Institut für Angewandte Mathematik (Math D)
Dr. Peter Gangl
Postal Address Technische Universität Graz
Institut für Angewandte Mathematik
Steyrergasse 30
8010 Graz
Austria
Phone+43-(0)316-873 8624
Telefax+43-(0)316-873 8621
RoomST 03 156
Electronic Mail gangl@math.tugraz.at
Office hour by appointment

Research Interests
  • Topology Optimization
  • Shape Optimization
  • Optimization of Electrical Machines
  • Finite Element Methods for Interface Problems
Short CV
Education
  • 2010: BSc, Johannes Kepler University, Linz, Austria.
  • 2012: Dipl.-Ing., Johannes Kepler University, Linz, Austria.
  • 2017: Ph.D., Johannes Kepler University, Linz, Austria.
Former and current positions
  • 04 -- 10/2012: Project employee at Institute of Computational Mathematics, JKU Linz.
  • 11/2012 -- 02/2017: PhD Student in Doctoral Program (Doktoratskolleg) "Computational Mathematics", JKU Linz, Austria. Supervision: Prof. Ulrich Langer.
  • 12/2015 -- 10/2016: Linz Center of Mechatronics GmbH (part time)
  • 04/2017 -- 08/2017: Post-doctoral researcher at RICAM Linz in group of Prof. Langer, Austria.
  • Since 09/2017: Post-doctoral researcher at Institute of Applied Mathematics, TU Graz.
Teaching
Summer 2019
Winter 2018/19
Activities
Past activities
Publications

See also my profile on ResearchGate

Refereed publications
  1. P. Gangl and U. Langer.
    Topology optimization of electric machines based on topological sensitivity analysis,
    Computing and Visualization in Science, vol. 15(6), pp.345--354, 2012; arXiv.

  2. P. Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm.
    Shape optimization of an electric motor subject to nonlinear magnetostatics,
    SIAM Journal on Scientific Computing 37(6):B1002--B1025, 2015; arXiv.

  3. P. Gangl, S. Amstutz, and U. Langer.
    Topology optimization of electric motor using topological derivative for nonlinear magnetostatics,
    IEEE Transactions on Magnetics, 52(3):1--4, March 2016; preprint.

  4. S. Amstutz and P. Gangl.
    Toplogical derivative for nonlinear magnetostatic problem (submitted); arXiv.
Conference proceedings
  1. G. Bramerdorfer, P. Gangl, A. Fohler, U. Langer, and W. Amrhein.
    Determination of the cogging torque sensitivity of brushless permanent magnet machines due to changes of the material characteristics of ferromagnetic components,
    In 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, pages 1--6, 2014.

  2. P. Gangl and U. Langer.
    A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization,
    In: Langer U., Amrhein W., Zulehner W. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry, vol 28. Springer, Cham, 2018; arXiv.

  3. P. Gangl, U. Langer, A. Mantzaflaris, R. Schneckenleitner.
    Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines (submitted); arXiv.
Book chapter
  1. P. Gangl.
    Sensitivity-based topology and shape optimization with application to electric motors ,
    Book chapter in IMA Volume "Frontiers in PDE-Constrained Optimization" (Editors: H. Antil, D. Kouri, M. Lacasse, D. Ridzal), Springer-Verlag New York, 2018.
PhD Thesis
  • Sensitivity-based topology and shape optimization with application to electrical machines,
    PhD Thesis, JKU Linz, 2016, pdf.

    see also

  • Topology and shape optimization with application to electrical machines,
    LCM Schriftenreihe, ISBN 978-3-99062-128-8, Trauner Verlag, 2017. Link

Other articles
  1. Where to put a hole?,
    Internationale Mathematische Nachrichten Nr. 239 (2018), (by Austrian Mathematical Society ÖMG), pdf.

  2. Mathematical Shape and Topology Optimization of Electrical Machines,
    TU Graz research magazine, Dec. 2018
Awards and Recognitions

Media
  • TU Graz people magazine, Oct. 2018
  • SIAM nugget article about our paper "Shape optimization of an electric motor subject to nonlinear magnetostatics"
  • Participation in Science Slam
  • Stream of my invited talk at the IMA Special Workshop "Frontiers in PDE-Constrained Optimization": Video
Links