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This summary was disseminated on

The defense of the thesis shall be held on March, 23rd 2012 at 10 am in front of the committee
for the doctoral study 4F–11, in the building of MFF UK, Ke Karlovu 3, Prague 2, room 105 (252).

The thesis is available at the Study Department, MFF UK, Ke Karlovu 3, Praha 2.



UNIVERZITA KARLOVA V PRAZE
Matematicko–Fyzikálńı fakulta
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Karlovu 3, Praha 2.
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Abstrakt: Synoviálńı tekutina je polymerńı roztok, který se obecně chová jako viskoelastická
tekutina, a to předevš́ım d́ıky obsaženým makromolekulám hyaluronanu. V této práci se zabýváme
biologickými a biochemickými vlastnostmi synoviálńıch tekutin, dále jejich komplexńı reologíı a
jejich interakćı se synoviálńımi membránami během filtrace. Z matema- tického hlediska modelujeme
synoviálńı tekutiny jako vazké nestlačitelné tekutiny, pro něž jsme vyvinuli nový zobecněný model
mocninného typu, jehož exponent záviśı na koncentraci výše zmı́něného hyaluronanu. Takový popis
je adekvátńı, pokud synoviálńı tekutina nepodléhá vysokým zátěžovým test̊um. Dále se zabýváme
popisem lineárńıch viskoelastických odezev synoviálńıch tekutin z dostupných experimentálńıch
dat, opět hledáme př́ıslušné parametry model̊u jako funkce koncentrace. Pro popis prouděńı
použ́ıváme zobecněné Navierovy–Stokesovy rovnice svázané s podmı́nkou nestlačitelnosti a rovnice
pro konvekci–difúzi koncentrace hyaluronanu. V části práce zabývaj́ıćı se matematickou analýzou
formulujeme stacionárńı úlohu a dokážeme existenci odpov́ıdaj́ıćıho slabého řešeńı. Důkaz existence
je založen na metodě monotónńıch operátor̊u, kde kĺıčovou roli hraje d̊ukaz Hölderovské spojitosti
koncentrace. V numerické části teze se zabýváme výběrem a implementaćı vhodných stabilizačńıch
metod pro numerické řešeńı problému s dominantńı konvekćı, jak je charakteristické pro synoviálńı
tekutiny. Numericky pak řeš́ıme pro r̊uzné modely zobecněné vazkosti a r̊uzné stabilizačńı metody
systém ř́ıd́ıćıch rovnic v obdélńıkové oblasti, jakožto testovaćı domény, která naznačuje př́ıpadné
rozš́ı̌reńı modelu pro realistickou geometrii. Jako posledńı se zabýváme problémem filtrace. Zde
formulujeme podmı́nky na hranici membrány pro prouděńı a tok koncentrace, které formálně
popisuj́ı částečnou polopropustnost membrány, hromaděńı koncentrace před membránou (v př́ıpadě
jednosměrného toku) a vliv osmotického tlaku.

Kĺıčová slova: Synoviálńı tekutina, zobecněná viskozita, lineárńı viskoelasticita, Navierovy– Stokesovy
rovnice, zobecněné Sobolevovy prostory, C0,α–regularita, stabilizované metody konečných prvk̊u,
transport přes membránu.
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Kurzfassung: Ein synoviales Fluid ist eine polymerische Flüssigkeit, die sich im Allgemeinen wie eine
viskoelastische Flüssigkeit verhält. Dieses Verhalten ist auf die Wirkung enthaltender Polysaccharide,
sogenannte Hyaluronen, zurückzuführen. In dieser Arbeit werden biologische und biochemische
Eigenschaften von synovialen Flüssigkeiten untersucht, sowie deren komplexe Rheologie und die
Interaktion mit synovialen Membranen bei Filterprozessen. Vom mathematischen Standpunkt
aus modellieren wir das synoviale Fluid als ein viskoses, inkompressibles Fluid, für welches wir
ein neues Potenzgesetz–Modell entwickeln, wobei der Exponent im Potenzgesetz von der Konzen-
tration der Hyaluronen abhängt. Ein solches Modell ist dazu geeignet, um ein synoviales Fluid
zu beschreiben, solange es zu keinen plötzlichen Impulsen kommt. Des Weiteren beschreiben wir
geeignete lineare viskoelastische Modelle, welche das viskoelastische Verhalten der synovialen Fluide
bei kleinen Deformationen als eine Funktion der Konzentration beschreiben. In weiterer Folge wer-
den die zugehörigen Modellgleichungen betrachtet, und zwar die Inkompressibilitätsbedingung, das
Momentengleichgewicht – die verallgemeinerten Navier–Stokes Gleichungen und die Konvektionsdif-
fusionsgleichung für die Konzentration des Hyaluron. Das Kapitel zur mathematischen Analysis
konzentriert sich im Wesentlichen auf die Formulierung des stationären Problems im schwachen
Sinne und den Beweis der Existenz einer zugehörigen schwachen Lösung für den Fall einer verallge-
meinerten Viskosität mit einer vom Potenzgesetzexponenten abhängenden Konzentration. Dazu
verwenden wir die Methode der monotonen Operatoren, wobei der Beweis der Hölder–Stetigkeit der
Konzentration den Hauptteil darstellt. Im Kapitel zur Numerik werden verschiedene stabilisierte
Finite Elemente Methoden für Probleme mit dominierender Konvektion betrachtet, welche typisch
für synoviale Fluide sind. Numerische Beispiele werden für rechteckige Gebiete präsentiert, um eine
Einsicht in das Verhalten des Fluids zu bekommen und um es zukünftig in realistischeren Gebieten
lösen zu können. Des Weiteren werden die Lösungen der verschiedenen Viskositätsmodelle für
die einzelnen stabilisierten Finite Elemente Methoden miteinander verglichen. Im letzten Kapitel
wird ein mathematisches Modell für die Strömung und den Transport einer verdünnten Lösung
betrachtet, welches anschließend auf das synoviale Fluid übertragen wird. Dabei sind die Gebiete
durch eine semipermeable Membran getrennt. Wir formulieren Transmissionsbedingungen für die
Strömung und die Konzentration der Lösung auf der Membran. Dabei kommt es zu einem teilweisen
Rückgang der Konzentration, welcher auf die Eigenschaften der Membran zurückzuführen ist. Die
Ablagerung der Lösung an der Membran und der Einfluss der Konzentration der Lösung auf die
Strömung ist als osmotischer Effekt bekannt.

Schlüsselwörter: Synoviale Flüssigkeiten, verallgemeinerte Viskosität, lineare Viskoelastizität,
Navier–Stokes Gleichungen, verallgemeinerte Sobolev Räume, C0,α –Regularität, Stabilisierte Finite
Elemente Methoden, Membrantransport.
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Abstract: Synovial fluid is a polymeric liquid which generally behaves as a viscoelastic fluid
due to the presence of polysaccharide molecules called hyaluronan. In this thesis, we study the
biological and biochemical properties of synovial fluid, its complex rheology and interaction with
synovial membrane during filtration process. From the mathematical point of view, we model the
synovial fluid as a viscous incompressible fluid for which we develop a novel generalized power–law
fluid model wherein the power–law exponent depends on the concentration of the hyaluronan.
Such a model is adequate to describe the flows of synovial fluid as long as it is not subjected to
instantaneous stimuli. Moreover, we try to find a suitable linear viscoelastic model which can
describe the viscoelastic responses of synovial fluid during small deformation experiments, as, again,
a function of concentration. Then, we consider the governing equations, namely the constraint
of incompressibility, the balance of linear momentum – generalized Navier–Stokes equations and
the convection–diffusion equation for the concentration of hyaluronan. The part of mathematical
analysis is focused on the formulation of the stationary problem in the weak sense and the proof
of the existence of the corresponding weak solution, for the case of a generalized viscous problem
with concentration dependent power–law exponent. For that, we use the method of monotone
operators, where the essential role plays the proof of Hölder continuity of the concentration. In the
numerical part of the thesis, we consider different numerical stabilization methods which ensure
better numerical solvability of the system with dominant convection, as is typical for synovial fluid
flow. By their implementation into already existing code, we numerically solve for the flow of the
synovial fluid in a rectangular cavity, in order to gain some insight into the response of such a fluid so
that we can solve in the future the flows in more realistic geometries. We also compare the solutions
obtained with different models of generalized viscosities and different stabilization techniques.
As last, we propose a mathematical model for flow and transport processes of diluted solutions,
and afterwards of synovial fluid, in domains separated by a leaky semipermeable membrane. We
formulate transmission conditions for the flow and the solute concentration across the membrane
which take into account the property of the membrane to partly reject the solute, the accumulation
of rejected solute at the membrane, and the influence of the solute concentration on the volume
flow, known as the osmotic effect.

Keywords: Synovial fluid, generalized viscosity, linear viscoelasticity, Navier–Stokes equations,
generalized Sobolev space, C0,α–regularity, stabilized finite element methods, membrane transport.
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1 Introduction

1.1 Why is the mathematical modeling of synovial fluid important?

Mathematical studies of mechanical and rheological behavior of systems close or directly connected
with human physiology play an important role in several areas of bio–engineering and medicine.
One of the best examples is the mathematical modeling and consecutive computational simulations
which can predict important features of particular organs, tissues or whole systems, otherwise
difficult or even impossible to determine in vivo. Of course, one needs to have by hand reasonable
mathematical models, suitable (experimental) data, fast reliable numerical methods, software and
hardware, and experts who are able to interact with the models and interpret the results. For
example, the modeling of cardiovascular systems, especially of the vessel parts and their interaction
with blood, modeling of the heart muscle or evolution of the aneurysms, or modeling in the field
of neurology, becomes a standard part of modern medical investigations. For these reasons, the
fundamental research on biological systems plays a crucial role for the future medical treatments or
bio–engineering development.

In our case, we are focused on the understanding of the physiology and mechanisms concerning
human movable joints, more precisely, the mathematical description of the synovial fluid rheology.
To this date, there have not been fully understood the conditions and origins of some pathological
diseases, the mechanics of human joint lubrication or shock load absorbing, for which the synovial
fluid1 is an essential medium. These features could be, nevertheless, a great enhancement in the
engineering of designing the life–long functional joint prostheses or in the disease treatment.

1.2 State of the art and main aims of the thesis

Mathematical modeling. To our knowledge, there are several models describing the synovial fluid,
see for example Rudraiah et al. (1991), Lai et al. (1978), Morris et al. (1981). Nevertheless, they
are great simplifications of the otherwise complex rheology of synovial fluid, usually based on the
simple experiments adapted for the linear theories, both viscoelastic and viscous. In this we see
the main obstacle in development of reliable models capturing the most important non–Newtonian
features of synovial fluid. To be more specific, the synovial fluid has been modeled as either viscous
shear–thinning fluid or linear viscoelastic fluid–like material. The importance of the concentration
of the molecules of hyaluronan, which determines its non–linear character, was often undermined or
completely neglected. The aim: Our aim is to study such rheological behavior of synovial fluid,
based on the existing experimental literature, and create novel viscous and viscoelastic models,
describing the influence of concentration. Mainly, we focus on the description of viscous responses
of synovial fluid, as a fluid thinning the shear. Moreover, we intend to study the filtration process
of the synovial fluid through the synovial membrane and, on that basis, to create a reasonable,
nevertheless phenomenological, model for the synovial membrane transport.

Mathematical analysis. The existence theory of incompressible Navier–Stokes equations with the
viscosity of power–law type has been studied for more than 40 years, see for example Ladyzhenskaya
(1967), Málek et al. (1993), Frehse et al. (2000), Diening et al. (2010). On the other hand, the
study of non–trivial coupling of the Navier–Stokes equations with another governing equation, for
example for temperature or electric field, through the power–law index has been introduced in the
recent decade. For instance in Růžička (2004), the variable index is considered as a function of
the electric field, in simplification of the space variable, or in Antontsev and Rodrigues (2006), the
variable index is temperature dependent. The latter system is the closest to ours, nevertheless the
proof is not constructive, based on the use of the fixed point theory. Moreover, the diffusion of
the temperature is considered to be linear, and thus the standard Laplacian theory can be used to
obtain necessary Hölder continuity of the temperature and consequently of the variable power–law
index. To the best of our knowledge, the theory is not known for the case of the non–linear diffusion.

The aim: Since we model the flow of synovial fluid by the incompressible Navier–Stokes
equations coupled with the convection–diffusion equation for the concentration, and, the viscosity

1Here, of course, other parts of synovial joints, like cartilage and tendons, are essential and their mathematical
modeling as well as the understanding of their mutual interaction is necessary.

8



of synovial fluid by a power–law type model with the shear–thinning exponent dependent of the
concentration, the mathematical approach introduced by Růžička (2004) needs to be adopted for
our case as well. The aim is then to prove the existence of the weak solution for the stationary
problem with Dirichlet boundary conditions for both the velocity and the concentration in the
framework of the generalized Sobolev spaces.

Numerical methods. In the case of dominated convection of the concentration, as is the case
of hyaluronan in synovial fluid, the numerical method needs to be adapted by an introduction of
suitable numerical stabilization. To this date, there are several stabilized finite element methods,
nevertheless, their application needs to be considered with respect to several aspects. Since the
objective of our study is a physical variable, the positiveness of the scheme plays a crucial role. On
the other hand, one needs to consider the convergence rate and, particularly, the requirements for
implementation and following numerical computations. For these reasons, the streamline upwind
Petrov–Galerkin method (Johnson (1982), Hughes and Franca (1989)), continuous interior penalty
method (Douglas and Dupont (1976), Turek and Ouazzi (2007)) and Galerkin least squares method
(Jiang (1998), Bochev and Gunzburger (2009)) seems suitable for our case.

The aim: We intend to implement different stabilizations into existing finite element code and
study their characters in connection with the problem of the flow of the synovial fluid. Then, we
intend to compute and compare the numerical solutions for different viscosity models and different
stabilized finite elements. As last, we aim to simulate the transport of the synovial fluid through
the synovial membrane.

2 Rheology of synovial fluid

First intensive scientific investigations of composition and properties of synovial fluid date back to
the late thirties of the last century (Meyer et al. (1939), Ropes et al. (1940), Davies (1946)), which
were shortly followed by deeper study of the special rheological properties of synovial fluid attributed
to the main chemical constituent of synovial fluid, hyaluronan, (Ogston and Stanier (1953), Sunblad
(1953)). For this reason, it is necessary to understand the physico–chemical properties of hyaluronan
molecules in liquid solutions, on which we can build phenomenologically justified mathematical
model describing synovial fluid mechanical responses.

2.1 Viscoelastic properties

Physiological hyaluronate solutions at neutral pH, like in synovial fluid, feature an extraordinary
viscoelastic characteristic. Typical and widely used experimental test measuring viscoelastic
responses of synovial fluid is the (small amplitude) oscillatory measurement for wide range of
frequencies. The response, see Fig. 1(a), is presented in terms of G′ and G′′, where G′ is associated
with elastic phenomena and thus called storage modulus, while G′′ is associated with viscous
dissipation of energy, and it is, therefore, called the loss modulus, for definition see Chapter 3 of the
thesis. At low frequencies of oscillation, loss modulus G′′ is evidently greater than the store modulus
G′, in other words viscous responses are dominant to elastic responses, which is the consequence of
the fact that at lower frequencies of oscillations the molecular network is transient, or in other words,
the period of oscillations is long relative to the lifetime of hyaluronan chain–to–chain interactions
and thus the rearrangement of the molecules occurs. Hence the characteristic viscous flow. On the
other hand, at higher frequencies elastic responses are predominant which is the consequence of the
storing energy in elastic short–time network deformation. The magnitude of the moduli (both G′

and G′′) is increasing with the concentration which is correlated with the “density” of hyaluronan
mesh in the solution. The characteristic crossover of G′ and G′′ is strongly influenced by the pH,
enzymatic activity, protein or cell concentration, and by the concentration and length/molecular
weight of hyaluronan molecules. While elastic part in synovial fluid response is important for joint
stabilization during the joint loading and high oscillatory shearing (like during running), the viscous
part of the response is crucial for joint lubrication at lower rates of the movement. Even though, it
is quite tempting to distinguish the elastic responses from viscous ones, it is not possible to separate
them, and thus one has to keep in mind that terms “viscous–like” and “elastic–like” are meant in
the sense of predominance.
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(a) (b)

Figure 1: (a) Small deformation experiment of hyaluronan solution. Dynamic storage moduli G′ and
dynamic loss moduli G′′ plotted against frequency of oscillation in logarithmic scale. Experiment
was done in Weissenberg Rheogoniometer. From Balazs and Gibbs (1970). (b) Shear–thinning
experiment on synovial fluid over a wide range of physiological concentration of hyaluronan. Relative
viscosity ηrel against velocity gradient. Viscosity was measured in the Couette viscosimeter. From
Ogston and Stanier (1953).

2.2 Bulk flow properties

During unloaded non–oscillating simple shear flows synovial fluid exhibit characteristic viscous
behavior. Typical experimental setting for viscosity measurement is then the flow in the Couette
viscosimeter, see the example of the experimental result in Fig. 1(b). As one can see, synovial fluid
viscosity is not constant as in the case of Newtonian fluid but it exhibits strong shear–thinning,
peculiar to polymeric solutions. The difference is, that in the case of hyaluronan solution, this
phenomena is observed already at very low concentration due to the extraordinar molecule length.
The apparent viscosity of hyaluronan solution is increasing with decreasing rate of shear while at
higher rates of movement the viscosity drops. This entails that the joint is “dynamically” stabilized
and well lubricated during slower motions but at higher rates of movement the drag of the bones
faced against each other in synovial joint is significantly reduced. Here, again, the concentration of
hyaluronan in synovial fluid significantly influences the behavior of the mechanical response, as
expressed in Fig. 1(b). It is observed that for concentration of hyaluronan close to 1mg/ml, by
which the hyaluronan chains are more or less separated, the apparent viscosity becomes almost
Newtonian and the shear–thinning vanishes.

The shear thinning of synovial fluid is the well–known phenomena but also other non–Newtonian
effects at transient flow were described in relation to synovial fluid. Davies and Palfrey (1968) and
King (1966) reported the normal stress differences, one of the physical consequence of non-zero
normal stress differences is the effect “die swell”. The stress relaxation from modeling point of
view was studied for example by Mow and Lai (1979). We, nevertheless shall not describe such
responses.

3 Modeling of viscous responses

In this section, we present a new phenomenological model for the generalized viscosity of normal2

synovial fluid which captures the shear–thinning effect. The rheological model of generalized
viscosity shall be also, besides the shear rate, dependent of concentration of hyaluronic acid which

2By normal synovial fluid we mean the synovial fluid with rheological responses and biochemical composition as
that of a healthy young individual.
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plays an important role in mechanical responses of synovial fluid. These rheological properties of
synovial fluid were closely described in Chapter 4 of the thesis.

3.1 Constitutive equation

Even though synovial fluid is a complex biological material, a mixture of ultrafiltrated blood
plasma and hyaluronan molecules, under normal conditions, it can be approximated as an isotropic
incompressible homogeneous single constituent fluid.

Since the response of the fluid depends on the nature of the flow, the model for synovial fluid
must depend on the “dynamics” of the flow. Higher shear rates imply higher alignment of the
chains and thus a decrease in the viscosity. On the other hand, the influence of concentration works
contrariwise because higher concentration of hyaluronan implies higher enlacement of the chains,
which increases the viscosity. The restriction of the current models to constant concentration is not
appropriate for modeling the synovial fluid behavior under physiological conditions since, in real
joints, the concentration of hyaluronan varies. For example, it has been shown (see Coleman et al.
(1999)) that hyaluronan creates some kind of a boundary layer near the synovium with concentration
five times higher than in the central parts of the synovial joint cavity (this is the consequence of
the varying hyaluronan production in the synovium combined with the flow conditions). Thus, we
assume that the viscosity µ of the synovial fluid is a function of concentration and shear rate and
propose the constitutive equation for synovial fluid when it flows:

T = −pI + 2µ(c, |D|2), (1)

where T is the stress tensor, D is the symmetric part of velocity gradient, I is the identity tensor,
p is the hydrodynamic pressure and c is the concentration.

3.2 Model for viscosity

Due to the shear–thinning effect of synovial fluid, we consider only models for the viscosity µ that
belong to the power–law class. We compare the model introduced in the literature (for instance
Lai et al. (1978); Laurent et al. (1995)), where the varying concentration plays the role only as a
“scaling factor” of the shear rate response

µ = µ0e
αc
(
1 + γ|D|2

)n
, (Model 1)

with our new model that takes into account the concentration influence on the shear–thinning effect
itself, specifically the shear–thinning index of the considered power–law model

µ = µ0

(
β + γ|D|2

)n(c)
. (Model 2)

In both models, the parameters α, β, γ and n are unknown and they have to be determined
by comparison with experiment. Since the synovial fluid with zero concentration of hyaluronan is
basically blood plasma, the parameter µ0 should represent the plasma viscosity. Here, as one can
see, the Model 1 exhibit wrong characteristic for this limiting case. When the concentration tends
to zero, the fluid should stop to feature any non–Newtonian effects any more and the viscosity
should become constant with the value of the plasma. In contrast to the Model 2, the Model 1
captures the shear–thinning effects always.

We decided to use the exponential behavior with one free parameter

n (c) =
1

2

(
e−αc − 1

)
, (Model 2a)

and a simple rational function with two free parameters

n (c) = ω

(
1

αc2 + 1
− 1

)
, (Model 2b)

which both satisfy the required conditions, and, mainly, the fitting procedures lead to better results
than for any other “simple” function with only one or two free parameters.
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3.3 Identification of the model parameters – fitting procedure

Each of the models introduced above contains some unknown parameters. For Model 1 and Model 2a
they are three, α, γ, n and α, β, γ, respectively, and in Model 2b we have four unknown parameters
α, β, γ, ω. We find the values of these parameters by a fitting technique applied on the experimental
data from Ogston and Stanier (1953). Specifically, we use the least square method.

We present the final fits in Fig. 2. From the fitting procedure, we also present closer diagnostic
of the fit departure in each experimental measurement point, in Fig. 3.
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Figure 2: Relative viscosity against shear rate for different physiological concentrations. Graphs of
the relative viscosity of all the models show the fitted curves and the experimental data (points)
which were taken for the fitting procedure. Here we use the notation from Ogston and Stanier
(1953) for µrel = µ/µref, where µref refers to the viscosity of the glycerol solution.
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Figure 3: Departures of considered models from experimental data displayed as function of shear
rate for different concentrations.

The computed error indicates that the best fit of the experimental data is the Model 2b. As
we can see, error of Model 2a is accumulated at the very small shear rates while the rest of the
fit is comparable with the fit of Model 2b. Still, from all mentioned above, the Model 1 can fit
the data reasonably well for some specific applications in the range of the concentrations in which
it was fitted, this means in the range of 0.14− 0.25. Moreover, even though the models of class
2 extrapolate the viscosity values for higher concentrations accurately, their reasoning can be
validated only by experiments for extended range of concentrations.

4 Modeling of viscoelastic responses

Fitting fully non–linear viscoelastic model to experimental data we have at hand would be at this
point useless with respect to their linear character. Thus, we lay stress on the famous Oldroyd–B
model in comparison to the model of Maxwell.

Let us present the explicit functions for dynamic moduli G′ and G′′ for small amplitude oscillatory
test in the case of Maxwell and Oldroyd–B models. The (one–dimensional) deformation during
such test with frequency of oscillations ω is given by sinusoidal shear strain γ and we call γ̇ the
shear rate. Then the shear stress τ of the Cauchy stress tensor is decomposable into the sines and
cosines, as can be expressed as

τ = γ0{G′(ω) cos(ωt) +G′′(ω) sin(ωt)}. (2)
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4.1 Mechanical analogues of Maxwell and Oldroyd–B models

Let us introduce the representation of 1–dimensional Maxwell and Oldroyd models by mechanical
analogues.

Η0 E1

(a) Maxwell

Η0

Η1

E1

(b) Oldroyd–B

Figure 4: (a) Spring–dashpot analogue for the Maxwell fluid. Parameters η0 and E1 are the
dashpot and spring constants, respectively. (b) Spring–dashpot analogue for the Oldroyd fluid
model. Parameters η0, η1 and E1 are the dashpots and spring constants, respectively.

Maxwell

Even though Maxwell himself did not mention dashpot/spring in his famous work (Maxwell (1867)),
his model is based on superposition of viscous and elastic forces, which refers to connection of
one spring and one dashpot in series, see Fig. 4(a). If we balance the total force with the total
displacement of such assemblage, we obtain the (one–dimensional) formula of the Maxwell fluid.
After the generalization of the model to three dimensions and following calculations, we obtain
dynamic moduli for Maxwell model in terms of “viscosity” η0 and “elasticity” E1 as

G′ =
E1η

2
0ω

2

E2
1 + η2

0ω
2
, G′′ =

E2
1η0ω

E2
1 + η2

0ω
2
. (3)

Oldroyd

Similar analogue can be constructed for the Oldroyd fluid. Since the model has to have three
parameters and it should describe the fluid–like material, the composition of dashpots/spring is
unique, as depicted in Fig. 4(b). Again, we express G′ and G′′ in terms of η0, η1 and E1

G′ =
E1η

2
0ω

2

E2
1 + (η0 + η1)2ω2

, G′′ =
η0ω

(
E2

1 + η1(η0 + η1)ω2
)

E2
1 + (η0 + η1)2ω2

. (4)

4.2 Finding fits to data

Our goal was to find the best possible fit to available experimental data by the use of the least
squares method. We are considering only linear viscoelastic models of Maxwell and Oldroyd–B.

We have fitted the formulas of G′ and G′′ of both models, (3) and (4), to the experimental
data for separate concentrations but simultaneously for both moduli. The results are shown in the
following Fig. 5

As we can see, the fits for Maxwell and Oldroyd–B do not differ almost at all. This is caused
by the smallness of the third parameter η1 in Oldroyd–B model, fitted as numerical zero for two
cases from three, which represent with respect to the Maxwell fluid the additional dashpot. This
suggests, that in the range of linear viscoelasticity of synovial fluid the Maxwell model could be
sufficient. Thus, in what follows, we shall assume the Maxwell model, only.

Based on the results of the separate fits, we have suggested a possible phenomenological
dependence of the material parameters on the concentration, E1 = a1c+ b1, η0 = b2e

a2c, and after
we fitted the models again, similtaniously to all concentration data, see results in Fig. 6.

For the experiment of small deformations, e. g. amplitudes and frequencies of oscillations are
small enough, the models were able to fit the data only approximately. This suggest, that even
for small deformations the fluid exhibit some non–linear characteristic. Since we have no more
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Figure 5: Fitted curves of dynamic moduli for three different concentrations. The fits are performed
separately. Experimental data are represented by points, solid points are data of dynamic loss
modulus G′′, circles represent dynamic storage modulus G′. Solid lines are calculated curves of
dynamic loss modulus and dashed lines are calculated curves of dynamic modulus.
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Figure 6: Resulting curves of fitted dynamic moduli to two (left) and three (right) sets of experimental
data corresponding to the concentrations of {0.12, 0.28} and {0.06, 0.12, 0.23}, respectively. Dynamic
loss modulus – solid lines, dynamic storage modulus – dashed lines; solid points – dynamic loss
modulus experimental data, circles – dynamic storage modulus experimental data.

information about the concentration/frequency dependencies, we can not point out other aspects
influencing the dynamic moduli, and thus improve the considered phenomenological model.

5 Problem formulation: governing equations and mathe-
matical analysis

5.1 Governing equations

We describe the flow of synovial fluid in the terms of the velocity field v and the pressure field p which
are governed by the generalized Navier–Stokes equations and the constrain of incompressibility. The
concentration distribution, the scalar field c, which influences the flow only through the material
parameter(s) in constitutive equation(s) is described by the convection–diffusion equation. The
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system of non–dimensionalized governing equations takes the form

div v = 0, (5)

div(v ⊗ v)− divS(c,D(v)) = −∇p+ f , (6)

div(vc)− div qc(c,∇c,D(v)) = 0. (7)

with the extra stress tensor S and concentration flux vector qc given by

S(c,D(v)) =
2

Re

(
κ1 + κ2 |D(v)|2

) p(c)−2
2

D(v), (8)

qc(c,∇c,D(v)) =
1

Pe
K(c,D(v))∇c, (9)

where f represents the specific external body force field, K is the diffusivity, the characteristic
of solute with respect to the solvent, and, Re, Pe are the reduced Reynolds and Péclet numbers,
respectively, κ1, κ2 are constants. Moreover, the power–law index, as used before, is expressed as

n(c) = p(c)−2
2 .

5.2 Survey of previous results

The models with non–constant power–law index, developed for electrorheological fluids, are studied
for instance in Růžička (2000), Růžička (2004). For this kind of fluids the extra stress tensor
is (non–trivially) dependent of electric field E and thus the Navier–Stokes equation has to be
solved with the (quasi-static) Maxwell’s equations. Nevertheless, the governing equations are
essentially uncoupled thus the Maxwell’s equations can be solved first. The solution of electric field
can be then considered as a known function, resulting that the problem reduces to the problem
of incompressible Navier–Stokes problem with extra stress tensor having the growth property

of |S| 6 C(1 + |D(v)|2)
p(x)−2

2 , where p(x) := p(|E(x)|2) is given variable function (under some
assumption of Hölder continuity), satisfying 1 < p− < p(x) < p+ < ∞. Using the theory of
monotone operators, the author was able to prove the existence of a weak solution for lower bound
p− > 9

5 , and in the case of stationary problem the existence result was extended to p− > 6
5 by

Diening et al. (2008), by the means of the method of Lipschitz approximations.
The closest system to ours, (5)–(7), is studied in Antontsev and Rodrigues (2006). The authors

consider the stationary system of Navier–Stokes equations coupled with equation for thermal
diffusion obtained as Oberbeck–Boussinesq approximation of Fourier equation for the temperature,
under the consideration that the power–law index of the generalized viscosity is dependent of
temperature θ. For Dirichlet boundary conditions, for both velocity and temperature, they prove
the existence of the global weak solution for the case of 9

5 6 p? < p(θ) <∞ for large and sufficiently
smooth data. There, the important assumption simplifying the proof is the assumption of the
constant diffusion tensor Dθ, which ensures the Hölder continuity of the temperature.

5.3 Formulation of stationary problem

For definitions of the spaces and corresponding norms, as well as generalization of standard theorems
of fluid dynamics analysis, see Chapter 7 of the thesis.

Let us consider the stationary problem (5)–(7) being defined on an open bounded set Ω ⊂ Rd,
d > 3, with Lipschitz boundary ∂Ω, and Dirichlet boundary conditions for both velocity and
concentration

v(x) = 0, and c(x) = cd on ∂Ω. (10)

We assume that S : R+
0 ×Rd×dsym → Rd×dsym fulfills following growth, strict monotonicity and coercivity

conditions for all c ∈ 〈minx∈∂Ω cd,maxx∈∂Ω cd〉 and D, D1, D2 ∈ Rd×dsym

|S(c,D)| 6 C1(|D|p(c)−1 + 1), (11)

(S(c,D1)− S(c,D2)) · (D1 −D2) > 0 D1 6= D2, (12)

S(c,D) ·D > C2(|D|p(c) + |S(c,D)|p
′(c) − 1), (13)
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where p(·) is Hölder continuous function such that 1 < p− < p(·) < p+ <∞, and the concentration
flux vector qc satisfies the (9), where K(c, |D(v)|) : R+

0 × R+
0 → Rd×d is continuous mapping with

Ki,j ∈ L∞(Ω) such that the flux vector fulfills following conditions

|qc(c, ξ,D)| 6 K1|ξ|, (14)

qc(c, ξ,D) · ξ > K2 |ξ|2 . (15)

Above, C1, C2,K1,K2 ∈ (0,∞) are constants and A ·B is notation for the scalar product between
two tensors. Moreover, we require that there exists a function

c̃d ∈ C0,β ∩W 1,2(Ω), β > 0, such that tr(c̃d) = cd on ∂Ω. (16)

For the problem (5)–(7), (10) we proved the following existence theorem.

Theorem 5.1. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and let p(·) be a
Hölder continuous variable exponent such that p− 6 p(·) 6 p+ <∞, where p− > 3d

d+2 and p− > d
2 .

If f ∈W−1,p−
′
(Ω), S and qc satisfy conditions (11)–(15) and there exists a function c̃d such that

(16) holds and

∃β > 0 : ∀x0 ∈ Ω ∀R > 0 :

∫
BR(x0)∩Ω

|∇c̃d|2

Rd−2+2β
6 C3, C3 ∈ (0,∞) is a constant,

then there exists a weak solution (v, c) of the problem (5)–(7) satisfying the boundary conditions
(10) such that

v ∈W 1,1
0,div(Ω), D(v) ∈ Lp(c)(Ω),

(c− c̃d) ∈ C0,α(Ω) ∩W 1,2
0 ,

for some 0 < α 6 β, α being function of Ω,K1,K2, and (v, c) fulfills the following weak formulation
of the problem

−
∫

Ω

v ⊗ v · ∇ψ dx+

∫
Ω

S(c,D(v)) ·D(ψ) dx = 〈f ,ψ〉 ∀ψ ∈W 1,p(c)
0,div (Ω),

−
∫

Ω

vc · ∇ϕdx+

∫
Ω

qc(c,∇c,D(v)) · ∇ϕdx = 0 ∀ϕ ∈W 1,2
0 (Ω).

To the best of our knowledge, this is the first result concerning the existence of the system
(5)–(7), (10) where the variable exponent is concentration dependent. Since the spaces where we
look for the weak solution are “dependent” on the solution itself, we a priory do not know them,
and thus, a more general concept of function spaces with variable exponent p(·), the so–called
generalized Sobolev Spaces, needs to be involved. Nevertheless, certain restriction on p(·) is required,
namely its Hölder continuity, a crucial assumption for the density of smooth functions in generalized
Sobolev spaces, embedding theorems and Korn’s inequality.

In the case, that the diffusivity matrix in the equation for the concentration is constant, or
only concentration dependent, the use of standard theory for Laplace operator, see Ladyzhenskaya
and Ural’tseva (1968), ensures the Hölder continuity of the concentration, and thus of the variable
exponent. In contrast to Antontsev and Rodrigues (2006), where authors assumed the constant
diffusivity matrix for similar equation of thermal diffusion, we assume the diffusivity to be non–
constant, and thus, we a priori do not know if the concentration satisfies the Hölder continuity.
Nevertheless, this we prove for certain, but not restrictive, assumptions by the introduction of
Green test functions in the weak formulation for convection–diffusion equation. The proof of
Hölder continuity of concentration is based on the results of de Giorgi (1957) and Nash (1958), and
application of the Morrey’s lemma.

In such setting, we can use the theory of monotone operators to prove the desired existence.
Nevertheless, this is restricted to the assumption of p− > 3d

d+2 , in 3D setting p− > 9
5 , which is
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required for the convective term (v ⊗ v) being well defined for the test functions from W
1,p(c)
0,div .

Eventual relaxation of the lower bound of p would require to generalize the approach of Diening
et al. (2008), the Lipschitz truncation method.

The second restriction on the minimal value of p in Theorem 5.1, explicitly p− > d
2 , comes from

the requirement of c being Hölder continuous. The prove of the Hölder continuity is based on de
Giorgi result for elliptic equation with measurable coefficients and the right hand side in some
W−1,q′ space with q > d. In our setting this means that we require div(cv) ∈W 1,q′ , which results,
using boundedness of c, in v ∈ Lq for q > d, and thus, using the embedding theorem, in the second
restriction on p−.

6 Numerical methods

In the thesis, we focus on the description of the numerical discretization of the system of equations
which we use in the next chapters for computational simulations. Then, close description of convec-
tion dominated problem typical for synovial fluid and introduction of three different stabilization
method for equation of concentration is presented. Here, nevertheless, we shall present the methods
very briefly.

The system of governing equations is given by (5)–(7), and the domain of consideration Ω is
bounded with Lipschitz boundary ∂Ω. We prescribe Dirichlet and Neumann boundary conditions
for velocity on parts of boundary ΓvD and ΓvN, respectively. It is assumed, that ∂Ω = ΓvD

⋃
ΓvN

and ΓvD
⋂

ΓvN = ∅. We can make such boundary decomposition for concentration as well, it means

∂Ω = ΓcD
⋃

ΓcN and ΓcD
⋂

ΓcN = ∅, where the Dirichlet and Neumann boundary conditions for the
concentration are prescribed. Explicitly, we consider

(v(t, x) · n)n = v1(t, x) on ΓvD, c(t, x) = cD(t, x) on ΓcD, (17)

vτ (t, x) = v2(t, x) on ΓvD,

[T (t, x)]n = gv(t, x) on ΓvN , qc(t, x) · n = gc(t, x) on ΓcN , (18)

where n is the unit outward normal to the boundary and vτ = v − (v · n)n.

6.1 Discretization, convection–dominated problem

We discretize the system in time by a θ–scheme, and then, after obtaining the stationary set of
equations for each time step, we use the finite element method for discretizing the space.

A straightforward numerical discretization works well for moderate values of Reynolds and
Péclet numbers. In the case of synovial fluid, the Reynolds number is small due to small velocities
and relatively high viscosity. On the other hand, the diffusivity of hyaluronan in synovial fluid
is extremely small, and thus very high Péclet numbers are typical for the considered convection–
diffusion equation. Due to these reasons, the discretization of equation for velocity behaves as
expected, while the algebraic system corresponding to concentration does not meet desired matrix
properties and thus the numerical solution exhibits non–physical effects.

It is obvious, that for problems of dominated convection, like in the case of synovial fluid with
physical diffusivity of hyaluronan in order of 10−7cm2/s, one has to stabilize the whole system by
suitable tools which should eliminate the spurious oscillations but should not significantly change
the character of resulting solution. A number of stabilization methods for finite element method
has been developed to overcome these typical numerical problems. Today, the most frequently used
stabilization methods are the stream–line diffusion method introduced by Hughes and Brooks in
1979, also called streamline upwind Petrov–Galerkin (SUPG), and the Galerkin least squares (GLS)
method. We shall, besides these two, introduce another alternative, two versions of the continuous
interior penalty (CIP1, CIP2) method.

From the obtained results, we observe that CIP1 scheme and GLS are the most diffusive. This
results that in the CIP1 case the concentration values on the specific cuts does not become negative
but, on the other hand, the localized concentrations spiral layers are not well preserved. The sharp
layers are conserved mostly by the GLS method. While the SUPG and CIP2 methods are most
oscillatory from all the considered stabilizations, for our computations they are least diffusive.
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Figure 7: Computational results of concentration distribution for driven cavity problem, Pe = 106,
plotted at time t = 50.

7 Computational simulations

In all cases we assume the fully coupled system of governing equations (5)–(7) with non–constant
viscosity and constant diffusivity with the Péclet number of order 107. We consider the computational
setting of driven cavity on a rectangular domain with the aspect ratio 10 : 1. We resolve the
evolutionary problem with initial conditions of v(0, x) = 0, c(0, x) = 0.1. We discretize the domain
Ω by a quadrilateral mesh, quadratically refined in the vertical direction. By this we meet the
higher computational requirements of the boundary condition settings.

For this case we study the influence of two different, having the least diffusive properties,
stabilization techniques on the numerical solutions, explicitly the SUPG – streamline upwind
Petrov–Galerkin method and the CIP2 – continuous interior penalty method with the weights,
from now on called CIP. The comparison is present in see Fig. 7 and 11. And, we present the
flow properties of fluid described by the proposed non–linear viscous models for synovial fluid, see
comparison of the velocity and viscosity profiles in Fig. 8 and S:sim10modmu.

8 Synovial membranes modeling

For our application, we propose a new mathematical model for flow and transport processes in
domains separated by a zero–thickness interface representing leaky semipermeable membrane,
described by the reflexivity σ. The model of the processes in the bulk domains consists of the
the Navier–Stokes equations describing the flow of diluted solution, together with the convection–
diffusion equation modeling the solute transport, as introduced above. This system of non–
dimensionalized governing equations takes the form of (5)–(7) and has to be complemented with
initial conditions, boundary conditions at the outer boundaries, and, mainly, by transmission
conditions at the separating membrane. These transmission conditions shall create the membrane
model, formulated on the macroscopic scale, assuming the membrane to be fixed and rigid interface,
separating the flow domains. Thus, the processes inside the membrane are not resolved, however,
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Figure 8: Viscosity distribution for different models.
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Figure 9: Top: Velocity profiles on vertical and horizontal cuts of the computational domain. Left:
vy velocity component profile on horizontal cut, right: profile of vx component of velocity on vertical
cut.; Bottom: Viscosity profiles on vertical and horizontal cuts of the computational domain.

19



-1.0 -0.5 0.0 0.5 1.0
0.08

0.10

0.12

0.14

0.16

0.18

0.20

x

co
nc

en
tr

at
io

n

separate profiles

0.10 0.12 0.14 0.16 0.18 0.20

-0.10

-0.05

0.00

0.05

0.10

concentration

y

separate profiles

CIP h0SUPG h0

CIP h0�2SUPG h0�2
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Figure 11: Relative differences between numerical solutions obtained by the use of SUPG and CIP
stabilizations: |cSUPG − cCIP|/cCIP for three different refinements of the mesh.

their effective contributions are included phenomenologically in the transmission conditions. We
consider the membrane to be symmetric, i.e. the transmission properties of the membrane from
both sides are the same, without the influence of its possible curvature on the flow of the solvent,
which is however up to now an open question.

In the formulation of the transmission conditions across the membrane, the following aspects
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are taken into account: first, the separating properties of the membrane with respect to the solvent,
which lead to the buffering of solute concentration at the membrane and second, connected with
the first aspect, the influence of the concentration accumulation on the volume flow, known as
osmotic effect. Such transmission model has similar features with other models existing in the
literature, see e.g. Kedem and Katchalsky (1958). However, the important difference is that we
shall not formulate equations only for the total volume fluxes across the membrane, as it is done
in the existing literature, but we give transmission conditions which can be used to describe the
influence of the membrane on the processes in the bulk regions.

The transmission conditions for the solvent flow at the membrane consist of the continuity of
the normal component and no–slip condition in the tangential direction with the respect to the
membrane interface for the velocity and of the continuity of normal stresses, and due to the physical
reasons, we include the osmotic pressure π(c) into our model via the the normal stress of the fluid
at the membrane. In that case, the transmission conditions for the flow are of the following form

vτ
+ = vτ

− = 0, v+ · n+ = −v− · n− = v · n+, (19)

[−(p− − p+)I + 2
1

Re
(D− −D+)]n− = −(π(c−)− π(c+))n−. (20)

where n+,n− are the outer unit normal vectors on Γm – the membrane interface in considered
domain Ω (divided by the membrane to subdomains Ω+,Ω−), with respect to the domains Ω+,Ω−

and vectors vτ
+/− represent the tangential components of velocity defined as vτ

+/− = v+/− −
(v+/− · n+/−)n+/−.

Concerning the transmission conditions for the solute concentration, we require the continuity
of the normal fluxes across the membrane, and the condition modeling the partial rejection of the
solute by the membrane by the parameter σ. If we assume that the velocity v has the property
v · n− ≥ 0, then these conditions have the form

− 1

Pe
grad c− · n− + σc−v · n− = 0,

− 1

Pe
grad c+ · n+ + c+v · n+ = −(1− σ)c−v · n−.

(21)

The main disadvantage of this formulation is the directional dependence of the conditions for
the concentration. Since the buffering occurs in the case of outflow while in the case of inflow
the washout of concentration from the membrane is observed, we have to explicitly know the flow
direction. One of the possible generalization of the transmission conditions for the concentration
(21), assuming symmetric properties of the membrane from both sides, is

1

Pe
grad c− · n− = (σc−)v · n− + (1− σ)(c− − c+) min(0,v · n−),

1

Pe
grad c+ · n+ = (σc+)v · n+ + (1− σ)(c+ − c−) min(0,v · n+).

(22)

It is easy to see that (22) reduces to (21) if v ·n− ≥ 0, and on the other hand, for the case v ·n− ≤ 0
we obtain analogous condition for outflow in opposite direction.

For the numerical simulations, we use the following computational setting. We consider the
rectangular domain with the fixed and rigid membrane Γm. The domain Ω− on the left from
membrane is prolonged since there the most interesting accumulation of concentration occurs. We
assume the pressure driven flow, for which the fluid of a given concentration enters the channel on
left vertical boundary Γ4, and the filtrate leaves the channel on right vertical boundary Γ2. The
walls of the channel Γ1 and Γ3 are impermeable for both, the concentration and velocity. The form
of the boundary conditions on the outer boundaries is

Γ4 : [−pI + 2
1

Re
D]n = −pinn, c = cin, (23)

Γ1,Γ3 : v = 0,

(
1

Pe
grad c+ cv

)
· n = 0, (24)

Γ2 : [−pI + 2
1

Re
D]n = 0n,

1

Pe
grad c · n = 0, (25)
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where cin is a constant inlet concentration and pin is a constant pressure inlet. Since we solve the
time–dependent problem, we set the initial conditions as a rest state (v = 0 and c = 0).

First, we present the general computations for the Newtonian fluid with Reynolds number
Re = 1 and Péclet number Pe = 100. The computational results are shown in Fig. 12–13.

Concentration: 0.000 0.001 0.003 0.004 0.005 0.006 0.007 0.009 0.010

(a) σ = 0.9, P1 = P2 = 0

Concentration: 0.000 0.001 0.003 0.004 0.005 0.006 0.007 0.009 0.010

(b) σ = 0.9, P2 = 0

Concentration: 0.000 0.001 0.003 0.004 0.005 0.006 0.007 0.009 0.010

(c) σ = 0.5, P2 = 0

Concentration: 0.000 0.001 0.003 0.004 0.005 0.006 0.007 0.009 0.010

(d) σ = 0.9, P2 = 5 · P1

Figure 12: Concentration distribution at steady state. Four plots for different parameter setting;
without osmotic pressure: (a) σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ = 0.9 , P2 = 0,
(c) σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.

Fig. 12 present the steady state of the concentration distribution in the whole domain. As we can
see, the shape of the concentration layer strongly differs. In the case of simulation without inclusion
of osmotic pressure (case (a)), the concentration at the membrane is higher towards the walls than
in the middle part. This is caused by the non–decelerated parabolic velocity profile. The velocity is
higher in the middle part than close to the walls thus it carries away more of the concentration.
This phenomena is not observed for the cases where the velocity at the membrane rapidly drops
like in the settings of (b) and (d). For the setting (c) and (d) with low reflection coefficient and
quadratic osmotic pressure dependence, a small concentration layer is created compared to the
setting with higher σ and linear dependence of osmotic pressure, setting (a) and (b).

Profiles of hydrodynamical pressure are presented in Fig. 13. In the case of computational
setting without osmosis, the equations for velocity and concentration are not fully coupled and thus
the hydrodynamical pressure is a solution of the classical Navier–Stokes equations, and thus, it has
a linear profile. For the settings including osmosis the jumps in the pressure occur. In the case of
small σ, the concentration layer at the membrane is not so significant, and thus it does not evoke
high difference in the osmotic pressures which could act against the fluid pressure. In the case of
the quadratic osmotic pressure dependence on the concentration, the compensation of the pressures
occurs even though the drop in concentration was not so high as for the case of (b). It is obvious
that for small pressure differences across the membrane, the outflow of the solute is high, and thus
high drainage of the solution is observed. In the case of the synovial fluid, that is unwanted feature.
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(a) σ = 0.9, P1 = P2 = 0

p: 0.000 10.000 20.000 30.000 40.000 50.000 60.000

(b) σ = 0.9, P2 = 0

p: 0.000 10.000 20.000 30.000 40.000 50.000 60.000

(c) σ = 0.5, P2 = 0

p: 0.000 10.000 20.000 30.000 40.000 50.000 60.000

(d) σ = 0.9, P2 = 5 · P1

Figure 13: Hydrodynamic pressure distribution at steady state. Four plots for different parameter
setting; without osmotic pressure: (a) σ = 0.9 , P1 = P2 = 0; with osmotic pressure: (b) σ =
0.9 , P2 = 0, (c) σ = 0.5 , P2 = 0, (d) σ = 0.9 , P2 = 5 · P1.

8.1 Application of the transmission model to synovial membranes and
synovial fluid

As it has been introduced in chapter of biology of joints in the thesis, the hyaluronan outflow
buffering is important for the balance of joint fluid volume and composition of the fluid, which
is, generally, important for the whole stability of synovial joint system. For these reasons, it is
important to study the filtration processes of synovial fluid through the synovial membrane in
relation to the hyaluronan concentration, which can vary with different physiological conditions of
the joint. This motivates us to apply our membrane transmission model (developed for diluted
polymeric solutions) to synovial fluid drainage.

There can be many mechanisms playing a role during the synovial fluid drainage, for example
the increase of intramembrane viscosity, the influence of molecular chain length on the critical
concentration of molecular overlapping, the influence of inhibitors of chain–chain interactions, etc.
We shall nevertheless focus on the concentration polarization due to the reflexivity of the synovial
membrane, and newly, we include to the model the resistivity of the membrane to the bulk flow. In
the previous subsection, we assumed such membrane properties that the zero reflexivity, σ = 0, led
to a membrane–free model. This means that the flow through the membrane would not be slowed
down, or in other words, the fluid would not “feel” the membrane presence, which is physically
non–realistic. From the experiment of Scott, see Fig. 14 (a), it is visible that the relation between
outflow and imposed intraarticular pressure exhibit linear relation for zero concentration solution of
hyaluronan. This can be considered as a specification of the membrane resistivity to the bulk flow of
the Newtonian fluid “background”. We therefore, as the membrane is considered as zero–thickness
interface, prescribe the resistance R through the normal stress as

[−(p− − p+)I + 2
1

Re
(D− −D+)]n− = −(π(c−)− π(c+))n− −R(vn)n−. (26)

For the experiment reproduction, we consider the same two–dimensional test geometry as above
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(a) trans–synovial flow – numerical result

(b) trans–synovial flow – experimental result

Figure 14: Qualitative comparison of numerical results of pressure driven flow through the membrane
(a), with the experimental results of Scott et al. (2000), (b).

with fixed and rigid interface Γm representing the membrane. Moreover, since we assume diffusivity
of order 10−6, we solve the problem by the use of the numerical stabilization method, particularly
by the continuous interior penalty (CIP) method. As in the experiment, we assume the pressure
driven flow, for which the fluid of a given concentration enters the channel and the filtrate leaves
the channel on opposite boundary. Here, we record the total flux of the fluid as a function of an
imposed pressure on the inflow boundary and qualitatively compare it with the volume outflow
relation from the experiment.

The numerical results of the simulations are presented in the Fig. 14. As it is well distinctive, the
model is able to capture the main outflow vs. imposed pressure characteristics which are their linear
relationship and the rapid decrease of the outflow for the concentration around 0.13 ≈ 2mg/ml
and higher. Even though we consider the phenomenologically derived model, under the considered
limitations it gives reasonable resulting properties of the filtration process.
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Růžička, M. (2000). Electrorheological fluids: modeling and mathematical theory, volume 1748.
Springer Verlag, lecture no edition.

Růžička, M. (2004). Modeling, mathematical and numerical analysis of electrorheological fluids.
Appl. Math, 49:565–609.

Scott, D., Coleman, P., Mason, R., and Levick, J. (2000). Concentration dependence of interstitial
flow buffering by hyaluronan in synovial joints. Microvascular research, 59(3):345–53.

Sunblad, L. (1953). Studies on hyaluronic acid in synovial fluids. Acta Societatis Medicorum
Upsaliensis, 58(113).

Turek, S. and Ouazzi, A. (2007). Unified edge-oriented stabilization of nonconforming FEM for
incompressible flow problems: Numerical investigations. Journal of Numerical Mathematics,
15(4):299–322.

26



List of Publications
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