] In Section
3.2l we will see that functions in magnetic Sobolev spaces coincide locally with classical
Sobolev functions on bounded domains. We are then going to exploit this fact in Section
in order to construct bounded Dirichlet and Neumann trace operators on Lipschitz
domains, which will also allow us in Section to provide a generalized Green’s formula
for functions whose weak magnetic derivatives exist in L?((2).

3.1 Basic Definitions

In this subsection we will define magnetic Sobolev spaces, which form the magnetic
counterpart to Sobolev spaces and provide an appropriate version of the diamagnetic
inequality, which is essential in the analysis of the Landau Hamiltonian.

Definition 3.1. Let QO C R? be an open set. Let B > 0 and set V := iV + A where
A(zy,22) = g(*l‘g, x1)". We introduce the magnetic Sobolev space of first order on Q
as the space

Ha(Q) :={f € L*(Q) : [Vaf| € L*(Q)}.
By endowing H} (Q) with the inner product
(f, D) = (92 + (VAS, VAg) 120

for f, g € HA (2) the magnetic Sobolev space becomes a Hilbert space. We can also give
the magnetic counterpart of the Sobolev space H}(£2) and define the subspace H} 4(€)
as the closure of C§°(£2) with respect to H'HH};(Q)- In addition to that we introduce the
subspace

Hp o) = {f € Ha(Q) : supp [ is compact in R*}
of functions in H} (Q) with compact support.

It is important to note here, that we only require the support to be compact in R?, not
compact in €. In particular, supp f may contain points lying on the boundary of 2.
Following the above definition, we can now go ahead and introduce magnetic Sobolev
spaces of second order, which in addition to |V a f| € L?() also require the existence of
the distribution Vif in the L%-sense.

Definition 3.2. For an open set Q C R? the magnetic Sobolev spaces of second order
is defined as the space

HA(Q) = {f € HL(Q) : V4 f € L2(Q)}.
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If we endow Ha (2) with the inner product

(f)g)HA(Q) = (f7 g)’H}&(Q) + (V?Afa v2A.g)l/2(Q)

for f,g € HaA(Q), the magnetic Sobolev space of second order becomes a Hilbert space.
Furthermore, we introduce the subspace

Ha o) := {f € Ha(Q) : supp f is compact in R?}
of functions in Ha () with compact support.

Recall again, that we only require supp f to be compact in R?, but not necessarily in €.
In the next proposition, we state two well-known variants of the so-called diamagnetic
inequalty, which can also be found in |2, Theorem 2.5] and |25, Theorem 7.21] for further
reference.

Proposition 3.3 (|3, Proposition 2.2]). Let —A be the self-adjoint Laplace operator
in L*(R?) defined on H*(R?). Let 8> 0 and A < 0. Then for any f € L*(R?) one has

pointswise a.e. in R?
(Ao = N)Pfl < (A =X 1] (3.1)

Moreover, for f € Hi(R?) there holds |f| € H'(R?) as well as the pointwise estimate
V@I < [Vaf(@)] for ae. o € R,

3.2 Local Equivalence

As an important observation, magnetic Sobolev spaces are generally not contained in
classical Sobolev spaces, as the existence of |(iV + A)f| in L?(£2) does not immediately
imply |Vf| € L?(Q2), which is due to the fact that the vector potential A becomes
unbounded, if the domain €) is unbounded as well. On the other hand, since A is a
smooth vector potential, we find that the restriction |A f| [ 5 to a bounded subset B C 2
is again a function in L2(B). With this in mind it is only natural to propose that classic
and magnetic Sobolev spaces coincide on bounded sets, which we are going to show in
this subsection.

Lemma 3.4. Let Q C R? be open and bounded. Then there holds HA (2) = HY(Q) as
well as Ha () = HX(Q) and the respective norms are equivalent.

Proof. The statement H'(Q) = H} (Q) follows from the fact, that A € C*(R?* R?)
is bounded inside €, implying that for any f € L?(2) we also have |Af| € L?(9).
Furthermore, for any f € H'() there holds

IV ez () < IVASlzz@) + 1Al fllz2@) < U+ [AL g @)

as well as

IVafllzz @) S IAllollfllzz@) + IV Fllze@) < U+ AT 1 ()
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This proves that ||| ;1 (q) and H~HH}&(Q) are in fact equivalent. Now let ¢ € C5°(€2). Since
divA =0 we get

(f. Va®)izq) = (f, (A +2iA -V + A?) 9)12(q)
= (f, —A@)12(0) + ((2iA -V + A?) f,0) 120,

where we used the already proven fact H} (Q) = H'(Q2) and that A is bounded in €.
This shows that Af exists if and only if V4 f exists and there holds

VAf=—-Af+(2iA-V + A% f,

which in combination with the first part, after a few analogous estimates, yields the
stated norm equivalence of H'HHK(Q) and ||-[l3,, - O

We can now use the above result to show that compactly supported functions in H}.‘(Q)
and Ha () also lie in the classical Sobolev spaces of the respective order.

Corollary 3.5. Let Q C R? be an open set. Then there holds ch(Q) C HY(Q) as well
as HA,c(Q) c HA(Q)
Proof. The statement is clear for bounded sets {2 by Lemma So suppose that € is

unbounded and f € HY (). Let D C R? be an open disk such that supp f € D and
set B= QN D. Then by the boundedness of B it follows by Lemma [3.4] that

flp € Ha(B) = H'(B). (3.2)

Since supp f is contained inside D, it follows that the Dirichlet trace of f|z vanishes on
0B N Q. On the other hand there holds f = 0 on Q\B, so it follows with that
f € HY(Q). Since f € H};,C(Q) was arbitrary, this shows that 7—[};70(9) C HY(Q). An
analogous argument can be made to show that Ha ¢(2) C HA(Q), which finishes the
proof. O

As an immediate consequence of Lemma we obtain the density of C§°(Q) in the
magnetic Sobolev spaces, in the case where ) is a bounded Lipschitz domain.

Corollary 3.6. Let Q C R? be a bounded Lipschitz domain. Then CS°(Q) is dense in
(Ha (), [l ) and (HA(Q), 13, 0)-

Proof. By Lemma[3.4]there holds #} (Q) = H'(Q) as well as Ha (Q) = H(Q2) and the
respective norms are equivalent. Since C§°(€2) is dense in the classical Sobolev spaces for
Lipschitz domains €2, the result follows. O

In the case where 2 = R? one obtains the following result, which we will only state here
without giving a proof.

Lemma 3.7 (|25, Theorem 7.22]). The space of test functions C3°(R?) lies dense in
H (R?) with respect to H'HH}A(]W)'
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In the next step we will show that functions in H} () and Ha (Q) can be approximated
by functions in ’Hk () and Ha c(12), respectively, by using a sequence of smooth cut-off
functions.

Lemma 3.8. Let Q C R? be an open set. Then the following holds
(1) #h o(92) s dense in (Hy (), 11 ()
(ii) Ha,c(€) is dense in (Ha(Q), [l )

Proof. We will consider the case where €} is unbounded, as for the bounded case we

already have Hk,o(Q) =Hp () and Ha,c(Q) = Ha(Q).

So let © be unbounded and f € H}{(Q). Choose x € C°(R?) such that x = 1 on
the unit disk {z = (z1,22) € R?: |z| < 1}. We define the sequence xx(z) := x(¥) for
x € Q, which satisfies

1 C
sup |00, Xk (@) < g swp |0505,x(2)] < s

for all m,n € Ng and C(m,n) > 0. We will show that fx := xxf € HL (Q) is a
sequence that fulfils the desired properties. By the dominated convergence theorem it is
clear that fy — f in L?(€2). For the magnetic gradient there holds

(V + A)fi = xn(iV + A) f +i(Vxk) [,

which then implies

C
GV + A) fe = (iV + A) fll o) < 11 = x0) @V + A) fll 2 + EHfHL%Q)‘

By the dominated convergence theorem the right hand side tends to 0 as £ — oo which
together with f, — f in L?(Q) means

1 f = flla @) = 0-

Assume now that f € Ha(2). We must show that (iV+ A)?f, — (iV + A)%2f in L?(Q).
First observe that for any ¢ € C5°(€2) there holds

(iV + A)* Xk = Xk (iV + A)*@ — (Axk) e + 2iVxk - Vag
in the strong sense. Rearranging these terms yields
Wil + A2 = (1 + A + (A — 20Vxk - iV + Ao, (3.3)
Furthermore, there holds

(tV+A)(eVXi) = Vi - (iV + A)p + ipAxi,
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or equivalently
—2iVxg - (iIV+ A)p = =2i(iV + A)(¢Vxr) — 20A Xk,
which inserted in yields
Xk (iV + Ao = (iV + AP xip — (Axa)p — 20V + A) (9Vxx)-
This means that for any ¢ € C5°(Q2) we get
(fie, iV + A)?@) 120y = (f, x&(iV + A)’9) 120

= (. (iV + A)*xrp — (Axi)e — 2i(iV + A)(6Vxk)) 12(0)
= (k(iV + A f — (Axe) f + 2iVxk(iV + A) f,0) 12(0)-

This shows that there holds
(iV + A fr, = xu(iV + A2 f — (Axi) f + 2iVxi(iV + A) f € L*(Q).

In particular, we get the estimate

. . ) C
16V + A fre = @V + AP fl 2y < 1= X0V + AP F| o) + ELAIZIG)
c,,.
+2 1@V +A) fllp2q)-

Clearly the right hand side tends to 0 as k — oo by the dominated convergence theorem,
which concludes the proof. O

3.3 Dirichlet and Neumann trace

In this subsection, we will prove the existence of bounded Dirichlet and Neumann trace
operators for magnetic Sobolev spaces on Lipschitz boundaries. We have seen in the last
subsection that the magnetic Sobolev spaces coincide locally with their classical counter-
parts, that is the weak deriatives of functions in H} (Q2) and Ha (Q) exist in L?(B) on
any bounded subset B C . Given some (possibly unbounded) Lipschitz domain  C R?
with compact boundary ¥, we can choose an open disk D C R? such that ¥ C D and
instead consider the bounded set B = QN D. This way we can construct Dirichlet and
Neumann trace operators on Hh(B) = H'(B) and Ha(B) = HX(B), which exist in
the classical Sobolev space theory. With this in mind our aim will be to first construct
bounded trace operators ¥4 : HX’C(Q) — HY2(S) and 38 : Ha,c(Q) = H~V/2(S) and
then use a density argument to extend them to the entire magnetic Sobolev spaces.

We will start by showing that the extension of the Dirichlet trace f |, from functions
in C5°() to functions in H} (2) gives us a well-defined and bounded operator.
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Proposition 3.9. Let Q) be a Lipschitz domain with boundary . Then there exists a
bounded linear and surjective operator VA HL(Q) — HY?(%) such that Y& f = fls for
[ € C5°(Q). Moreover this operator is compact from H4 (Q) to L*(X).

Proof. We start off by defining the map 74 : /H}&,C(Q) 5> f — ypf € HY2(X) where
o @ HY(Q) — H'?(X) denotes the trace operator for classic Sobolev spaces, which is
well-defined since ’H},‘?C(Q) C HY(Q) by Corollary To show the boundedness of ﬁﬁ
let D be an open disk in R? such that ¥ € D and set B = QN D. By Lemma the
restriction operator R : H4 (Q) — HY(B), f — flp is bounded and by construction it
follows that yp(Rf) = ypf for any f € H}&,C(Q)‘ In particular, there holds

H’YDfHHl/2(E) = H’YDRfHHl/2(2) < ClHRfHHl(B) < CQHfH?-[lA(Q)

for some constants ¢y, c2 > 0, which shows the boundedness of 75 : HX,C(Q) — H2(%).
As H}ch(Q) is dense in H} (Q) by Lemma the operator 4 can be continuously
extended to a bounded operator /4 : HL(Q) — HY2(X). To see that 4A is sur-
jective, choose a cut-off function x € C§°(R?) such that y = 1 on the open disk D.
Then for any f € H'(Q) we have x[of € H} (Q) with 45 (x[qf) = 9pf, which shows
ran(vy) = ran(yp) = HY/?(X). The compactness of yp : H}y (Q) — L*(X) follows from
the fact that the embedding H'/2(X) < L?(X) is compact. O

We have now established a bounded trace operator for Lipschitz domains, but we are also
going to need the trace f|x for globally defined functions f € ”H}&(IRZ). In this case we can
use the diamagnetic inequality to extend the trace map C°(R?) 3 f — f|s € HY/?(X)
by continuity to a bounded operator on ’Hk (R2).

Proposition 3.10. Let ¥ be the boundary of a Lipschitz domain Q in R?. Then there
exists a bounded linear operator v : Hi (R?) — HY2(X) such that & f = fls for all
f €C(RY). In particular, v : HY (R?) — L2(X) is a compact operator. Moreover for
all € > 0 there exists c¢(e) > 0 such that

1l 225y < ellVaflTamey + Ol f72me) (3.4)
holds for all f € HX (R?).

Proof. Fixe >0, s € (%, 1) and let f € C5°(IR?). By the boundedness of the Dirichlet
trace operator qp : H*(R?) — L?(X) and Lemma it follows that there exists a
constant ¢(e) > 0, which does not depend on f, such that

115072y = IAsZ2gmy < el ey < €llV IFI72me) + (@1 f172me)-
Applying the diamagnetic inequality from Lemma [2.306] gives us
11212y < eIV afPagrs) + ()11 25qme)

which by the density of C§°(R?) in H} (R?) shows the inequality stated in (3.4)) for all
feHL(RY.
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In order to show that 47 maps functions from H} (R?) into H 1/2(%) we choose an open
disk D € R? such that ¥ C D and let R : H4 (R?) — HL (B), f — flq be the restriction
operator onto §2. By Propositionthe local trace operator 71%,3 : Hi (B) — H1/2(E) is

bounded, so we have the mapping property 'y]S‘"BR c HL(R?) — HY2(%), f — f|s, which
finishes the proof. O

We will now use a similar strategy as we did in the proof of Proposition to show
that the conormal derivative 9, f for smooth functions f can be extended to a bounded
operator Y& : Ha(Q) — HY2(2).

Proposition 3.11. Let Q C R? be a domain with Lipschitz boundary ¥ and unit normal
field v. Then there exists a bounded operator 4% : Ha(Q) — H™Y2(X) such that

(vifvg)LQ(Q) (Vaf,Vag)re Q) — <’7Nf_“/ A’YDf ’7D9>H 1/2(5)x H1/2(5) (3.5)

for all f € Ha,c(Q) and g € HL(Q).

Proof. Assume first that Q is bounded, then we have Ha () C HA(Q2) as well as
/H},"C(Q) C H(Q) by Corollary [3.5|and the statement follows directly from Lemma [2.40
after integration by parts.

Suppose now that € is unbounded and let f € Ha () and g € H}x,c(Q)- In par-

ticular, by Corollary there holds f € HA(Q) as well as g € H'(Q2). By Lemma m
there exists h € H~1/2(X) such that

(Vf, Vg)LQ(Q) = (_Afv g)LQ(Q) + <h7 7]%9>H71/2(2)XH1/2(E)' (36)
We will define the operator 74 via 78 f := h for f € Ha (). Using (3.6) gives us

(Val 92 = (FAF +2iA -V + A%f,9)1200)
= (V. Vg)r2@) + (20A - V[, g)r2(q) + (Af, Ag)r2(q) (3.7)

- < Nf?PYD g>H71/2(E)><H1/2(2)'

Using the classic divergence theorem for functions in H'(£2) in conjunction with divA = 0
we further get

(A-V£i g = V- AD D9 ) — (AL, V)20
Plugging this into (3.7)) yields

(Vaf 92 = (V. V) 2 + (1A -V, 9)r20) + (f1iA - Vg) 120
(Af JAg)L2 Q) — <7Nf_“/ AFYDf ’YDg>H 1/2(5)x H1/2(3)
= (vAfa VAg)LQ(Q) - <’YNf — - A’YD faIYDg>H—1/2(E)XH1/2(E)'
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This shows the claimed identity for g € ’H}A’C(Q). By density of ,H}A,C(Q) in H4 ()
this equality extends to all g € HY (Q). To show the boundedness of the operator let
D C R? be an open disk such that ¥ C D and choose x € C{°(R?) such that x = 1
on D. Define the multiplication operator J : L?(Q) > f = x|q - f € L*(Q), which by
Lemmais bounded from H} (Q) to H' () and vice-versa. Let £ : H'/?(X) — H'(Q)
be the continuous right inverse of the trace operator. Then by construction there holds

B (TEP) = w(xlafp) = W(Ep) = ¢
for any ¢ € H'/2(%), implying

|<§11\?f7 90>H*1/2(E)><H1/2(Z)’ = |<%€I‘f7 73(‘75s0)>H*1/2(2)><H1/2(2)‘
< (VAL TER) 2| + [(Vaf, VATER) 120 |
+ (v ADf o) 12w
<c (HfofHLz(Q) +IVafllrz@ + ||f||L2(Q)) [l e (s

< cllfllygp o el 2 sy

for some ¢ > 0. This shows that 7§ : H4 -(Q) — H~Y2(X) can be extended by conti-
nuity to a bounded operator V& : H} (Q) — H~1/2(X) that satisfies (3.5). O

Remark 3.12. Assume that Q C R? is a Lipschitz domain with unit normal field v.
We have seen in Corollary that functions in Ha () can be locally approximated
by sequences of smooth functions, that is C5°(2) is dense in (Ha (£2), [ laq (), if 2 is
bounded. Hence the Neumann trace operator 'yf(} from Proposition can be seen as
a continuous extension of the normal derivative 9, from C§°(Q) to the space Ha (). In
particular, there holds 74 f = 9, f for f € C§5°(Q) - with this in mind we will from now
on write 0, instead of 'yl{}. Recall that the normal derivative satisfies d_, = —0, for
smooth functions, which by density translates to functions in Ha (£2), a result which we
will use later on in the proof of Lemma

3.4 Green's ldentity

In this subsection we will use the Neumann trace operator that we acquired in the last
subsection, to derive an appropriate version of Green’s first identity for functions in
magnetic Sobolev spaces. We will derive the formula under the following assumption.

Assumption 3.13. From now on we will assume that Q; C R? is a bounded domain
with Lipschitz boundary ¥ := 0€2; and set 2. := 1R2\§Z- for the exterior domain. Denote
by v the unit normal vector field pointing outward from €2; (and hence pointing into €2.).
Using the above notation we introduce the space

D= {f € HA(R?) : Vi flqg, € L*() and Vi flg, € L*(Q)}. (3.8)
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The space D consists of those functions f € HY (R?) that can be written as f = f; @ fe,
where f; € Ha(€;) and fe € HA(€). As an important observation, functions in ®© have
continuous traces, i.e. fyﬁifi = 7ﬁefe.

Recall that by the Propositions and there exist bounded operators
Vb HA () = H'Z(S),
et HA(Qe) = HYZ(E),
1 HA(R?) — HY (D),

that act as continuous extensions of the trace map ¢ +— ¢|y, for smooth functions ¢ in
their respective subdomain. Since we have

vB.i(ela,) = Mhelela,) =1be = ¢ls

for any ¢ € C§°(R?) we will from now on omit the declaration of the subdomain in the
notation, and write yp for all three operators, as there is no danger of confusion, since
HY(Q) and H} (92) coincide locally. The same follows for the operators

Byi HA(Q) — H V(D)
Oy HA(Q) = H V2R,

which are natural extensions of the conormal derivative to magnetic Sobolev spaces, so
we will write 9, for the interior and 0_,, = —9, for the exterior Neumann trace.

Under the above assumption we are able to derive Green’s first identity for functions
that lie in the space ©.

Lemma 3.14. Suppose that Assumption holds true. Then for any f € ©, where ®
is defined as in (3.8), and g € H},L(]R2) there holds

(Val 92wy = (VAL Vag)r2wz) + (O fe = 00 fis 109) ir-1/2 (5 /2 (5
In particular, a function f € D lies in Ha(R2?) if and only if O, f. = O, f;.

Proof. Let f=fi® feeDand g =9g; P ge € Hk(Rz) with g; = glg, and ge = glg, ,
then by Proposition [3.11] there holds

(Vafio 902 = (VaSi; Vagi) 2, — (Oufi = iv - A fi, Y09i) 1720y 1723,
for the interior domain, as well as
(V2Af€7 ge)LQ(QE) = (VAfev VAge)LQ(Qe) - <afufe +w - Ay fe, 7D96>H71/2(2)XH1/2(2)
= (vAfev vAge)L2(Qe) + <8z/fe — v Ayp fe, ’YDge>H71/2(§;)XH1/2(E)

for the exterior domain, where we used that the unit normal field of 0€), is given by
—v. Since hj|y, = he|s, for any function h € Hj (R?) we can add both equations for the
interior and the exterior domain, which shows the claimed statement. ]
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4 The Landau Hamiltonian

In this section we are going to study the Landau Hamiltonian with d-perturbations that
are supported on a CY! curve ¥ in R2. Section contains some preliminary material
concerning the unperturbed Landau Hamiltonian. In Section we are going to study
the Landau Hamiltonian on a domain €2 with Dirichlet boundary conditions, where (2
is assumed to be either a bounded C"! domain in R? or the complement of a bounded
CH! domain. In Section we introduce the Landau Hamiltonian A, with a J-potential
by defining the associated sesquilinear form that corresponds to the formal expression
Ag + ady and show that this operator is self-adjoint. Going into Section we will
derive a compact Krein-type factorization of the resolvent difference of the unperturbed
Landau Hamiltonian Ag and the Landau Hamiltonian A, with a §-potential supported
on Y. We will proceed in Section with a rigorous analysis of the resolvent difference
of Ag and A,.

4.1 The unperturbed Landau Hamiltonian

Following the lines of |3, Chapter 2.1] we will now introduce the unperturbed Landau
Hamiltonian, that is the unperturbed magnetic Schrédinger operator with a constant and
homogenous magnetic field. For this let B > 0 be the strength of the magnetic field and
let A(zq,29) = g(—xg, x1) " be the corresponding vector potential in symmetric gauge.
Recall that the magnetic Sobolev space of first order

HAR?):={f € L*(R?) : [Vaf| € I*(R*)}
given in Definition endowed with the inner product
(f Dny ey = (f, 9 2me) + (VAS, Vag) 2wz

forms a Hilbert space. We can now introduce the form
alf) = [ | IVaf(@)*ds,  dom(an) = HA(R?)
R

which is densely defined, non-negative and closed in L?(IR?). In particular, this form
gives rise to a unique and self-adjoint operator Ag, which is given by

Aof =VAf, dom(Ag) =Ha(R? ={f e H\(R? :VASeL}R?} (4.1)

and referred to as Landau Hamiltonian. The following proposition recalls the well-known
spectral properties of the Landau Hamiltonian.

Proposition 4.1 (|3, Proposition 2.1]). Let Ag be the Landau Hamiltonian defined
in (4.1). Then there holds

o(Ao) = 0ess(Ao) = {B(2¢+1) : ¢ € No},

i.e. the spectrum of the Landau Hamiltonian Ag consists exclusively of the eigenvalues
Ay = B(2q +1),q € Ng, which are called Landau levels and have infinite multiplicity.
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We will conclude this subsection by summarizing some of the well-known properties of
the eigenspaces of the Landau Hamiltonian, following the lines of |31, Section 4.2|. For
q € No let P, : L*(R?) — L?*(IR?) be the orthogonal projection onto the eigenspace
Ly :=ker(Ag — Ay) where Ay = B(2q+ 1) are the Landau levels. Using the identification
2z = 1 + iwy for (w1,22) € R? with 9 = %(81 —i0;) and O = %(81 + i02) we set
U(z) = 1B|z|? and introduce the creation and annihilation operators

B
AT = —2ie%0e7V = —2i0 + =iz,
2 (4.2)
_ _ B :
A™ = —2ie Voe¥ = —2i0 — 5%

with dom(A") = dom(A~) = H} (R?), which are formally adjoint on H} (R?). One
readily verifies that the compositions AT A~ and A~ AT are well-defined on H A (R?) and
satisfy the commutation relation

Aju= (A"AT — Blu= (ATA™ + B)u (4.3)

for all u € Ha(R?). Using along with the formal adjointness of AT and A~ we
can conclude that ker(Ag — B) = ker(A™), which shows that the eigenvalue equation
(Ag — B)u = 0 is equivalent to the Cauchy-Riemann differential equation d (e‘I’u) =0.
In particular, for u € Ly the function f = e¥Yu obeys the Cauchy-Riemann differential
equations and thus is an entire function such that e=¥ f € L?(C). Recall that the Fock
or Segal-Bargmann space F2 was introduced in Definition as the Hilbert space of
all entire functions such that

||f||3:2 = /@ \!}C(Z’)]Qe*%Blz|2 dm(z) < oo.

This means solutions u € Ha (R?) to the equation (Ag — B)u = 0 can be equivalently
rewritten into the form f = e¥Yu € F2, implying that there holds £y = e Y F? as
unitary equivalence. Moreover, one can use to show that additional eigenspaces
L, = ker(Ag — A,) for ¢ > 1 can be obtained via £, = (A")2Ly. The next proposition
will provide more details on this.

Proposition 4.2 (|31, Equation (17)]). Let the creation and annihilation operator
be defined as in (4.2)). Let ¢ € Ny and set L, = ker(Ag — A;). Then AT and A~ act
bijectively between the subspaces L, as

.A+ : Eq — £q+1, A £q+1 — ﬁq, A Ly — {0} (4.4)

Moreover the spaces F? and Ly are unitary equivalent via the mapping

P L,
U, : {f o Aty (4.5)

where Cy = /¢! (2B)14.
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Proof. Let g € Ny be arbitrary but fixed. For this proof let us set .A;“ = AT , as well
as Ay = A7 Lowi- We are first going to show that A; : Ly — Lg41 is well-defined. To
see this let u, € £, be arbitrary. Using (4.3)) we obtain via a direct computation

(A+uq, Vi@)L?(R?) = (Aq+1“4+uq’ @)L?(R?)

for arbitrary ¢ € C5°(IR?), showing that V4 Atu, = Ay+1u,, that is AT maps functions
from L, to L441. Moreover, by (4.3 it follows that

Agug = Agug = (A; Al — B)ug
or equivalently
(2¢ +2)Bu = A Afu,

implying that A} is an injective operator with left inverse [(2¢ + 2)B]*1.Aq*. On the
other hand, for arbitrary ug,4+1 € L44+1, using (4.3) again, we see

Agi1ugrr = Agugr = (AT AL + B)ugii,
which is equivalent to
(2¢ + 2) Bugy1 = A A  ugi1.

In particular, A;r : Lqg = Lg41 is surjective with right inverse [(2q+2)B]*1.Aq* and hence
bijective. Moreover, we can conclude from the above calculations that A, : Lo41 — L4
must be bijective as well. Next we are going to show that the mapping U, from is
well-defined and unitary. We have seen that F? and Ly are unitary equivalent via the
mapping F2 3 f — e~ Y f € Ly, which together with shows that U, : F2 — L, is a
well-defined isomorphism. If we are able to show that the mapping

Lo €ug— C;H(AN)ug € Ly, Cqg=+/q'(2B)q,

is isometric, it follows that U, is a unitary operator. To see this let ¢ € N and ug € Lo.
Now (4.3)) implies that

(AT)(AT) g = (A7)TH[Ag + BJ(AT)T ug = 2Bq(A7) 1 (AT)T  ug,
so an inductive arguments yields
(A)UA) g = (2B)9qlug = C’guo.
Together with the formal adjointness of A" and A~ on H} (R?) this gives us
A 0y = (A7 A, )y = Gl

which finishes the proof. O
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4.2 The Landau Hamiltonian with Dirichlet boundary conditions

In this subsection we will provide a definition and some properties of the Landau Hamil-
tonian on a domain §2 with Dirichlet boundary conditions. For this we will assume that
2 is either a bounded C''! domain or the complement of a bounded C%! domain, in which
case the boundary ¥ = 99 is a compact Cb! curve. Recall that the magnetic Sobolev
space of first order is given by

HA(Q) = {f € L*(Q) : [Vaf| € L*(R?)},
where Vo =1V + A, which equipped with the inner product

(f, 9 @ = (F: 92 + (VAS, Vag) 2 )

is a Hilbert space. Next, we introduce the symmetric sesquilinear form
b= (Vaf,V dom(af}) = H4 (2
ap = (Vaf, Ag)m(g), om(ap) = A,o( )s

where H} () is the closure of C§°(£2) with respect to H'||Hk(9) from Definition . It is

easy to see that the above form is densely defined, non-negative and closed in L*(Q2). In
particular, a% induces a self-adjoint and non-negtative operator A2, which is the Landau
Hamiltonian on 2 with Dirichlet boundary conditions on . In the case where € is a

bounded domain we have 7—[},‘,0(9) = H}(Q) by Lemma so the space H_},L,O(Q) is
compactly embedded in L?(§2) implying that

Tess(AL) = 0.
We are going to need the following result in the proof of Proposition [4.16]

Proposition 4.3. Let Ag be the Landau Hamiltonian from (4.1)) and let X be the boundary
of a bounded CY' domain Q; C R?. Then the operator

S:=Ao [ {f € HAR?) : flx =0} (4.6)
1s densely defined, closed and symmetric. Moreover, for any q € Nqg there holds
dimker(S — A,) < dimker(A% — A), (4.7)
i.e. the space ker(S — A) is finite-dimensional.

Proof. Since C{°(R?\X) lies dense in L?(R2\Y) it follows that S is densely defined.
To see that S is a closed operator it suffices to show that dom(S) is a closed sub-
space in Ha (R?) with respect to [l345 (m2)- For this let yp : HL (R?) — H'2(X) be
the trace operator and J : Ha(R?) — Hhi(R?),u — u the continuous embedding of
Ha(R?) in H} (R?). In particular, it follows for 4p = ypJ : Ha(R?) — HY/?(2) that
dom(S) = 45" ({0}) is closed in Ha (R?) as the pre-image of a closed set under a contin-
uous operator, so S is closed. Moreover, S C Ag implies the symmetry of S, since Ag is
a self-adjoint operator.

o4



Now let us show the inequality we stated in . Recall that Q; C R? is a bounded Lip-
schitz domain with boundary ¥ and Q. = R*\Q;. Assume that dim ker(Agi) =keNy
and suppose that there exist linearly independent hq, ..., kg1 € ker(S — Ay). Denote
h;'- = hjlg, and h§ = hjlq,. Since hi, ..., hx11 € dom(S) it follows that hj[s; = 0 for all

je{l,....;k+1} so hi,... ,h2+1 € ker(A%" — A,). In particular, hi,..., h}'ﬁl must be
linearly dependent, so it is no restriction to assume that

k
1= Bkl (4.8)
j=1
In the same way it follows that hf,...,h{ ; € ker(A%e — A,) and since h; € Ha(R?) it
follows from Lemma [3.14] that
O hS|s = Oyh|s. (4.9)
for all j € {1,...,k+ 1}. Now consider the function

k
9° = hfy — > Bihs € ker(A: — Ay),
j=1

which by (4.8)) and (4.9) satisfies

k k
Ogels = Ouhi1ls =D BrOhS|s = Ouhjpls — Y Brouhils = 0,
j=1 j=1

which means that g. is a function in in ker(Age — Ag) such that g.|s, = 0ygels = 0. In
particular, we can extend g. by zero outside of Q. to a function g € Ha (R?). Moreover,
since g, € ker(Age — A,) it follows that g € ker(Ag — Agy). Now let U, be the unitary
isomorphism form Proposition that maps F2 onto £,. Since g(z) = 0 for all x € Q;
it follows that (Uyg)(z) = 0 for all z € €2;. Since Uyg is an entire function this means
Uqzg = 0 and hence g = 0; in particular, g. = 0. We conclude that

k
z+1 = Z /thj)
j=1
which together with (4.8) implies

k
hisr = Y Bihg,
=1

showing that hi,...,hgy1 are linearly dependent - a contradiction, which finishes the
proof. O
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4.3 The Landau Hamiltonian with singular perturbations

In this subsection we will define and study the Landau Hamiltonian with a d-potential
supported on the boundary ¥ of a compact C*! domain €2;. We are first going to intro-
duce the corresponding sesquilinear form and then use the first representation theorem
to show the self-adjointness of the Landau Hamiltonian A, with a singular interaction
given in Definition which was stated in Theorem

To start off, we are going to provide the sesquilinear form that will be associated to
the Landau Hamiltonian with a §-potential.

Theorem 4.4. Let the sesquilinear form a, : Hi (R?) x HA (R?) — C be given by

00 [f. 0] = (Vaf, Vag)zms) + /E oflsgls do, (4.10)

where f,g € HY(R?) and o € L®(Z;R). Then aq is densely defined, closed and bounded
from below. In particular, there exists a self-adjoint operator A : dom(A) — L?(IR?) such
that

Oa [f? g] = (Afa g)L2(R2)
for all f € dom(A) and g € dom(ay).

Proof. Since Cg°(R?) C Hh (R?) is dense in L?(R?) it follows that a, is densely defined.
Let now € > 0. By Proposition we can choose c(€) > 0 such that

\/ o |l do
>

Since € > 0 can be chosen arbitrarily small, this shows that the form

< llall sy (€17 aFBame) + N 1320m2)) -

Y (R?) BfH/Ea!f\EZdU

is relatively bounded with respect to the form H}j (R?) > f — ||vAfH%2(]R2) with bound
zero. By Theorem [2.3]it follows that a, is closed and bounded from below as sum of the
aforementioned forms. The existence of the self-adjoint operator A : dom(A) — L2(IR?)
follows from the first representation theorem. O

We will now give a proper definition of the Landau Hamiltonian with a J-potential.

Definition 4.5. Let ©Q; C R? be a bounded C''' domain with boundary ¥ and set
Q. = Rz\ﬁi. We then introduce the Landau Hamiltonian with a d-interaction

Aof :=Vafi® Vafe,
dom(A,) := {f € HL(R?): VQAerZ_/e € L*(Qyse), Oufe— 0 fi = afls}-
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Our aim is to prove that the operator A, is self-adjoint. We will do this by showing that
the Landau Hamiltonian with a J-potential and the self-adjoint operator A induced by

the form a,, from (4.10]) coincide.

Theorem 4.6. The operator A, from Definition and the self-adjoint operator A
corresponding to the form a, from (4.10) coincide. In particular, the Landau Hamiltonian
with a singular interaction is self-adjoint.

Proof. Let f € dom(A,) and g € H4 (R?). Then by Lemma there holds
(Val 92wy = (VAL Vag)2we) + Oufe = 0ufis gl2) -1/2isy iz
= (VAf,Vag)r2(r2) +/201f|29\2d0
= da[f, 9]

Since this is true for any g € H} (R?) it follows that f € dom(A) and A, f = Af.

Conversely, let f € dom(A) C H (R?) and fie = [la,

e Then for any ¢ € C5°(£2;/.)
there holds

(fi, V,QMP)L?(Q,-/G) = (f, VA9 r2(r2)
(VAS, VA®)r2w2)
= 0q [fa (10] = (Af7 @)LQ(RQ) = (Af rQi/ev @)LQ(Qi/e)a

which shows that V3 flq. e = Af [QZ_/E € LQ(Qi/e). In particular, f € D, where D is
defined as in , so for any ¢ € C3°(R?) we get

(afls, 90’2>H*1/2(2)><H1/2(2)
= aa [f, 0] = (VASf, VaQ) 22
= (Af,9)r2w2) — (Vaf, VaQ) 22
= (Afla, @)z + (Aflas @)z — (VAS, Vap)r2re)
= (Vafiu 9 2 + (Vafe ©) 120, — (Vaf, Vae) r2m2)
= (v fe — 3ufi,90|E>H—1/2(2)xH1/2(2)v

where we used Lemma [3.14] in the last line, which gives us
Oufe = Oufisple) m-1r2(syxamie(s) = (@f 2, Ple) r-1/2(m) 12 (x) (4.11)

for all ¢ € C$°(R?). Since the trace operator H'(R?) 3 h + h|x € H'/?(X) is bounded
and surjective and C§°(IR?) is dense in H'(IR?), it follows that (4.11) holds true for all
¢ € H'/2(X). In particular, 8, f. — 9, fi = af|s; and hence f € dom(A,) with A, f = Af
which shows the reverse inclusion. O
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4.4 Stability of the essential spectrum

Recall that the spectrum of the unperturbed Landau Hamiltonian is given by

oo

a(Ao) = op(Ag) = Tess(Ao) = U{Aq}a

q=0

where the eigenvalues of infinite multiplicity Ay = (2¢+ 1) B are called Landau levels. In
this subsection we will derive a compact factorization of the resolvent difference

Wy=(Aa— N1 = (Ag— N1, (4.12)

which corresponds to the Krein-type representation that was stated in Theorem [2| An
appropriate version of Weyl’s theorem then shows the stability of the essential spectrum
under singular §-perturbations.

The derivation of the resolvent difference will make use of the second representation
theorem for sesquilinear forms as stated in Theorem [2.5] For ease of notation we will
introduce the following operator, which will play in important role in the compact fac-
torization of the resolvent difference of Ag and A,,.

Lemma 4.7. Let A < B sufficiently small. Then
Ga(N) == [a]?4p(Ag — N) V2 L2(R?) — L*(D) (4.13)
is a well-defined, compact operator and there holds

(14 Ga(\) JaGaM)f, Fr2me) = aal(Ao = V)72 ] = A (Ao — A)_1/2f||i2(m2),
where we defined J,, = sign(a).

Proof. Since A\ < B = mino(Ay), the operator (Ag — \)'/? is well-defined and uniformly
positive. By the second representation theorem dom(Ag — \)/2 = H}, (R?) which shows
that Go()) is well-defined. Since vp : H (R?) — L?*(X) is a compact operator, the first
part of the statement follows if we can show that (Ag — \)™"/2: L2(R?) — H4 (R?) is a
bounded operator.

So let f € L?(IR?), then the second representation theorem implies

_ 2 _ _ 2
1(A0 = X) 72 f g, w2y = a0[(Ao = A) T2 f1+ [1(Ao = )72 f 2 re
= [1£l72me) + (1 + V(A0 = X) 2 fll 122y
< COIF 172wz

for some constant C' = C(A\) > 0, where we used the boundedness of the operator
(Ao — A\)~1/2: L2(R?) — L?(R?) in the last line.

o8



This shows that the operator Go(A) is compact with [|Ga(A)[| < C(A)[|e| foo (s for some
C(A) > 0. Furthermore, for any f € L?(IR?) there holds
(1 + Ga(N) TaGaW) f, fr2m2)
= 1fI72me) + (JaGaN f, Ga(N) r2s)
= [1£ll 2 (mey + (@(Ao = N) 72 £, (Ao = N) V2 fls) 2w
= [0 — AJ[(Ao — N) "2 £+ (Ao — )2 £z, (Ao — M) T2 fl8) s
= aa[(Ao — X) 7S] = Al (Ao — A)_l/Qinz(W),

where we used the second representation theorem in the fourth line, which proves the
second statement. O

We are now going to provide two technical results based on the spectral theorem for
self-adjoint unbounded operators and the diamagnetic inequality, which we will use to
derive an estimate on the norm of Gy (A).

Lemma 4.8. Let A < 0. Then there holds

5112 1
1A =X [ 2 ey < m”f”i%ﬂ@)

for all f € L?>(R?) and B > 0.

Proof. Let E be the spectral measure associated to Ag. Suppose that f € L?(IR?) and
B > 0. Since o(Ag) C [B, o) the spectral theorem implies

140 =2 Flag = [ (6= 2P AEOL )

< o L AEn)

1 2
= m”f”p(m),

which shows the stated inequality. O
Since (Ag — A\)~'/2 maps L?*(R?) boundedly into H} (R?) it is easy to see that the

composition yp(Ag — A)7# : L?(R2?) — L2(X) is bounded for g > % The next lemma
uses the diamagnetic inequality to show that this fact remains true for all 5 > i.

Lemma 4.9. Let A < 0 and 8 > L. Then yp(Ag — N7 : L2(R?) — L*(X) is a
well-defined and bounded operator.
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Proof. Suppose that A < 0 and 5 > %. Let —A be the free Laplacian in L?(IR?) defined
on the space H2(R?), then (—A — X\)7% : L?(R?) — H?(R?) is a well-defined and
bounded operator. Moreover, it follows by the diamagnetic inequality that for any
f € L*(R?) we have

m®mw—»%ﬂ@wn—/ﬂmo—nﬂvfmws/M—A—Arﬁuwda
Since the trace operator H2%(R?) 3 g+ g|s, € L2(X) is bounded it follows that
12 =02 DIl am) < erll (- = )P 11 2 aagme) < 2l 72y

for some constants c1, co > 0, which shows that the operator yp(Ag — \)~? : L*(R?) —
L3(%) is well-defined and bounded. O

As A — —o0 one would expect the norm of G, () to become arbitrarily small. We will
now utilize the two results we have just shown to prove that |G (\)|| tends to zero as A
tends to —oo.

Lemma 4.10. Let Go(A) : L2(R?) — L?(X) be as in (4.13)) and let A < 0. Then for any
€ € (0, 1) there exists a constant C > 0 such that

C

GoN|| £ ——————
IGa < - —

Proof. Suppose that € € (0, i) We can then rewrite
Ga()\) = |a|1/2 ’)’D(AO — )\) 1/2 _ ‘Oé|l/2 ’YD(AO _ )\)71/47€(A0 N )\)71/4+e7

so with the help of Lemma [£.8| we obtain

1G] <

Since the operator |a|'/2yp(Ag — A)~1/4=¢ . L2(R?) — L*(¥) is bounded by Lemma
the assertion follows. O

>~ |B)\‘1/46H|a|1/2’7D(A0 - A)_1/4_6HLQ(]RQ)*>LQ(Z)'

We are now able to show that the essential spectrum of the Landau Hamiltonian is
stable under singular perturbations. But before we do so we are going to introduce some
additional notation.

Definition 4.11. For A < B we introduce the operators

YA = (Ag — A1 - LA(%) — L*(R?),
M) =p(Ag — )71 LA(E) — LA(D).
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Note that v(\) as well as M()) are compact, as the trace map yp : Hi (R?) — L?(2) is
compact as well. Moreover, we can use the same strategy as in the proof of Lemma
to show that for any € € (0, %) there exists a constant C' > 0 such that

C

MM < ——F+—.
MO <

(4.14)

We will now show that the resolvent difference of Ag and A, admits the compact Krein-
type factorization that was stated in Theorem 2]

Theorem 4.12. Let ‘H be a Hilbert space and o € L>®(X;R) such that it can be written
as the product o = agaq where ag @ L*(X) — H and ag : H — L*(X) are bounded
operators. Let M(X) be as in Definition then for A < B sufficiently small one has
(1+ a1 M(Nag)~t € B(H) and the resolvent difference Wy := (Aq — A)~! — (Ag — A)~!
admits the compact factorization

Wy = —y(Nao(1 + a1 M(Naz) Laiy(N)*. (4.15)

In particular, there holds
Uess(Aa) = Uess(AO) = U{Aq}
q=0

Proof. Let A < B and set J, := sign(a), then (1 + Go(\)*JoGa(N))™1 € B(L2(X)) if
we choose A sufficiently small such that |G (M)|| < 1, which is possible by Lemma
Our first goal will be to show that the resolvent difference W) admits the factorization

Wi = —(A0 = A) " 2C0(\)* JaGa(N) (1 + Ga(N)* JaGa(X) (Ao = A)"V2 (4.16)
and then rewrite it into the form . To see we will first prove that
A <info(Ay) (4.17)
is equivalent to
14+ Ga(N) " JaGa(N) > ¢ (4.18)

for some ¢ > 0. So assume first A < inf 0(A,). Then (A, — \)'/2 is a self-adjoint and
uniformly positive operator with dom(A,—\)"/2 = ) (R?). In particular, the associated
form a, — A is semibounded from below by a positive constant. Now Lemma 4.7| implies
that for any f € L?(R?) we have

(14 GalN) " JaGalV)f. F)r2mz) = aal(Ao — )72 = All(Ao = N2 |72 ey
= a0 — Al[(Ag — V) /2]
> ¢l (A0 = N2 f | s

> o £l Z2me)
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for some constant ¢ > 0, where we also used the fact that (Ag — /\)*1/ 2 is a uniformly

positive operator, showing (4.18]). Conversely, suppose that 1 + G4 (A)*Jo,Go(A) > ¢ in
L?(R?) for some ¢ > 0 and set g = (Ag — A\)~/2f € H} (R?). Then by Lemma

[aa = Allg] = (1 + Ga(N)"JaGa(A)) (Ao — )\)1/297 (Ao — )\)I/ZQ)LQ(]R2)
2
> ¢l (Ao — M) L2 2y
> |lgll72(m2)

N2

for some constant ¢’ > 0, since (Ag — A\)*/< is a uniformly positive operator, which shows

the stated equivalence.

Our next step will be to show that the resolvent difference W) can be written in the
form (4.16)). For this assume that A < B is sufficiently small such that ||Go(M\)|| < 1,
then (4.18) holds and the operator

14+ Ga(N)*JoGa(N) : L2(R?) — L*(R?)
is boundedly invertible since G,(\) is bounded. We can now define the operator
Mo(A) i= (14 Ga(N)* JaGa(N))2 (Ao — N2, dom(Ma(N) = Hi (R?),

which is closed since its the product of a bounded and bijective operator in L?(IR?) and
the closed bijective operator (Ag — A\)Y/2 : H4 (R?) — L?*(R?). Our aim is to prove that

Aw — A = Ma(N)*Ma(N), (4.19)

where dom(My(A)*My(N)) = {f € Hi(R?) : My(N)f € dom(My(AN)*)}. For this we
define the form

1= [ IMaO)SPde, dom(t) = H (R2),
R2
which is non-negative and closed since M, () is closed. Moreover, there holds
t{f] = (Ma(N) f, Ma(N) ) L2(Rr2)
= (1 + Ga(N) JaGa(N) (A0 = )V F, (Ao = MY ) r2me)

aalf] = Alf I Z2me)
= [aa — AJ[f],

which shows that t = a, — A. It remains to prove that the induced self-adjoint operator
T of the form t and My, (X)*My(A) coincide. So let first f € dom(Mq(N)* My (X)) and
g € HA (R?), then there holds

(Ma(A)*Ma(N) f, 9)2w2) = (Ma(N) f, Ma(N)g) r2r2y = tf, 9]-
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Since this is true for arbitrary g € Hhi (R?) we can conclude f € dom(T) as well as
Tf = My(A)*My(N\)f. Conversely, let f € dom(T"), then it follows that

(Tf, )L2 R2) — t[f? ] (Mo (M) f, Ma(/\)g)LQ(IR2)7
which implies M, (A)f € dom(My(N)*) as well as My (A)*My(X) f = T'f, proving (4.19).
By inverting both sides in (4.19)) and subtracting (Ag — \) ™! we get
Wa = (A0 = A) V21 + Ga(N) " JaGa(N) " (A0 = M) 712 = (Ag = 1)

—(A0 = N)2Ga(N) JaGa(N) (1 + Ga(N) JaGa(N) (A — 1)1/ (420)

as a first factorization in L?(IR?). We now want to use the above factorization to show
(4.15]). For this choose A\g € (—00,0) N p(As) such that

lea[[lae|[[[M A <1

for all A < \g, which is possible due to (4.14). Then (1 + a1 M (N)az)~! € B(H) as well
as (1 4+ agan M(N\))~1 € B(L?(X)). By (4.20) we have

Wi = —(Ag = N)72Ga(N) JaGa(N) (1 + Ga(N) JaGa(AN) " (Ag — A) 72

= —(Ro— )" Domamo ~\)7E
% (14 (Ao — \) " 295a9D(Ag — A)"2) "L (Ag — M) 2.

On the other hand there holds

Wy = — y(Naa(l + a1 M(Naz) tary(A)*

=— (Ao — N Ipaa(l + a1yp(Ag — A) " Iypaz) taryp(Ag — A) T

If we set

(14 a1yp (Ao — A) " Iyphas) ™,

P =
Q= (14 (Ap — N) 29509 (Ag — A)~

NI

)—1
we see that
a1vp (Ao — )\)%Q — Poyyp (Ao — A)fé
1
= P([l +a1p (Ao — A) T Iypaz]aryp(Ag — A) 72

— a17p (Ao — )\)_% [1 + (Ao — )‘)_%’YEQ’YD(AO — A)‘%])Q
=0,

which proves the statement. By applying an appropriate version of Weyl’s theorem the
stability of the essential spectrum follows. O

63



4.5 Analysis of the resolvent difference

In this subsection we will investigate the resolvent difference
Wa= (Ao =27 = (Ao = A)7" A€ p(Ag) N p(Aa),

in more detail. For this let Ao < min{0, mino(A,)} be sufficiently small, such that we
attain the compact factorization

Wy = —y(Naa(1 + ar M (N az) tagy(\)* (4.21)

from Theorem for all A € (—o0, Ag). In particular, we are interested in the definite-
ness and Schatten-von Neumann property of the resolvent difference.

In order to obtain results on the Schatten-von Neumann property of Wy we will first
study the behaviour of the singular values of v(A). In fact, we obtain the following
result.

Proposition 4.13. Let A € p(Ag). Then the operator v(A\) € B(L*(X), L*(IR?)) belongs
to the weak Schatten-von Neumann ideal 62/3,OO(L2(E), L*(R?)).

Proof. We will show that the adjoint operator y(A)* = yp(Ag — A) ! : L2(R?) — L%(%)
belongs to the weak Schatten-von Neumann ideal Gq/3..(L*(IR?),L*(X)). First ob-
serve that ran((Ag — A\)™1) = Ha(R?). Moreover, the spaces Ha(R?) and HJ(R?)
coincide locally by Lemma so we have ran(y(\)*) = yp(HA(R?)). Furthermore,
Lemma implies HX(R?) = H?*(R?) and since ¥ is bounded we can conclude
vp(Ha(R?)) = p(H?(R?)) = H*?(X). With the help of Proposition where
k =1 and | = 3, we now obtain y(A)* € Sy/3.(L*(R?),L*(X)) and hence it follows
that v(A) € Ga/3 0 (L*(X), L*(R?)). O

We are now able to derive the Schatten-von Neumann property for the resolvent difference
Wy by applying the above result to the factorization (4.21]).

Proposition 4.14. Let A < min{0, mino(A,)} and let {sk(W))}x be the singular values
of the resolvent difference

Wa=(Aa =27 = (Ag—A) 7"

Then there holds si,(Wy) = O(k=3) and, in particular, Wy belongs to the weak Schatten-
von Neumann ideal S, o (L*(R?)) for all p > .

Proof. Using Theorem [£.12] with oy = o and ap = 1 we obtain the factorization
Wi=(Aa =27 = (Ao = N7 = =y ()@ + M) ay(N)",

where (1 + aM (X)) 'a is bounded in L*(X). Since y(A) € Sy/3 (L*(), L*(R?)) and
YA € 6y/3,00(L*(R?), L*(X)) it follows by Lemma that

(1+aM ) ay(A)" € Syp300(L*(R?), L*(X)).
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Thus we can apply Lemma with p=¢q = % for the operators (1 + aM (X)) tay(M\)*
and (), implying that

YA+ aM () ay(A\)* € 6,00(L*(R?))
for any s > L, which proves the assertion. ]

The next lemma will provide sign properties for the resolvent difference Wj.

Lemma 4.15. Let \g < info(Ay) and o € L>®(3;R). Then for any A € (—o0, \g) the
following holds.

(i) If a(z) > 0 for a.e. x € X, then Wy < 0. In the case where a(x) > 0 for a.e.
x € X, then Wy < 0.

(ii) If a(z) < 0 for a.e. © € X, then Wy > 0. In the case where a(x) < 0 for a.e.
x €3, then W) > 0.

Proof. We will only show (i) since the proof for (ii) works analogously. So let a@ > 0,
then a, > ag and hence

(A — N1 < (Ag— N1
This then implies
Wy=Aa—N"1t=(Ag—=N"1<0

which shows (i). In the case where a(x) > 0 for a.e. € ¥, we can use the exact same
arguments with strict inequalities, which finishes the proof. ]

Recall that for ¢ € Ny we denote by P, : L*(R?) — ker(Ag — A,) the orthogonal
projection onto the infinite-dimensional eigenspace corresponding to the Landau level A,
of the Landau Hamiltonian. The next lemma consists of the fact that the compression
P,Wy, Py of the resolvent difference onto ker(Ag — A,) is a compact operator of infinite
rank.

Proposition 4.16. Let a € L™ (X; R) with either a(z) > 0 or a(z) < 0 for a.e. x € X.
Then there exists A\g € (—00,0) such that the operator PyW, Py has infinite rank.

Proof. We will show the result for a > 0, the proof for a < 0 works in a similar fashion.
So let a(z) > 0 a.e. and choose Ag < 0 such that ||| || M (Xo)|| < 1. By Theorem [4.12]
we have

—Py Wi Py = Pry(No)vVe(l + vaM (M) var) ' vary(\o)* Py,

where W), is compact in L?(R?%). Now, let us define the operators

C =1+ vaM\)va)™', D=aCya.
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It is clear that C is a non-negative, self-adjoint and bounded operator in L?(¥) with
0 € p(C). Moreover, the operators D and v/D are both non-negative and self-adjoint in
L2(¥). In the next step we will show that 0 ¢ o,(D) and hence also 0 ¢ 7,(v/D). So
assume that Dy = 0 for some ¢ € L?(X), then

[(CVap, ) 2 2)’ (CVap, Vap) 2 (C, ) 12(x)
= (Dp, 0) 12y (CY,¥) 12(s) = 0
for all ¢ € L?(X) which shows Cy/ap = 0 and hence ¢ = 0, so 0 ¢ o, \/15), implying
that ran(\/f)) is dense in LQ(E). Now let .S be the operator defined in 1) We will show

that ran(P,y(\o)v/D) is dense in ker(Ag— A,) Sker(S —A,), which is infinite-dimensional
by Proposition [£.3]

Assume that h € ker(Ag — Ay) © ker(S — A,) satisfies
(Pry(Mo)V D, h) 2 (gz) = 0
for all ¢ € L?(X). Then there holds

= ( fﬂ()\o)\ﬁ% h) 2wy = (Po(Ao — M) 'V D, h) 2 (g2
AO(\/B@aVDh)LQ(E)a

which directly implies yph = 0 in L?(X). Since h € dom(Ag) we get h € dom(S) and
thus h € ker(S — A4) implying h = 0, which shows the claimed density. We can now
rewrite

—PWy Py = Pq’Y()\O)D'Y()\O)*Pq = RR",

where we have introduced the operator R = P,y(\o)V/D. Since ker(RR*) = ker(R*) it
follows that

ran(RR*) = ran(R)

and since ran(R) is infinite dimensional, as we just proved above, it follows directly that
ran(RR*) = ran(P, Wy, F,) is infinite dimensional as well, so P,W) P, has infinite rank.
O
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5 Toeplitz-type operators

In this section we will establish some spectral properties of Toeplitz-type operators re-
lated to Landau Hamiltonians. In the following ¥ will be the boundary of a bounded
CH! domain Q; € R? and I' C ¥ a closed subarc. Typically we are interested in the
case where I' = supp « is the essential support of the interaction strength o € L (X; R)
of our d-perturbation. The aim of this section will be to find exact asymptotics for the
singular values of the compressed operators P,or P, onto the eigenspaces of the Landau
Hamiltonian. For this we will first discuss Toeplitz operators on Lipschitz domains in
Section and then extend our analysis to Toeplitz operators defined on compact C'!
curves in Section 5.2} Before doing so we will reiterate some properties of the eigenspaces
of the Landau Hamiltonian, which we are going to need in the proofs of this section.

Recall that for ¢ € Ny we denote by P, : L?(R?) — L?(R?) the orthogonal projec-
tion onto the eigenspace L, := ker(Ag — Ay), where A, = B(2¢q + 1) are the Landau
levels. The Fock space F? was introduced in Definition El as the Hilbert space of all
entire functions f : C — C such that

112 = /@ F()P e 32 dm(z) < oo,

which we equipped with the inner product

(f.9) 5 = /@ f@g@e H dm(z),  f,ge P2,

and the induced norm |-|| z» = (-, );_./22 . In Proposition M we have shown that for each
q € Ny the eigenspaces £, of the Landau Hamiltionian are unitarily equivalent to the

Fock space via the mapping U, : F 2 L, given by
F23 fes (2B) 2(g) V2 (AN eV f € L,

where ¢(2) = 1|2|? and AT : £, — L1 is the creation operator from (4.2). This unitary
equivalence is going to play an important role in the proofs of this section, where we are
deriving the exact spectral asymptotics of the singular values of the Toeplitz operators.

5.1 Toeplitz-type operators on Lipschitz domains

In this subsection we will consider Toeplitz-type operators of the form P,xxF,, where
X x denotes the characteristic function of a compact set K with Lipschitz boundary. Fol-
lowing the lines of [15] we will see that in this case exact asymptotics on the singular
values of P,x P, can be derived.

In the next proposition we introduce the form corresponding to the Toeplitz-type op-
erator PyxxFy.
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Proposition 5.1. Let ¢ € Ny and denote by dx the Lebesque measure in R? restricted
to a bounded Lipschitz domain K. Then the form

(5] = /K (Pof)(@)2dz, dom(tF) = L2(R?),

1s well-defined, symmetric and bounded.

Proof. For f € L?(IR?) there holds the estimate

1) = 1Py < 1P 2 qseey < 120

which shows that the form t is well-defined and bounded. Since t is real-valued the sym-
metry follows straightaway. O

We can now define the Toeplitz operator by applying the first representation theorem to
the above form.

Definition 5.2. The bounded and self-adjoint operator in L?(IR?) induced by the form
té( in Proposition will be denoted by TqK .

Since we are interested in studying the singular values of these Toeplitz-type operators
it remains to show that TqK is compact. To see this let us write R : Ha (R?) — L*(K)
for the bounded restriction operator Rf = f[x. For f,g € H} (R?) we then get

té([fa gl = (qu, qu)L2(K) = (Rqu’ Rqu)LQ(K) = ((RPQ)*(Rqu)7g)L2(R2)7

which yields the representation TqK = (RP,)*(RP,). Since Rf € Ha(K) C H'(K) by
Lemma and the embedding H'(K) < L?(K) is compact for a Lipschitz domain K
it follows that TqK is compact as well.

The following proposition from the paper [15| by Filonov and Pushnitski gives us ex-
act asymptotic estimates on the singular values of TqK .

Proposition 5.3 (|15, Lemma 1]). Let dx be the restriction of the Lebesgue measure
onto a bounded Lipschitz domain K C R2%. Then for ¢ € Ny the eigenvalues of the
operator TqK satisfy

lim (k!sk(TqK))l/k _B

k—o0 - 2

(Cap (K))*,

where Cap (K) denotes the logarithmic capacity of K.

We are not going to prove this result here. Note however, that the proof works very
similar as the proof of Proposition [5.8] in the next subsection. In fact, it suffices to
replace the Hausdorff measure of the curve I' in the proof by the restricted Lebesgue
measure dz and one can apply the exact same arguments.
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5.2 Toeplitz-type operators on curves

In the following we are going to assume that I' is a simple curve of finite length with at
least Lipschitz regularity. Under this assumptions we can introduce the formal expres-
sion P,or P, via its corresponding quadratic form and show spectral asymptotics for the
compression Pydr Py onto the lowest Landau level. After that we will restrict ourselves
to the case where I' is a closed subarc of the boundary ¥ of a C! domain. In this
particular case we are able to use a reduction to the lowest Landau level to extend the
sharp estimates on the singular values of Pyor Py to Toeplitz operators F,or P, on higher
Landau levels as stated in Theorem [B

In the next proposition we will introduce the form that is associated to the Toeplitz
operator P,or P, and show that it is well-defined.

Proposition 5.4. Let ¢ € Ng and I' be a simple Lipschitz curve of finite length. Then
the form

0] = / (Puf) ()P do(ar), dom(t) = L2(R?),

1s well-defined, bounded and symmetric.

Proof. By Proposition the trace operator H4 (R?) 3 f — flz € L*(X) is a well-
defined and compact map. Moreover, for any € > 0 there exists a constant c(€) > 0 such
that

tg[f] = ||(qu)|1“||i2(r) < H(qu)‘EH%Z(z) < 6||VAqu||i2(R2) + C(e)HquH%z(Im)
for all f € L?(R?). Furthermore, by the first representation theorem we have
IV AP fll72(m2) = 90[Pofs Pof] = (AoPuf, Pof)r2w2) = AqllPaf 72 mey,
implying tg [f] < ()| Pyf H%Q (r2) for some d'(€) > 0, which shows that tg is well-defined
and bounded. The symmetry follows since the form is real-valued. O

We can now define the corresponding Toeplitz operator on the curve I'.

Definition 5.5. The bounded and self-adjoint operator in L?(IR?) that is associated to
the form tg in Proposition will be denoted by T; .

In fact, the operator TqF from the above definition is even compact. Too see this let
v : HY (R?) — L*(T') be the trace operator, which is compact by Proposition |3.10, Now
for any f,g € L?(R?) we have

ty1f, 9] = (VP s vPeg) 12y = (VP)* (VPof), 9) r2w2)»

so the operator TqF : L?(R?) — L?(R?) admits the representation TqF = (VPy)*(vFy),
which shows the compactness of the Toeplitz operator.

Recall that the Wirtinger derivatives are given by the pair of complex differential oper-
ators 0 = (0 — i02) and 0 = 1(01 +ids).
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Proposition 5.6. Let ¢ € Ny and I' be a simple Lipschitz curve of finite length with
Hausdorff measure o. Let Tg be the Toeplitz operator from Definition . Suppose that
f e F? and ug = Uqf, where Uy : F? - L, is the unitary operator from (4.5). Then
there holds

(T} g, ug) 22y = C *11(20 — B2)f|[72(5,
where we have defined dé(z) = e~ 2Y(2) do(z) with ¥(z) = %B|z|2,

Proof. Let ¢ € Ng, f € F? and set ug = Uy f. Recall that the spaces F? and Ly are
unitarily equivalent via the mapping

F2ofolUf=C.t (AT) e V],
with Cq = v/q!(2B)9, where AT is the creation operator from lb given by
B
AT = —2ieV9e™V = —2i0 + 5%
A direct computation now shows that

AT (e_‘l’f) = —2ie¥d (e_wf)
= —ie” [0y (e2Vf) —i0y (e 2V f)]
= —ie Y [~Bxyf + O1f +iBxayf — idaf]
= —ie V(9 —i0y) f +ie Y (B(x —ix2)) f
=ie Y (-20 + B?) f,

which by induction implies (AT)? (¥ f) = i%~¥(—20 + Bz)1f for all ¢ € N. Using
this identity we get

(T g vy = | [(Pyug)ar)* doar)
= [ Iugtan)l dotar)
= /F O (AT) e Y@ (2) ] do(2)
=C;? /F le"Y3) (=20 + Bz)f(2)|* do(2)
= C, 2020 = B2) fl[725),
where do(z) = e"2%(*) dg(z), which finishes the proof. O

We are now going to provide an exact estimate on the asymptotics of the singular values
of Tg for the case, where I' is a Lipschitz curve of finite length.
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Proposition 5.7. Let ' be a simple Lipschitz curve of finite length with Hausdorff mea-
sure . Then the eigenvalues of the operator TOF satisfy

. T\ 1/k B 9

lim (klsp(Ty)) " = = (Cap (I))~.

k—o0 2
Proof. The strategy of the proof will be to show that

)l/k _ B

(k!si(T3) 5 MDY (1 +0(1)), (5.1)

as k — oo, where My(T") is given as in ([2.12)). By Proposition there holds
lim M, ([)Y* = (Cap (I))?,

k—oo
so the statement will then follow by . For ease of notation we will show the asymp-
totic esimate under the assumption B = 2, the general case will then follow by a linear
change of coordinates. So let f € F? and set u = Uy f, where Uy is the unitary operator
between F? and Ly. Then Proposition implies

(T§ ) 2y = £ 2) = /F FEP e do(z). (5.2)

This means that the quadratic form of the operator T({( e
form

, 18 unitarily equivalent to the

5o / PR do (),
r

implying that the non-zero eigenvalues sy (TOF ), k € N, of Tg coincide with the singular
values of the embedding operator

F2 o AT, e 2 do(2)).

In particular, by applying the min-max principle, we get the following representations
for the singular values:

Jolf)P e do(z)

spe1(Tp) = inf sup 5 , codim L;“ =k, (5.3)
L{CF? fer\{0} (halk=
2 o—le” g
spp1(Th) = sup Jelf )l 62 J(Z), dim L, =k + 1. (5.4)
Ly cF2 fely \{0} I f1I5=

Upper bound: Let {p;} be the sequence of monic polynomials (i.e. the leading co-
efficient of each py is equal to 1) with deg(py) = k, that are orthogonal with respect to
do(z). For k € N we fix the polynomial p; and introduce the space

L ={feF*: f(2) = pr(2)g(2), g is entire function}.
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That is, L} consists of those functions in 72 that admit a representation f(z) = px(2)g(2)
for some entire function g. In particular, we have codim Lﬁ = k. To see this we define
the polynomials

zk_lpk(z), 1>k

{zl, le {0, k—1}

which form a basis in F2. Then for any f € F? it follows that

00 k-1 0o
=Y wa(z) =Y aaz)+ > aqlz Z wz' + pi(z Z a2,
1=0 =0 =k

where {¢;} C €. This now implies that
k-1
fQ/L;:{erLz:fE]ﬁ}: {ZalzlJrL,j:ao,--- , Qg—1 G(D},
=0

which shows that codim Li" = k. So let now e € (0,1) and define Ry = max.cr |2|, we
will now show that there exists a K € N such that

o 1
sup Jg(:) < (1 - )% Ll (5:5)
|z|<Ro :

for all kK > K and arbitrary f = pgg € L:. By Cauchy’s integral formula we have

1 f(¢
9(z) = SO g
2mi Jiejmr ()¢ — 2)
for all » > Ry, where the divisor can’t become 0, since all zeros zi,...,z; of pp are

contained within a disk of radius Ry by Lemma Setting R = Rp/e we get the
estimate

k

k
IpR(C H (—al> Hm ) > (1 - ),
=1

=1

if |¢| = r > R. From this it follows that

2
, 1 70
Sup 19 < g /Q_T noe-9%
L QP
o PO 4l
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Multiplying both sides by e r2k 1 and integrating over r from R to oo yields

2k+1 2 42
sup Jg(2) / / / ¢l
|2|<Ro 27 (1 — €)2k+2 Cl=r

< WH]‘?H}Q

(5.6)

On the other hand we have

* 1 E
/ ey = 2k —/ e "l g
R 2 0

1,1 (F
= 51{:! - 2/ e "rkdr
0

1 1 R?
~k! — RQ/ e P ldr
2 0

>

=2

1 1

>kl — ZR%*(k—1)!

1 R? 1

=k (1—-—")>—(1—¢€ 2!
2’“( k>_27r< €k

for all sufficiently large k since 5- L1-e2< % for € € (0, %) This in conjunction with

. 5.6]) yields

L2k sup Jg(a)f < ——

= 2k+2 Hf”.g}?a
27 121<Ro 27r(1 —¢)

which after some rearrangements shows |D Using this inequality on f = prg € LZF we
obtain

/If(z)|26|z|2 do(z) < HgH?z(p)/\pk(z),zew do(2)
' r
< ”g”(Qj(r)Mk(F)
2
< My (I)(1 - E)Qkak‘J!P’

where the second inequality follows from

D= [ @R o) > [ IR e dote),

Using the last inequality together with the representation (5.3)) of sx (T, OF ) yields
(k!'sp (TENYE < (1 — )2 My, (1) V/* (5.7)

for all sufficiently large k, which shows the upper bound.
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Lower Bound: Let L, be the set of all polynomials in z of degree < k. As above
we set Ry = max,cr |z| and R = Ry/e for € > 0. To show the lower bound, we will make
use of the norm

112 = /| e ame)

which by Lemma is equivalent to [|-|| z2. Let g € L, \{0} be the monic polynomial,
which minimizes the ratio

Jelar(z))? e do(2)
llax 1%

Set | = deg q, < k, we will show that all zeroes z1, ...,z of ¢; are contained in the disk
{z € C :|2| < Ro}. Suppose that one of the zeros z; lies outside of the disk. Consider
the modified polynomial

z — 2 z
G(2) = au(2) 2] =T[5

Ro(z — 21)’
which clearly lies in L, \{0}. By Lemma there holds

_ R2/%
\lez Ro/zl‘ <
Ro ‘Z — Zl‘

1

for |z| < Ry and

|Zl| ‘Z — R%/El‘

Ry |z — 21|

>1

for |z| > Ry. In particular, it follows that

- 122 12
fr|Qk(z)|2€ = do(2) < fr’CJk(ZNz@ =" do(2)
Il 1% Il I %

)

since I' C {z € C: |z| < Ry} - a contradiction. Thus the estimate

l l
)l =TT =51 < [T (14 2) < Bl @ o
j=1 j=1 i
holds true for |z| > R. From this it follows that
2
ol = [ o) e dm(e)
l2|>R
= / |27 (1 + o)2e = dm(2)
l2[>R

<(1+ 6)2l/ || el dm(z) = (1+ €)% xl.
C
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On the other hand there holds
[la@Ee a0t = e [ o) dotz) = e )
T

where M;(T") is defined as in (2.12)). Using the representation in ([5.4)) we obtain the lower
bound

Jila(z)? e # do (=)

spp1(Th) > inf

qeL; \{0} C(R )H|qm3:2
Jela(z)12e™ 1 do ()
= oL, C(R) a5
e_R2 . Ml(r)

> ) 5.8
= 7C(R) o2ik (1 + €)241 (58)

where C(R) > 0 is chosen such that [|-|| o < C(R)||[| 72. In the next step we will show
that for k sufficiently large, the minimum in (5.8)) is attained at [ = k. Since for any
l € No we have zp; € P41 we see

My (T) = inf / Ip(2) 2 dpu(z) / lepi() 2 dpu(z) < REMY(D).

PEPI4+1
So for any [ € {1,...,k} we obtain
My(T) _ Rg'Myi(T)
(1+€)2kk! = (14 €)?kk!

CRM-D M (D)
(T4 e)2k! (1 +e)2k20(k — 1)

L
Let us set al(k) = }(%18+(ek)2lll§!!' We will show that al(k) < 1for any 1 <[ < kif k is sufficiently

large, which then implies that the minimum in (5.8)) is attained at [ = k.

4
If Ry < 1+ € the statement is clear, so assume that Ry > 1 4 €. Choose K > (1]%)
and let k£ > 2K, we will show

21
k(k—1)...(k—1+1) > <1}i°€>

for all I € {1,...,k}. Indeed for I € {1,..., %]} we have

41 (RO >21
>
1+e¢

k(k—=1)...(k—1+1)>K'> (1]106>
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For I € {[4],...,k} we see that

Mk_n”.@—z+nzkw_1y”@_[%44)
> KH2

2k 21
- (7)) = ()
1+e€ —\1l+e

which shows that al(k) < 1forall 1 <[ <kifk is sufficiently large. It follows with (/5.8])
that

M (T)
T . l
sk+1(Tp) = € min, A+l

My (T)
(1 + )2k

for some constant C' > 0 and all sufficiently large k. In particular,

M.(T 1/k
(Ksps1(T3)) % > Ol/k(l’“igg > (14 €) " My(T)/*

for k large enough since limy_,oc C*/¥ = 1 for any C' > 0. Together with the upper bound

(5.7) we have
(14 ) SMD)F < (Rsieps (TD)VF < (1= €)M (D)%
for arbitrary € € (0, i) Since

lim My(D)Y* = (Cap (I))?

k—o0

by Proposition [2.20] the statement follows. O

We will now show the asymptotic estimate for the case ¢ > 1 by a reduction to the lowest
Landau level, using Proposition [5.6, The next result, which corresponds to Theorem
of the Introduction, can be shown under the additional assumption that I" is a closed
subarc of the boundary ¥ of a C1! domain €.

Proposition 5.8. Let ¥ be the boundary of a C' domain Q with Hausdorff measure o.
Suppose that I' C 3 is a closed subarc with positive measure. Then for any q € Ny the
eigenvalues of the operator Tqr from Definition satisfy

1k _ B

5 (Cap (I)*.

klingo (k!sk(TqF))

Proof. For ¢ = 0 the result has already been shown in Proposition [5.7] In the case
where ¢ > 1 we apply the reduction to the lowest Landau level.
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So let ¢ € N and set u, = U, f for f € F?, where U, : F* — L, is the unitary mapping
from (4.5). By Proposition there holds

(T3 ug uq) r2w2) = Cg 21120 = B2)'f | 72(5); (5.9)

where d&(z) = e 2Y() do(2) with ¥(z) = %B|z|2. We are going to separately prove the

estimate for the upper and lower bound of the quadratic form in ([5.9).

Upper bound: Consider the open §-neighborhood T's = {x € R? : dist(z,I') < &}
for 6 > 0 sufficiently small. By Lemma for each ¢ € N there exists a constant ¢; > 0
such that such that

Supld7f (2)|? < x50 /F F()2 dm(2).

zel

In particular, it follows that
19110y = [0 do(e) < 72070 [ 17(e)Paote),
which together with Leibniz’ formula yields
120 = B2 f1ap) < esd™ | 1 () dm(2) (5.10)
5
for some constants ca, c3 > 0. On the other hand there holds ug = e~ f so we obtain

(T w0, w0y = [ IFEP 2O dm(z) 2 00 [ () am(z),
8 8

where rg = max,er;|z| and Tg % is the Toeplitz operator from Definition The last
inequality together with (5.9) and (5.10) yields

(Tqruq, uq)L2(R2) < 045_2q_3(T0F5u0, UO)LQ(]RQ)7

where ¢4 > 0 does not depend on §. By the min-max principle it follows that the singular
values of the operators satisfy

sp(TF) < e 353, (T3 %)

for k € N and some constant ¢ > 0. In particular, we can apply Proposition and get

lim sup(k!sk(TqF))l/k < lim Sup(cé_zq_?’k!sk(TOF“))l/k = g(Cap (T's))?,

k—o0 k—o0

where we have used that limsup,_, a'/k =1 for any a > 0. By the continuity of the
capacity we have Cap (I's) — Cap (T') as 6 — 0T, which shows the upper bound.
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Lower bound: Let v : [0,s] — C be a natural parametrization of I'. For f € F2
and ¢ € N we set uqy = Uy f. Since f is analytic there holds

% F(() = (DH (1 (E)F (),

where |§(¢)| = 1. Given an arbitrary 5 > 0 and integer g > 1, our first aim is to construct
subspaces N(83,q) C F? of finite codimension, such that for any f in the subspace there
holds

[l s as) < 5 [ Jors (o) aatz
I r

for all £k € {0,1,...,q — 1}. To do so we will first construct appropriate subspaces in
H'(0, s) as follows. First we introduce the densely defined, closed and non-negative form

mfu, v] := /OS o' ()0 (t)dt,  dom(m) = H(0,s),

which corresponds to the one-dimensional Laplacian Mu = —u” with Neumann boundary
conditions. Since the embedding H'(0,s) < L?(0,s) is compact, it follows that 9t has
a purely discrete spectrum of eigenvalues 0 = Ay < Ay < A3 < -+ that accumulate
at infinity. Let {u;} be the sequence of eigenvalues of 9 corresponding to {N\;}. For
v1,...,v € L*(0,s) we define the set

Uv,...,u) ={ve H(0,s) : v €spanfvr,...,u}t}
By the min-max principle there holds

A = m(v,v) m(u,u)

in 5 < —
vel(ur,ui-1) [[0]|720 5y llullz2(0,)

for all w € U(uy,...,u—1). This means that for [ > 2 we get

1
HUH%2(0,3) < )\*lH“/H;(o,s)

if u € U(ug,...,u_1). Since fory € HY0,s) for f € F? we can conclude that any
f € F? such that h := f o~ € span{vy, ..., v} satisfies

2 1~ 2
/F PR da(z) < /F )P do(2)

-/ )2t

0

-1 s / 2
<\ /O\h(tﬂ dt

< )\l—legRg /s }h’(t)f e~ 2 (v(1) gt
0

= 1eE R [ 10r() ds(e),
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where Ry = max,cr |z|. Moreover, /\l_1 — 0 as | — oo, hence we can choose [ =[(8) € N
sufficiently large such that

/ PP da(z) < 52 / 0(2)2d5 ()
T I

if fo~y €span{vy,...,v}*. Using an inductive argument it follows that
/|8kf(z)|2d&(z) < 52/|aqf(z)|2d5(z) ke{0l,....q—1}  (5.11)
r r

for all f € F? such that 0*f oy € U(uy,...,u_1) for every k € {0,1,...,q —1}. With
this observation in mind we introduce the subspace

N(B,q) :== {fe]-"Q:é?kfo'yGspam{vl,...,vl(ﬁ)}L Vk e {0,...,q—1}},

where | = () € N is chosen such that (5.11)) holds. We will now show that the space
N(f,q) has a finite codimension in F2. To do so fix I € N and define the spaces

Ny ={f e F2:0"f o espanfvr,...,v}"}

for k € {0,...,q — 1}. Note that there holds
q—1
N(B,q) =[] Nk,
k=0

so it suffices to show that each N has a finite codimension in F2?. To see this let
I, : H'(0,s) — span{vi,...,v g} be the orthogonal projection of H'(0,s) onto the
subspace span{vy, ..., vyg)} and define the mappings

.{.7:2—>Span{vl,...,vl(ﬁ)} for k € {0,1,...,q—1}.

" F e (0 f o)

By construction By f = 0 implies f € N, so ker(By) = Nj. It follows by the fundamental
theorem on homomorphisms that the spaces F2/ker(By) and ran(By) are isomorphic.
Since the dimension of ran(By) cannot exceed [ it follows that that the codimension of
N}, in F? must be finite. By Proposition

qg—1 q—1
codim (N(f, q)) = codim (ﬂ Nk> < Zcodim(]\fk) < 00,

k=0 k=0

showing that N(f,q) is space of finite codimension in F? with the property

/|8kf(z)|2d5(z) < 52/|6‘If(z)|2d5(z), ke{0,1,...,q—1} (5.12)
r r
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for all f € N(B,q). We will now use the above inequality to show that

(Tqr,uq)Lz(]R2) > C(Tguo,uo)p(ﬂp) + (Fuyp, UO)L2(IR2)7

for some constant C' > 0, where F will be an operator of finite rank in L?(RR?). First
note that N(5,q) is a closed space, so we can consider the orthogonal decomposition

= N(B,q) ® N ([3,q)L. Let us introduce the corresponding orthogonal projections
I} F% = N(B,q) and I, =1-11}: F? = N(B,q)* and write

F25f=f,+f €N(B,q) &N(QB,q?t,

where f, = H;r Jand f_ =TI, f. Recall that for ¢ € No we set uq = U, f € L;, where
Uy is the unitary map between F 2 and L, given in (4.5). Using the above orthogonal
decomposition of F? we can rewrite

= Upf = UgITE f + UTT, f = UTTU g + UL U g,

which gives rise to the orthogonal projections Q;r = Z/IqH;FZ/Iq and Q. = U, T U, Lin
L, and the decomposition u, = u(‘; + u, with u+ = Q;u and u, = Qu. This means
(T, ugs ug) 2wy = (Ty ud s ug ) ooy + (Ty ud ug ) 22
+ (T Ug ’“;)LQ(]RQ) + (Tq Ug s Uy ) 12(R2)
= (20 — B2)" f1 117205 + (Qq Ty Qattgug) L2(w2)
+(QF Ty Q) ug,ug) r2(rey + (Q5 Ty Qf ug, ug) 12(R2)-

We can now apply inequality ([5.12]) to the first term on the right hand side for a suffi-
ciently small chosen § > 0, which gives us

(5.13)

»Q

120 = B2) filF2a) = (120)° il s Z Coal O f4ll23)”

qfl

> [(20) £ 320y (1 = D Con)®

B
Il
o

= c1]|0%f+ 11725
for some constant ¢; > 0. Applying again for k = 0 gives us
120 = B2) 1 l[12) > c1ll0%f 41125

2 02||f+|\%2(&)

= e3(To ug , ug) r2(we)

= e3(Tp (uo — ug ), uo — ug ) 2(R2)

= c3[(T5 wo, uo) r2(r2) — (15 w0, uy ) 12(r2)
— (Tg ug ,uo) r2re) + (Tp ug s ug ) r2(r2))

= ¢3[ (T w0, uo) 2(r2y — (24 Tp o, o) £2(R2)
— (T Qg w0, uo) r2w2) + (Q, Ty Qg uo, o) r2(w2)]
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for some constants cs, c3 > 0. Together with we now obtain
(Tqruq, Ug)[2(R2) = C(TOFUOv uo)r2(r2) + (Fuo, uo)r2(r2), (5.14)
for a constant ¢ > 0, where the operator F : L2(R?) — L?(IR?) is given by
F=Q T Of + QfT; O +2Q, T, Q7 — 9Ty — T Q5.

Since the orthogonal projection Q. has a finite rank, it follows that F' is an operator
of finite rank as well. After an application of the min-max principle on ([5.13)) we can
conclude that the singular values of TqF satisfy

sk(Tg) > cspr(TY), k€N
for k sufficiently large, where r = rank(F'). Thus we can apply Proposition and get

liminf(k!sk(T;))l/lc > lim inf(ck‘!sk(Tg))l/k

k—o0 k—o0
= lim inf (k!sy (T()F))l/k
k—o0

B

= (Cap(1)?,

where we have used the fact that liminfj_,o a*/* = 1 for any a > 0, which shows the
statement. OJ
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6 Asymptotics Estimates and Eigenvalue Clustering

In the final section of this master’s thesis we are going to derive local spectral properties
of the perturbed Landau Hamiltonian, following the lines of |3]. We start in Section
with a thorough spectral analysis of the compression P,W)F, of the resolvent difference
from onto the eigenspaces of the Landau Hamiltonian. Section then contains
the main results regarding the local spectral clustering of the eigenvalues of the Landau
Hamiltonian A, with a singular potential towards the Landau levels. In particular,
Theorem [4] can be found in the final section of this thesis.

6.1 Asymptotic estimates for the compressed resolvent difference

In this subsection we are analyzing the spectral properties of the compressed resolvent
difference P,W P, onto the eigenspaces ker(Ag — A,) of the Landau Hamiltonian. To pro-
ceed, we fix some Ao < min{0, min o(A,)} sufficiently small such that ||| || M (o) < 1,
which is possible due to (4.14]), and consider again the resolvent difference

Wi, = (Aa = A0) ™ = (Ao — X0) ™" = =y (X0) (1 + aM (X0)) " ay(Ao)*. (6.1)

For convenience we will use the notation W := W) and write W = W, — W_ as well as
|W| =Wy + W_, where W, > 0 denotes the non-negative part of W and W_ > 0 the
non-positive part of W. Our aim will be to establish sharp spectral asymptotics on the
singular values of the compressed operators P,W P, and P,|W|P, under different sign
conditions on the interaction strength o € L (%; R).

In the first proposition of this section we will establish an estimate of the operator
P,|W|P, in terms of the Toeplitz operator Tqr introduced in Definition .

Proposition 6.1. Let o € L*°(X;R) with I' = suppa and |I'| > 0. Then there holds
(i) Py|WI|P, < CTqF and PyW1 P, < ciTg for some cy,c > 0.

(ii) If « is non-negative (non-positive) on I' and uniformly positive (uniformly negative)
on a closed subset I" C T" with |I'| > 0 then P,|W|P, > chF/,

Proof. To begin, let I', C ¥ with |I's| > 0 and consider the bounded operator
Dr, := Pyy(Ao)xr.v(Xo)" Py,
where xr, denotes the characteristic function of T'y. Then for any f € L?(IR?) we find

(Dr.. f, rzmwey = (Pey(Mo)xe.v(Mo)* Pof, f) 2wz
= (Xr.7(A0) Py f, (M) Py f ) r2(m2)

N W(Xr*(qu)lza (PaH)ls)rzs)

= )

ty” L]
(Aq - )‘0)2'

2
I'. LQ(F*)

82



Hence we obtain the operator relation

Tr
Dr, = ——

e (6.2)

(i) We will prove the claim for W, the proof for W_ follows analogously. Consider the
mappings

a1 LA(Z) = LX), a® = (ad)|p
® onT

. LA — LA(%), o= .
2 ) (&), a {0 on X\T

It is clear that a@ = awpary, thus by Theorem [£.12] we get
W =7(X0)Cy(Xo)",

where C' 1= —az(1 + ay M (\g)az) ta; € B(L?(X)). Since the resolvent difference W is
self-adjoint, it follows that C' is a self-adjoint operator. Let C; be the non-negative part
of C, then we get the estimate C; < ||C|| in the operator sense. Furthermore, we see
that

Wi =7v(X0)Crv(Mo)* = 7(A0)XrCyxry(Mo) ",
so we can calculate
(PaW P f, £ remey = (Crxry(Xo) Pof xev(Mo) Py f) r2(s)

< NCI(Pgy(Ao)xev (o) Pofs f)rzme)
=[CI(Drf, f)r2wr2),

which together with |D implies P,W, P, < c+TqF , where c; = 0 AJ'?JJO)Q.

(ii) Assume now that a > 0 on I' and that « is uniformly positive on a subset I" C T’
such that |TV| > 0. We define the mappings

ar: L*(2) = L*(D), a® = (va®)|r

Va® onT

as: L2T) = LA(Y), ad = ,
? ) ®), {0 on D\

which are adjoints to each other and satisfy o = asay. Using (4.15) again shows that

W = —’Y()\o)agéal’y()\o)*,
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where C' = (1 4+ a1 M(Xo)ao)™ ' € B(L3(I)) is a self-adjoint and uniformly positive
operator in L?(T). In particular, W is non-positive. This means that for f € L?(IR?)

(P WP, [lremzy = (BgW-Pyf, f)r2(m2)
= ( qV()\o)OéQCOéw()\o) Pof, 2w
= (Ca ( 0)*Pof,c1v(Xo) Py f) r2(r)
> (inf o (C)) - (inf (@) Oy (A0)" Fof, xerv(A0)" Paf) r2(ry
> (

)
info(C)) - (inf () (Dr £, f) 2y

—~~

= C,(Tqr/f, f)L2(F/)a

where we choose

, info(C) .
= — . f
C T, Ak ete) =0

which proves the inequality in (ii). O

Using the above proposition we can immediately conclude the following results. The next
corollary is an immediate consequence of Proposition ( ) and the spectral asymptotics
for Tg established in Proposition

Corollary 6.2. Let « € L>(X;R) with T' = suppa and |I'| > 0. Then for ¢ € Nq the
following estimate holds for the singular values of Py|W|P,:

lim sup (ks (P,|[W|P,))Y/* < g(Cap(F))2.

k—o0
In particular, we have

lim Sup(k:!Sk(PquPq))l/k

k—o00

IN

2 (Cap(r)*

for the singular values of PaW1P,.

Proof. By Proposition (1) there holds Py|[W|P, < Ty as well as PbW.P, < c+T)
for some constants ¢, cq+ > 0. This, in particular, implies

lim sup (k!sy,(P,|[W|Py))"/* < limsup(c - kls (1))~
k—o00 k—o00
By Proposition there holds

lim sup(c - klsg (T ))/* = Jim (klsk(TF))l/k (cap(r))2,

k—00
since limy_ oo ¢'/¥ = 1, which shows the statement for P,|W|P,. The same argument
holds for the operator P,W. P, which finishes the proof. [

The next corollary can be seen as a consequence of Proposition (ii) and Proposition
assuming that « is a sign-definite function.
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Corollary 6.3. Let « € L*°(X;R) with T’ = suppa and |T'| > 0. Furthermore, suppose
that a is non-negatve (non-positive) on I' and uniformly positive (uniformly-negative) on
a closed subarc T" C T with |I'| > 0. Then for q € Ny the singular values of Py|W|P,
satisfy

lim inf (klsg (P, |W|P,))/* > g(Cap(F’))Q.
—00

In particular, the operator Py|W|P, has infinite rank.

Proof. By Proposition (ii) we have Py|W|P, > C’Tqu for some constant ¢ > 0. In
composition with Proposition 5.8 we now have

/ B
lim inf (k!s, (Py|W|P,))/* > lim inf (klsy (T ))"/* = = (Cap(I"))?,
k—o0 k—o00 2
since limy,_ oo ¢/ = 1, which shows the statement. O

Using the two corollaries from above we can obtain exact spectral asymptotics for
P,|W|P, assuming that « is uniformly positive or uniformly negative on I'. In the
next theorem we will see that we can achieve the same results under the slightly weaker
assumption that a is uniformly positive or uniformly negative on the interior of I'. For
the following theorem D, (x) will denote the disk of radius € > 0 centered at z

Theorem 6.4. Let « € L*(X,R) and I' = suppa. Suppose that o is non-negative
(non-positive) on I' and uniformly positive (uniformly negative) on the truncated arc
Fe={ze€l:D(x)nNX C T} for all € > 0 sufficiently small. Then for ¢ € Nq there
holds the estimate

B
lim (klsg(Py|W|Py)"/* = = (Cap (I'))?
k—o0 2
for the singular values of the operator Py|W|P,.

Proof. By Corollary [6.2] we already have

Sy

lim sup(klsy, (P, |W|P,))Y* <

k—o0 2

and from Corollary [6.3] we get

(Cap(I))?

B
likminf(k!sk(Pq|W|Pq))1/k > §(Cap(Fe))2. (6.3)
—00
We will now show that

lim inf Cap(I'c) = Cap(I'),

e—0+

from which the claim will follow by (6.3). Since I'c C T it follows from Proposition M(l)
that Cap (I'c) < Cap (I').
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To show the inverse inequality consider the equilibrium measure g for I', which was
introduced in Definition Without loss of generality we can assume that p has no
point mass, which would imply I(u) = oo and hence Cap (I') = 0, which is the trivial
case. By the dominated convergence theorem we see that

w(Le) :/]RQ xr. dp(z) —>/}RQ xrdp(z) = p(T)

as € — 0. This means that for ¢ > 0 sufficiently small we can introduce the measure
1
pu(Te)

which is well-defined on Borel sets M C R2. In fact e > 0 with supppe = I'c and
we(Te) = 1. Applying the dominated convergence theorem again gives us

pe(M) =

u(MNTe),

1 1
I(pe) = W/RQ /}RQ In |x_y|xre(w)xre(y) dp(z) dp(y)

1
_>/]RQ /RQ 1nmdu(m)du(y)=1<ﬂ)

as € — 07, which proves that liminf__,q+ Cap (I'¢) > Cap (T'), showing the statement. []

Remark 6.5. The above theorem allows us to drop the requirement that « is uni-
formly positive on I' and still obtain exact spectral asymptotics for the singular values
of Py|W|P,. In particular, a continuous interaction strength a only has to be positive on
the interior of I' and may be allowed to vanish at the endpoints.

6.2 Eigenvalue Clustering at Landau Levels

In the final section of this thesis we are going to use the results on the spectral asymptotics
of the compressed resolvent P, W F, from the last subsection to derive local spectral
properties of the Landau Hamiltonian A, with a singular interaction. Our strategy will
be to interpret the resolvent difference

W=(A,—-N)"1=—(Ag—N"! (6.4)

as a compact perturbation of the resolvent (Ag — A)~!. We then apply Proposition m
in order to give an estimate on the rate of accumulaton of the eigenvalues of the Landau
Hamiltonian A, with a d-potential at the Landau levels in terms of the singular values
of P,WP,. Throughout this section we fix A\g < min{0, mino(A,)}, which ensures that
the resolvent difference W admits the compact factorization as in .

The first proposition shows that for a sign-definite interaction strength o we can ex-
clude an accumulation of the eigenvalues from one side to each Landau level.
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Proposition 6.6. Let o € L>*(X,R) and q € Ng. Then there holds:

(1) If « is non-negative, then the eigenvalues of A, do not accumulate to the Landau
levels Ay from below.

(ii) If « is non-positive, then the eigenvalues of A, do not accumulate to the Landau
levels Ay from above.

Proof. We will show (i), since the proof for (ii) works in the same way. By Lemma
we know that

(Aa = X0) ' = (Ao — X0) " = —v(Xo) (1 + aM (X)) ary(Ao)* < 0.
Applying Proposition [2.29((ii) with
T=A0—X)"" Wo=(Ag—X)" = (As— o),
shows that there is no accumulation of eigenvalues of (A, — \g)~' from above to the

eigenvalues (A, — A\o)~!. Hence the eigenvalues of A, do not accumulate to the Landau
levels A, from below. O

Under the additional assumption that « is either strictly positive or negative we can
always observe an accumulation of eigenvalues to the Landau levels.

Theorem 6.7. Let a € L>*(X,R) and q € Ng. Then there holds

(i) Suppose that a(x) > 0 for a.e. x € ¥. Then the eigenvalues of A, accumulate to
Ay from above.

(ii) Suppose that a(x) < 0 for a.e. x € X. Then the eigenvalues of A, accumulate to
Ay from below.

Proof. We will prove (i), as (ii) can be shown analogously. Recall that
(Ao —20) 7" = (Ao — Ao) H = —y(No) (1 + aM (X)) tary(Ao)* < 0

by Lemma [4.15(1) and since o > 0 it folows from Proposition that P,W P, has an
infinite rank. Setting

T=A0—X)"" Wo=(A0—X)""=(As—Ao) ",

we can apply Proposition [2.30, which shows that the eigenvalues of (A, — A\o)~! accu-
mulate to the eigenvalues (A, — Ao)™* of (Ag — Ag)~! from below. In particular, the
eigenvalues of A, must accumulate to the Landau levels A, from above. O

In the following we will give some results on the rate of accumulation of the eigenvalues
of A, to the Landau levels. Before doing so we will introduce the following notation for
the sake of convenience:

I;_ = (Aq,Aq +B], q < No,
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The so defined intervals are disjoint and satisfy
o o oo
R=JI; ulJL ulJ{ag
q=0 q=0 q=0

In the following theorem we provide an upper bound on the accumulation of the eigen-
values of the Landau Hamiltonian A, with a J-potential to each Landau level and show
regularized summability of the discrete spectrum over all clusters.

Theorem 6.8. Let ¢ € Ny and let {)\i( ) teen, be the sequence of eigenvalues of Ag
contained in the interval I + counted with multiplicites. Suppose that )\ (q) are ordered in

such a way that |\ (q) — A q| is a non-increasing sequence. Then the eigenvalues Ay (q)
of Ay satisfy

(1) Y00 g (Suli (@) — Agl + TklA (@) — Agl) < oo.
(i) limsupy_, o0 (KINE (@) — Ag)V/* < B(Cap (1))2.

Proof. (i) For this proof we set C' = (A, — X\g)~! and D = (Ag — \o)~!. By applying

Proposition we see that C' — D = W € &, o0(L*(R?)) for p > 1/3. In particular,

C — D € &1 (L?*(R?)). Next we are going to use that the spectrum of D := (Ag— o) "

is given by the eigenvalues {(A; — A\o) "' }4en,, which have infinite multiplicity. Recall
that Ao < min{0, mino(A,)}. So for ¢ € Ny we have

o/ (q) := dist <+1

A (@) —

(D)

- 1 1 1 1

B mm{)\;{(Q) — X0 AN A= A (g) - Ao}

R { Agi1 = N () A (g) = Aq }
(A (@) = M) (Age1 — X)) (Ag = M)A (@) — o) S

Since A} (q) € I = (Ag, Ay + B] and A1 = Ag + 2B there holds

M(g) — Ag < Mg — N (),

which then implies

07 (9) = (X (@) — Ag) min { (A (9) = 20) (Mgt = Xo)” (Ag = A0) (N (9) — M) }

_ A (q) — Ay
(A (@) = Ao)(Ags1 — Xo)

Next we choose ¢ > 0 such that

Ao A
Aq—)\oSch<:>021———1—i—M (6.5)
Ay Ag’
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where the constant ¢ > 0 can be chosen independent of ¢ € N since f\‘—z is a decreasing

sequence. Furthermore, there holds
AE(@) = Mo < Agpr — Xo < ehgir < PA (6.6)

if we additionally choose ¢ > 0 such that A, < cAg, Wthh is pos&ble since % is

decreasing. Choosing ¢ > 0 sufficiently large such that | and (| are satlsﬁed we
arrive at the inequality

e+ (A (@) — Ag)

2 )
Aq

0/ (q) >

which holds for all ¢ € Ng, where we have chosen ¢; = ¢~3. In a similar fashion one can
show for g € Ny that

_min{ L L }
)\];(q) — AO Aq - AO’ Aq—l - )‘0 A];(Q) - >\0

for some constant c— > 0. Set C' = (A, — Xg) "}, then D — C =W € &1 (L*(R?)), so

> dist(\a(D) =D D (0f(a) +9;(0)
)\eadzsc(c) q=0 k

v

2 B2(2¢ + 1) g(\)\z((ﬁ = Ag| + 1Ay (@) — Aql)

and since by the series on the left hand side is finite by Proposition [2.48| the assertion
follows.

(ii) Let us set

1
Ao (0 0)7 Aq—A()?
1 1 1 1
AT T Ty TETE A FB A A — o

where W is defined as in (6.1]), and use Proposition [2.32| Since the eigenvalues of T'+ W
in (A —27_, A+ 27;) are given by

1 1 1 1
- < < <A< S — < — ,
AT(@) =X~ AJ(g) — A Ay (@) —Xo T AT(g) — Ao
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it follows from Proposition that there exists | = [(q) € N such that

1 1 3
— < —sp_(P,W=P,
N(@)—d  Ag—ho| 2% {FlVeFo)

for all sufficiently large £ € IN. Moreover, by Lemma and Corollary we find

lim sup(k!sy,_i(P,WsP,))'/* = lim sup(k!sy (P,WsP,)) " < g(Cap ().

k—o0 k—o0

Another calculation now shows

lim sup (k! ’)\%(Q) - Aql)l/k

n—oo
1 _ 1
)‘f(Q) — Ao Aq = Ao

= limsup( A (g) — Xo)YE(Ay — Ao) /¥ (k!

k—o00

>1/k

< lim Sup(k‘lsk—l(PqWJFPq))l/k

k—o00

= limsup(k!sy (P,W+P,))/* < g(Cap ()2,
k—ro0

where we have used the boundedness of (Af(q) — X\o) and that limsup,,_, . a'/* =1 for
any positive number a > 0, which shows (ii). O

It is important to note here, that the above result does not require « to be sign-definite.
In particular, we can always achieve an upper bound on the rate of accumulation of the
eigenvalues of A, to the Landau levels, regardless of the definiteness of a. Under the
additional assumption that « is sign-definite on I" we are able to obtain a respective lower
bound on the rate of accumulation. The following theorem can be seen as a generalization
of Theorem [ in the Introduction.

Theorem 6.9. Let « € L*(X;R) and T' = suppa. Suppose that « is non-negative
(non-positive) on I' and uniformly positive (uniformly negative) on the truncated arc
e ={z e€l': D(x)nNE CTI} for all e > 0 sufficiently small. Then the eigenvalues
{ M (@) }reno of Aa lying in the interval I} (I, respectively) satisfy

. B

lim (k! | A (q) — Agl)* = = (Cap ()%

k—o00 2

In particular, the eigenvalues of A, accumulate to Ay from above (from below, respectively)
for all g € Ng.

Proof. We will show the proof for a > 0, since the case a < 0 works analogously. As in
the proof of of Theorem [6.8 we will set

1
W=Wy, T=A0—X)" A= ,
Ay — o
(6.7)
Py=P _ ! _ 4l ! _
AT T T TETE A FB A A=)
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Since rank(P,W F,) = oo by Theorem we can apply Proposition for (6.7)) and

arrive at the inequality

< _ <§s (
Tl = A Ag—A| T 27

1
§3k+l(PqWPq) PyWFy)

for some constant | = I(¢) € N and all £ € N sufficiently large. Using Lemma in
conjuction with Corollary [6.4] we see that

. B 2
Hm sy (BgWEy) = o (Cap (I))7,

from which we can conclude the asymptotic result on the eigenvalues of A, in the same
way as in the proof of Theorem [6.8[(ii). O

Mimicking the proof of the above theorem we are able to obtain a lower bound on the
spectral clustering, under the slightly weaker assumption that « is uniformly positive on
a subarc of positive measure of T'.

Proposition 6.10. Let o € L*(3;R) with T' = suppa and |T'| > 0. Furthermore,
suppose that o is non-negatve (non-positive) on I' and uniformly positive (uniformly-
negative) on a closed subarc I C T' with |I”| > 0. Then the eigenvalues {\,(q)}ken, of
A, lying in the interval I;‘ (I, respectively) satisfy

B
tim inf (k! [\e(q) — Ag])/* > 2 (Cap(I"))?.
— 00

In particular, the eigenvalues of A, accumulate to Ay from above (from below, respectively)
for all ¢ € Ny.
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